

Schedulability Analysis of Generalized
Multiframe Traffic on Multihop-Networks
Comprising Software-Implemented
Ethernet-Switches

Björn Andersson

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-080201

Version: 1

Date: 04-02-2008

Technical Report HURRAY-TR-080201

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

Schedulability Analysis of Generalized Multiframe Traffic on Multihop-
Networks Comprising Software-Implemented Ethernet-Switches
Björn Andersson

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: bandersson@dei.isep.ipp.pt

http://www.hurray.isep.ipp.pt

Abstract
Consider a multihop network comprising Ethernet switches. The traffic is described with flows and each flow is
characterized by its source node, its destination node, its route and parameters in the generalized multiframe model.
Output queues on Ethernet switches are scheduled by static-priority scheduling and tasks executing on the processor in
an Ethernet switch are scheduled by stride scheduling. We present schedulability analysis for this setting.

Schedulability Analysis of Generalized Multiframe Traffic on Multihop-Networks
Comprising Software-Implemented Ethernet-Switches

Björn Andersson

IPP Hurray Research Group
Polytechnic Institute of Porto, Portugal

bandersson@dei.isep.ipp.pt

Abstract

Consider a multihop network comprising Ethernet
switches. The traffic is described with flows and each flow
is characterized by its source node, its destination node,
its route and parameters in the generalized multiframe
model. Output queues on Ethernet switches are scheduled
by static-priority scheduling and tasks executing on the
processor in an Ethernet switch are scheduled by stride
scheduling. We present schedulability analysis for this
setting.

Introduction

The Internet is undergoing two important changes.
Organizations are replacing IP-routers with Ethernet
switches; the trend is toward entire organizations having
networks with Ethernet switches and only an IP-router for
communication outside the network. In addition,
interactive multimedia traffic such as Voice-over-IP and
video-conferencing are increasingly popular and this
brings the need to satisfy real-time requirements. A good
illustration of this need is the fact that a large
multinational company, delivering Voice-over-IP over
Ethernet used in medical care in southern Sweden, has
now been reported to the government for jeopardizing
patient safety because network delays were too large [1].

Clearly a low delay is desired. The limited speed of
light causes significant delays for traffic over large
geographical distances; this cannot be reduced with better
networking equipment. The delay due to queuing of a
packet because other less time-critical packets are ahead
in a queue can however be controlled by networking
equipment and this is the subject of this paper.

Hops in the core of the Internet tend to have small
queuing delay because of overprovisioning. The traffic in
the core is an aggregation of a large number of
independent flows and hence (due to the law of large
numbers) the delay in the core has low variance as well;
consequently an upper bound on the delay of hops in the
core network can be estimated from measurements.

Practitioners have therefor suggested that QoS techniques
are most useful in the edge of the Internet [2, 3].

The edge of the Internet is heavily reliant on Ethernet
technology and prioritized switches are becoming
common there. Typically, a higher priority is given to
Ethernet frames from one incoming interface or Ethernet
frames carrying voice but unfortunately those networks
do not use scheduling theory in order to find an upper
bound on the delay. It is our belief however that
schedulability analysis now has the potential to play an
important role in the edge of the Internet because
(i) Ethernet switches are based on point-to-point
communication and hence there are no problems with
random backoffs in the medium access as was the case in
traditional shared-coaxial-cable/hub-based Ethernet in the
past, (ii) queuing delays in outgoing queues in Ethernet
switches can be controlled with static-priority scheduling
according to the IEEE 802.1p standard, where a specific
frame-format of the Ethernet frame specifies the priority,
(iii) many commercially available Ethernet switches
support 2-8 priority levels and can operate according to
the IEEE 802.1p standard and (iv) many networking
applications today need to meet deadlines.

Given the capability of current infrastructure and
application needs it is worthwhile to develop architectures
for achieving real-time guarantees on the Internet. Such
architectures are well-explored (RSVP [4] is one of them)
but they did not achieve widespread adoption. It is our
belief however that offering real-time guarantees in the
edge of the Internet and also in internal corporate
networks and metropolitan networks is easier to adopt
because it is typically owned by a single organization and
hence it brings simplifications such as (i) the resource
reservation (as a result of a flow being accepted by an
admission test) can be performed without billing and
(ii) complete knowledge of topology is possible.

Proving an upper bound on the end-to-end delay
requires that pipelines of resources are analyzed. For this
purpose, the real-time computing community has
proposed a framework, called holistic schedulability
analysis [5] which has been used successfully in

Figure 1. An example network with Ethernet switches. Node 0,1,2 and 3 are IP-endhosts, for example normal PCs running video conferencing

applications. Node 4,5 and 6 are Ethernet switches. Node 7 is an IP-router which connects the Ethernet network to the global Internet.

automotive systems but as far as we know, it has not yet
been used for IP- or Ethernet traffic. In addition, the
holistic schedulability analysis was developed for the
sporadic model which is not a good match for MPEG
encoded video-traffic. Another model, the generalized
multiframe model [6] is designed to allow designers to
express different sizes of video frames but unfortunately,
it was not proposed for multihop communication; so far it
has only been used to schedule a single resource.

In this paper, we present schedulability analysis of
flows in multihop networks. Flows are characterized by
the generalized multiframe model, the route of each flow
is pre-specified and the output queue of each link
schedules Ethernet frames by static-priority scheduling.
We consider Ethernet switches implemented in software;
this can be performed with Click [7], an open-source
software package that implements basic functionalities of
an Ethernet switch. We have used Click to implement an
Ethernet switch with prioritized output queues, measured
important characteristics of the implementation. The
Click software uses stride scheduling [8] for scheduling
software tasks inside the Ethernet switch. Hence those
delays must be analyzed as well.

We consider the problem of satisfying real-time
requirements from the perspective of a network operator
who manages switches in the edge of the Internet and
who is asked to offer delay guarantees to pre-specified
flows. This requires that the network can identify which
flow an incoming Ethernet frame belongs to; it can be
solved but it is not the subject of this paper. As a network
operator, we can only control the queuing discipline in
the Ethernet switches ⎯ not the queuing discipline in the
source node.

The remainder of this paper is organized as follows.
Section 2 gives the necessary preliminaries. Section 3
presents the analysis of the response-time of a flow.
Section 4 gives conclusions.

Preliminaries

We consider the problem of computing an upper
bound on the response-time of a UDP packet in a

multihop network comprising software-implemented
Ethernet switches. The assumptions made and their
relations to applications and our considered platform are
given in this section.

Network model
Figure 1 depicts an example of the network

considered. The network comprises nodes; some are
Ethernet switches, some are IP-endhosts and some are IP-
routers. On an IP-endhost there is one or many processes;
each process is associated with one or many flows. For
example, a process may be a video conferencing
application and it may be associated with two flows: one
for video and one for audio. A flow releases a (potentially
infinite) sequence of UDP packets on the source node and
these packets are relayed to the destination node by
Ethernet switches.

The source node of a flow is either an IP-endhost or
an IP-router. Analogously, the destination node of a flow
is either an IP-endhost or an IP-router. The flow is
associated with a route from the source to the destination;
this route traverses only Ethernet switches ⎯ the route
does not traverse IP-routers. Figure 2 shows an example
of a route. Note that an IP-router may be a source node
and then the destination node may be an IP-endhost; this
happens if another node (outside the network we
consider) sends data to the IP-endhost but we are only
studying the Ethernet network and for this reason, the IP-
router is the source node of the flow that is analyzed.

A flow releases a (potentially infinite) sequence of
transmission requests where each transmission request
means request to transmit a UDP packet. A packet could
be for example an I-frame in an MPEG encoded video
sequence. A UDP packet may be transmitted as a single
Ethernet frame or it may be fragmented into several
Ethernet frames. The Ethernet switches are not aware of
the UDP packet; they are only aware of Ethernet frames.
Despite this fact, we will describe the traffic over the
Ethernet network using UDP packets and treat each UDP
packet as a job in processor scheduling. Naturally this
requires some adaptation. We will introduce a blocking
term, and we will also need to introduce a new type of

Figure 2. Consider the network in Figure 1 and a flow with the source node being 0 and the destination node being 3. This figure shows the nodes

forward packets of this flow. The arrivals of packets on node 0 are given by the generalized multiframe model.

jitter, called generalized jitter (explained in Section 2.3).
A transmitted Ethernet frame is received by another

node. If this other node is the destination node of the flow
then we say that the response time of the packet in the
flow is the maximum time from when the UDP packet is
enqueued at the source node until the UDP packet is
received at the destination node of the flow. We say that
the UDP packet is received at the destination node of the
flow at the time when the destination node has received
all Ethernet frames belonging to the UDP packet.

Figure 5 shows the internals of an Ethernet switch. If
the node receiving an Ethernet frame is not the
destination node of the flow then it is an Ethernet switch.
The Ethernet switch receiving the Ethernet frame stores
the Ethernet frame in a FIFO queue in the network card.
The processor in the Ethernet switch dequeues the
Ethernet frame from this FIFO queue and identifies the
flow that the Ethernet frame belongs to. Based on this
identification, the switch looks up in a table the outgoing
network card that should be used and looks up the priority
that the Ethernet frame should use. Each outgoing
network interface has a corresponding priority queue,
stored in main-memory. The Ethernet frame is enqueued
into the proper outgoing queue. There is one software
task for each ingoing network interface and this task
performs this work. Each outgoing queue has a software
task as well which checks if the FIFO queue of its
corresponding network card is empty and if this is the
case it dequeues an Ethernet frames from its
corresponding priority queue and enqueues this Ethernet
frame into the FIFO queue on the network card of the
outgoing link. The network card naturally transmits the
Ethernet frame on the link corresponding to the network
card.

Let link(N1,N2) denote the link between node N1 to
node N2. linkspeed(N1,N2) denotes the bitrate of
link(N1,N2). prop(N1,N2) denotes the propagation delay
(due to the finite speed of light) of link(N1,N2).

Measurements on our implementation suggests that
the uninterrupted execution time required for dequeuing
an Ethernet frame from the incoming network card until it
enqueues the Ethernet frame in the priority queue is
2.7μs. Measurements also suggests that the uninterrupted
execution time required for dequeuing an Ethernet frame
from the outgoing queue until it enqueues the Ethernet
frame in the FIFO queue of the network card is 1.0μs. We

assume that a single processor is used in the Ethernet
switch and the processor is scheduled with stride
scheduling.

Stride scheduling
Stride scheduling [8] is designed to (i) service tasks

according to a pre-specified rate and (ii) have a low
dispatching overhead. It works as follows. Each task is
associated with a counter (called pass) and two static
values: tickets and stride. The system also has a large
integer constant. The stride of a task is this large integer
divided by the ticket of a task. When the system boots, the
pass (which is the counter) of a task is initialized to its
stride. The dispatcher selects the task with the least pass;
this task may execute until it finishes execution on the
processor and then its pass is incremented by its stride.
With this behavior, a task with ticket=2 will execute twice
as frequently as a task with ticket=1. The amount of
processing time used by the former task is not necessarily
twice as much though.

Stride scheduling can be configured such that each
task has a ticket=1; this causes stride scheduling to
collapse to round-robin scheduling and we will use such
configuration in the remainder of the paper1.

Traffic model
As already mentioned, we assume the sequence of

transmission requests is described with the generalized
multiframe model. This model was originally developed
for characterizing arrivals of jobs in processor scheduling
but clearly it can be used for characterizing traffic in
networks as well. The original generalized multiframe
model did not model jitter. We will introduce jitter to this
model but our notion of jitter is slightly different from the
normal notion of jitter, we will call it generalized jitter.

A flow τi is a (potentially infinite) sequence of
messages. Figure 3 gives an illustration of an MPEG
stream. The MPEG stream requests to transmit UDP
packets which are characterized by the generalized
multiframe model. We are interested in finding the
response time of a flow from source to destination. In
order to do that, we will calculate the response time of the
flow across a single resource (such as a link). And
consequently, we need to describe how frequently the

1 It is the default configuration in Click.

I+P

0 time (ms) 30 60 90 120 150 180 210 240 270 300

MPEG
frame
transmitted

B B P B B P B B I+P B

The MPEG frames IBBPBBPBB are transmitted here.

Figure 3. Consider a sequence of MPEG frames (=UDP packets), characterized as IBBPBBPBB and a movie which is comprised of a repetition of

this sequence of frames. The P-frame stores the frame as a difference between the previous I- or P-frame. The B-frame stores the frame as a difference
between the previous I-frame or P-frame or the next I-frame and P-frame. For this reason, the transmission order is as shown in the figure.

flow requests to use this resource and how much of the
resource that it needs. The actual time needed depends on
the characteristics of the resource, such as the link speed.

A flow τi is described with a tuple Ti, a tuple Di, a
tuple GJi, a tuple Si and a scalar ni. The scalar ni
represents the number of “frames” of the flow; these
frames should not be confused with Ethernet frames. The
flow for sending the MPEG stream given by Figure 3 has
ni=9 because there are 9 frames and then it repeats itself.
The first frame is the UDP packet “I+P”; the second
frame is the UDP packet “B” and so on.

Let |Ti| denote the number of elements in the tuple Ti.
Then it holds that |Ti|=|Di|=|GJi|=|Si|=ni. The first element
in the tuple Ti is indexed Ti

0 and it represents the
minimum amount of time between the arrival of the first
frame τi of and the second frame of τi at the source node.
Analogously, for Ti

1, Ti
2,…,Ti

ni-1. Note that the exact
times of transmission request of any frame is unknown;
only lower bounds of inter-arrival times are known.

When a frame has arrived on the source node, it
releases its Ethernet frames but all Ethernet frames are not
necessarily released simultaneously. If t denotes the time
when the first Ethernet frame of frame k of flow τi is
released then all Ethernet frames of this frame are
released during [t,t+GJi

k). It can be seen that if all
Ethernet frames of a frame would be released
simultaneously and if Ethernet frames were arbitrarily
small then our notion of jitter would be equivalent to the
normal notion of jitter used in preemptive processor
scheduling. Since GJi

k is a generalization, we say that
GJi

k is the generalized jitter of frame k in flow τi.
The first element in the tuple Di is indexed Di

0 and it
represents the relative deadline of the first frame;
meaning that the first frame must reach the destination
node within Di

0 time units from the arrival on the source
node. Analogously, for Di

1, Di
2,…,Di

ni-1.
The first element in the tuple Si is indexed Si

0 and it
represents the number of bits in the payload of the packet
of the first frame. Analogously, for Si

1, Si
2,…,Si

ni-1.

Schedulability Analysis

Basic parameters
We will now compute parameters for each link of each

frame of a flow. By knowing the number of bits of payload

in a UDP packet, it is possible to compute the transmission
time of the UDP packet over a link with known link speed.
A UDP packet must have an integral number of bytes and it
must also include the UDP header (8 bytes). Let nbitsi

k
denote the number of bits that constitute the UDP frame
(including the UDP header) of the k:th frame of flow τi. We
have:

8*88
8

+×⎥
⎥

⎤
⎢
⎢

⎡
=

k
ik

i
S

nbits

If Real-Time Transport Protocol (RTP) is used then it
is necessary to add 16 bytes for the RTP header. Hence:

816888
8

×+×+×⎥
⎥

⎤
⎢
⎢

⎡
=

k
ik

i
Snbits

We must also add the IP-header (20 bytes). An Ethernet
frame has a data payload of 1500 bytes and a header (14
bytes), CRC (4 bytes) and preamble+start-frame delimiter (8
bytes) and inter-frame gap (12 bytes). Therefore, an Ethernet
frame has a maximum size of 12304 bits. Although the
payload is 1500 bytes; 20 bytes of them are for the IP-
header and hence there is room for 1480 bytes (=11840 bits)
of data in each Ethernet frame. This gives us that Ci

k,link(s,d),
the transmission time of the UDP packet which is frame k of
flow τi on link(s,d), can be computed as:

ifend
dslinkspeed

nbitsnbits
CC

thennbitsnbitsif

dslinkspeed

nbits

C

k
ik

i
dslinkk

i
dslinkk

i

k
i

k
i

k
i

dslinkk
i

),(

30411840
11840

11840
11840

),(

12304
11840

),(,),(,

),(,

+×⎥
⎦

⎥
⎢
⎣

⎢
−

+=

≠×⎥
⎦

⎥
⎢
⎣

⎢

×⎥
⎦

⎥
⎢
⎣

⎢

=

Let MFT (Maximum-Frame-Transmission-Time) be
denoted as

),(
12304),(

dslinkspeed
MFT dslink =

(1)

Let us consider the traffic in the MPEG stream in Figure 3
on the route given in Figure 2; call it flow τi. Consider the link
from node 0 to node 4 and assume that linkspeed(0,4)=107
bit/s.

Software-implemented
Ethernet switch

0

Figure 4. The parameters describing traffic over a specific link; here the link considered is link(0.4). This figure is a magnification of Figure 3,

zooming in on the link from node 0 to node 4.

Calculations of Ci
k,link(0,4) based on (1) and (2) yield the values

shown in Figure 4. The parameters Ci
k for the other links

link(4,6) and link(6,3) can be obtained analogously. Figure 3
showed the MPEG stream, assuming no generalized jitter. In
practice there is generalized jitter; for the illustration in
Figure 4 we assumed a generalized jitter of 1ms.

We will compute the response time of a frame k of a flow
from source to destination; this requires that a pipeline of
resources (each with a queue) is analyzed. We will compute
the response time of the first resource and this becomes
additional generalized jitter to the 2nd resource. We then
compute the response time of the 2nd resource and so on by
taking this generalized jitter into account. Finally, the response
time from source to destination is obtained by adding the
response times of all resources. If the response time from
source to destination of every frame of a flow does not exceed
its corresponding deadline then the flow meets all its
deadlines.

The generalized jitter can be indexed in two different
ways. GJi

k is the generalized jitter of the frame k of flow i of
the source node; this is a specification of the flow. GJi

k,link(N1,N2)
represents the jitter of frame k of flow i on the link from node
N1 to N2; this will be calculated.

In the analysis performed in this section, some short-hand
notations are useful. flows(N1,N2) denotes the set of flows over
the link from node N1 to node N2. hep(τi, N1, N2) denotes the
set of flows over the link from node N1 to node N2 which have
higher priority than flow τi or equal priority as τi. succ(τj,N)
denotes the node that is the successor of node N in the route of
the flow τj. Analogously, prec(τj,N,) denotes the node that is
the predecessor of node N in the route of the flow τj. hep(τj,N)
and lp(τj,N) represent higher- and lower-priority flows, leaving
node N. Formally they are expressed as:

() (){
()()

()() (()(NsuccNiprioNsuccNjprio
NsuccNflowsj
ijjNhep

ii

i

i

,,,,,,
),,(

:,

ττ
τ

))}

τ

≥
∧∈

∧≠=
(2)

and

()
() ()() iNihepNsuccNflows

Nlp

i

i

\,\),,(
,

τ {}
τ =

(3)

Further definitions follow below:

∑
−

=

=
1

0

)(,)(2,12,1
jn

k

NNlinkk
j

NNlink
j CCSUM (4)

and

∑
−

= ⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
=

1

0
)(

)(,
)(

2,1

2,1

2,1
jn

k
NNlink

NNlinkk
jNNlink

j MFT

C
NSUM

(5)

and

∑
−

=

=
1

0

jn

k

k
jj TTSUM (6)

Intuitively, (4) calculates the sum of the transmission
times of all nj frames of flow τj. Using the example, in
Figure 4, we obtain:

ms.362863)(2,1 =NNlink
jCSUM

Equation (5) calculates the number of Ethernet frames of
all nj frames of flow τj. Using the example, in Figure 4, we
obtain:

94)(2,1 =NNlink
jNSUM

Equation (6) calculates a lower bound on the amount of
time from when a frame of flow τj is requested until this
frame is requested again. Using the example, in Figure 4, we
obtain:

ms270=jTSUM

Later in the analysis, we need to consider a sequence
of frames. Equations (7), (8) and (9) present such
expressions based on (4), (5) and (6).

() ∑
−+

=

=
1

)(,mod
21

)(
21

1

2,12,1 ,
kk

kk

NNlinknk
j

NNlink
j

jCkkCSUM
(7)

from/to
node 1

FIFO queue

Network card

FIFO queue

from/to
node 0

FIFO queue

Network card

FIFO queue

Network card

Network card

from/to
node 5

from/to
node 6

FIFO queue

FIFO queue

FIFO queue

FIFO queue

priority queue

priority queue

priority queue

priority queue

Figure 5. The internals of a software-implemented Ethernet switch. Arrows indicate the flow of Ethernet frames. A dashed line indicates the

possibility of the flow of an Ethernet frame. A gray circle indicates a software task.

and

() ∑
−+

= ⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
=

1

)(

)(,mod

21
)(

21

1
2,1

2,1

2,1 ,
kk

kk
NNlink

NNlinknk
jNNlink

j MFT
C

kkNSUM
j

(8)

and

() ∑
−+

=

=
2

mod
21

21

1

,
kk

kk

nk
jj

jTkkTSUM
(9)

Observe that the range of summation in (4),(5) and (6)
are the same whereas the range of summation in (9) is
different from the range of summation in (7) and (8).

MXS(τj,N1,N2,t) denotes an upper bound on the
amount of time that flow τj uses the link from node N1 to
node N2 during a time interval of length t. MXS is only
defined for values of t such that 0<t<TSUMj. (S in MXS
means small). The function MXS we use is:

()

()

()),
,min(,,,

21
)(

21
2,1

2,1..12,1..01

max kkCSUM
ttNNMXS

NNlink
j

j

tkkjTSUMthatsuchjnkjnk ≤=−=

=τ
(10)

MX(τj,N1,N2,t) denotes an upper bound on the amount of
time that flow τj uses the link from node N1 to node N2
during a time interval of length t. Unlike MXS, the
function MX is defined for all positive values of t. The
function MX we use is:

()

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
×
⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
−

+×
⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
=

j
j

j

NNlink
j

j

j

TSUM
TSUM

ttNNMXS

CSUM
TSUM

t

tNNMX

,,,

,,,

21

)(

21

2,1

τ

τ

(11)

NXS(τj,N1,N2,t) denotes an upper bound on the number
of Ethernet frames that are received from flow τj from the
link from node N1 to node N2 during a time interval of
length t. NXS is only defined for values of t such that
0<t<TSUMj. (S in NXS means small). The function NXS
we use is:

()

()

()21
)(

21

,
,,,

2,1

2,1..12,1..01

max kkNSUM
tNNNXS

NNlink
j

j

tkkjTSUMthatsuchjnkjnk ≤=−=

=τ
(12)

 NX(τj, N1,N2,t) denotes an upper bound on the number
of Ethernet frames that are received from flow τj from the
link from node N1 to node N2 during a time interval of
length t. Unlike NXS, the function NX is defined for all
positive values of t. The function NX we use is:

()

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
×

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
−

+×
⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
=

j
j

j

j
j

j

TSUM
TSUM

ttNNNXS

NSUM
TSUM

t
tNNNX

,,,

,,,

21

21

τ

τ

(13)

First hop
Recall that we consider the problem from the network

operator´s perspective and hence we cannot make any
assumption on the queuing discipline if the source node is
an IP-endhost because the IP-endhost may be a normal
PC running a non-real-time operating systems and has a
queuing discipline in the network stack and queues in the
network card that do not take deadlines into account. For
this reason, we analyze the first hop assuming that
Ethernet frames on the first link are scheduled by any

work-conserving queuing discipline. In our example
network (in Figure 2), the first link is link(0,4).

Let Ri
k,link(S,succ(τi,S)) denote the response time of frame k

in flow τi from the event that all Ethernet frames of frame
k of flow τi has been enqueued on node S in the
prioritized output queue towards node succ(τi,S) until all
Ethernet frames of this frame have been received at node
succ(τi,S). Let us define extraj(N,i) as:

() ()),,(,
1..0max, NsuccNlinkk

jnjkj
iGJiNextra τ

−==

The method for computing Ri
k explores all messages

released from flow τi during a so-called busy-period. The
length of the busy period is computed as follows:

() 00),,,(, =SsuccSlinkk
i

it τ (14)

and iterate according to:
()

() ()(
()()

())iSextra

tSsuccSMX
t

j

SsuccSflowsj

vSsuccSlinkk
iij

vSsuccSlinkk
i

i

i

i

,

,,,,
,,

),,,(,

1),,,(,

∑
∈

+

+
=

τ

τ

τ

ττ

(15)

When (15) converges with ti
k,link(S,succ(τi,S)),v+1=

ti
k,link(S,succ(τi,S)),v then this is the value of ti

k,link(S,succ(τi,S)). We
can now compute wi

k,link(S,succ(τi,S)) the queuing time of the
qth message of frame k in the busy period. It is computed
iteratively until we obtain convergence,
wi

k,link(S,succ(τi,S)),v+1(q) =wi
k,link(S,succ(τi,S)),v(q) for the following

iterative procedure:
() () ()),,(0),,,(, SsuccSlink

i
SsuccSlinkk

i
ii CSUMqqw ττ ×= (16)

and iterate according to:
() () ()

() () ()(
()() { }

())iSextra

qwSsuccSMX
CSUMqqw

j

iSsuccSflowsj

vSsuccSlinkk
iij

SsuccSlink
i

vSsuccSlinkk
i

i

i

ii

,

,,,,
\,,

),,,(,

),,(1),,,(,

∑
∈

+

+
+×=

τ

τ

ττ

ττ

(17)

when (17) converges with wi
k,link(S,succ(τi,S)),v+1(q)

=wi
k,link(S,succ(τi,S)),v(q) then this is the value of

wi
k,link(S,succ(τi,S))(q). We compute the response-time for the

qth arrival of frame k of flow i in the busy period as:
() () () ()

k
ii

SsuccSlinkk
i

SsuccSlinkk
i

CTSUMq
qwqR ii

+×−
=),,(,),,(, ττ

(18)

This is used to calculate the response time:
()

() ()()
()()SsuccSprop

qR
R

i

SsuccSlinkk
iQq

SsuccSlinkk
i

i
k
i

i

,,
max),,(,

1..0

),,(,

τ

τ

τ

+
=

−=

(19)

where Qi
k is defined as:

()

⎥
⎥

⎤
⎢
⎢

⎡
=

i

SsuccSlinkk
ik

i TSUM
tQ

i),,(, τ

This analysis works for the case that

()

()()
1

,,

),,(

<∑
∈ SsuccSflowsj j

SsuccSlink
j

i

i

TSUM
CSUM

τ

τ
(20)

From Reception to Enqueueing in Priority Queue
Figure 5 shows the internals of the Ethernet switch. As

already mentioned the Click software schedules the tasks non-
preemptively according to stride scheduling. We will now
analyze it. Let NINTERFACES(N) denote the number of
network interfaces on node N. (As an illustration, the switch in
Figure 5 has NINTERFACES(N)=4.) Let CROUTE(N) denote
the computation time on node N required to dequeue an
Ethernet packet from an Ethernet card, find its priority and
outgoing queue and enqueuing the Ethernet frame. Let
CSEND(N) denote the computation time on node N required
to dequeue an Ethernet frame from the priority queue and then
enqueue it to the FIFO queue of the Ethernet card.
Consequently, a task is serviced once every
NINTERFACES(N) × (CROUTE(N)+CSEND(N)). We let
CIRC(N) denote this quantity. In the example in Figure 5, we
have that a task is serviced every 4*(2.7+1)μs; that is every
14.8 μs.

Let Ri
k,in(N) denote the response time of frame k in flow τi

from the event that the all Ethernet frames of frame k of flow
τi have been received on node N until all Ethernet frames of
this frame has been enqueued in the right priority queue in the
Ethernet switch.

The method for computing Ri
k,in(N) explores all

messages released from flow τi during a so-called busy-
period. The length of the busy period is computed as
follows:

00),(, =Nink
it (21)

and iterate according to:

()(
()

()))(,

,,,,
),,(

),(,

1),(,

NCIRCiSextra

tNprecSNX
t

j

NNprecflowsj

vNink
iij

vNink
i

i

×

+
=

∑
∈

+

τ

ττ

(22)

When (22) converges with ti
k,in(N),v+1= ti

k,in(N),v then this is
the value of ti

k,in(N). We can now compute wi
k,in(N) as the

queuing time of the qth message of frame k in the level-i
busy period. It is computed iteratively until we obtain
convergence, wi

k,in(N),v+1(q) = wi
k,in(N),v(q) for the following

iterative procedure:

())(0),(, NCIRCqqw Nink
i ×= (23)

and iterate according to:

()
() ()(

() { }
()))(,

,,,,
)(

\),,(

)),(,

1),(,

NCIRCiSextra

qwNprecSNX
NCIRCqqw

j

iNNprecflowsj

vNink
iij

vNink
i

i

×

+
+×=

∑
∈

+

τ

ττ

(24)

when (24) converges with wi
k,in(N),v+1(q) =wi

k,in(N),v(q) then
this is the value of wi

k,in(N)(q). We compute the response-
time for the qth arrival of frame k of flow i in the busy
period as:

() ()
)(

)(,)ln(,

NCIRCTSUMq
qwqR

i

Nink
i

Nk
i

+×−
=

(25)

This is used to calculate the response time:

()(qR
R

Nink
iQq

Nink
i

k
i

)(,
1..0

)(,

max
−=

=
)

(26)

where Qi
k is defined as:

⎥
⎥

⎤
⎢
⎢

⎡
=

i

Nink
ik

i TSUM
tQ

)(,
(27)

From Dequeueing of Priority Queue to
Transmission

Consider Figure 5 again. We are interested in finding the
time from when all Ethernet frames of the UDP packet is
enqueued in the priority queue until all Ethernet frames of the
UDP packet have been enqueued in the FIFO queue of the
network card of the outgoing link. This time depends on the
transmission times of priorities with higher priority and such
analysis is well-explored in the research literature. This time
depends also on the stride scheduling because it can happen
that the outgoing link is idle but the task that dequeues an
Ethernet frame is not executing and then the outgoing link
remains idle although there may be an Ethernet frame in the
outgoing queue. For this reason, equations are slightly
different.

Let Ri
k,link(N,succ(τi,N)) denote the response time of frame

k in flow τi from the event that the all Ethernet frames of
frame k of flow τi has been enqueued on node N in the
prioritized output queue towards node succ(τi,N) until all
Ethernet frames of this frame has been received at node
succ(τi,N).

The method for computing Ri
k,link(N,succ(τi,N)) explores all

messages released from flow τi during a so-called level-i
busy-period. The length of the level-i busy period is
computed as follows:

() ()),,(0),,,(, NsuccNlinkNsuccNlinkk
i

ij MFTt ττ = (28)

and iterate according to:

() (

() ()(
()()

())
() ()(

()()
()) ()NCIRCiNextra

tNsuccNNX
iNextra

tNsuccNMX
MFTt

j

NsuccNhepj

vNsuccNlinkk
iij

j

NsuccNhepj

vNsuccNlinkk
iij

NsuccNlinkvNsuccNlinkk
i

i

i

i

i

ii

×

+
+

+
+=

∑

∑

∈

∈

+

,

,,,,
,

,,,,

,,

),,,(,

,,

),,,(,

),,(1),,,(,

τ

τ

τ

τ

ττ

ττ

ττ

)

(29)

When (29) converges with ti
k,link(N,succ(τi,N)),v+1=

ti
k,link(N,succ(τi,N)),v then this is the value of ti

k,link(N,succ(τi,N)). We
can now compute wi

k,link(N,succ(τi,N)) the queuing time of the
qth message of frame in the level-i busy period. It is
computed iteratively until we obtain convergence,
wi

k,link(N,succ(τi,N)),v+1(q)=wi
k,link(N,succ(τi,N)),v(q) for the

following iterative procedure:
() () ()

()),,(

),,(0),,,(,

NsuccNlink
i

NsuccNlinkNsuccNlinkk
i

i

ii

CSUMq
MFTqw

τ

ττ

×
+=

(30)

and iterate according to:
() () ()

()

() () ()(
()() { }

())
() () ()(

()() { }
()) ()NCIRCiNextra

qwNsuccNNX
iNextra

qwNsuccNMX
CSUMq

MFTqw

j

iNsuccNhepj

vNsuccNlinkk
iij

j

iNsuccNhepj

vNsuccNlinkk
iij

NsuccNlink
i

NsuccNlinkvNsuccNlinkk
i

i

i

i

i

i

ii

×

+
+

+
+×

+=

∑

∑

∈

∈

+

,

,,,,
,

,,,,

\,,

),,,(,

\,,

),,,(,

),,(

),,(1),,,(,

τ

τ

τ

τ

τ

ττ

ττ

ττ

(31)

when (31) converges with wi
k,link(N,succ(τi,N)),v+1(q)

=wi
k,link(N,succ(τi,N)),v(q) then this is the value of

wi
k,link(N,succ(τi,N))(q). We compute the response-time for the

qth arrival of frame k of flow i in the busy period as:
() () () ()

k
ii

NsuccNlinkk
i

NsuccNlinkk
i

CTSUMq
qwqR ii

+×−
=),,(,),,(, ττ

(32)

This is used to calculate the response time:
()

() ()()
()()NsuccSprop

qR
R

i

NsuccNlinkk
iQq

NsuccNlinkk
i

i
k
i

i

,,
max),,(,

1..0

),,(,

τ

τ

τ

+
=

−=

(33)

where Qi
k is defined as:

()

⎥
⎥

⎤
⎢
⎢

⎡
=

i

NsuccNlinkk
ik

i TSUM
t

Q
i),,(, τ

This analysis will not converge if
()

()() { }
1

\,,

),,(

≥∑
∈ iNsuccNhepj j

NsuccNlink
j

i

i

TSUM
CSUM

τ

τ
(34)

1. N1 := SOURCE(τi)
2. N2 := succ(τi,N1)
3. RSUM := GJi

k; JSUM := GJi
k

4. while N2≠DESTINATION(τi) do
5. N3 := succ(τi,N2)
6.
7. if N1= SOURCE(τi) then
8. GJi

k,link(N1,N2) := JSUM
9. R := calculate Ri

k,link(N1,N2) from (19) based on S=N1
10. RSUM := RSUM + R; JSUM := JSUM + R
11. end if
12.
13. GJi

k,in(N2) := JSUM
14. R := calculate Ri

k,in(N2) from (26) based on N=N2
15. RSUM := RSUM + R; JSUM := JSUM + R
16.
17. GJi

k,link(N2,N3) := JSUM
18. R := calculate Ri

k,link(N2,N3) from (33) based on N=N2
19. RSUM := RSUM + R; JSUM := JSUM + R
20.
21. N1 := N2
22. N2 := N3
23. end while
24. Ri

k := RSUM

Figure 6. An algorithm for computing Ri

k, an upper bound on the response time of a frame k of flow τi from the source node of the flow to the
destination of the flow.

This analysis may converge if
()

()() { }
1

\,,

),,(

<∑
∈ iNsuccNhepj j

NsuccNlink
j

i

i

TSUM
CSUM

τ

τ
(35)

Putting it all together
Having these equations, we are now able to calculate

the response-time from source to destination of a frame k
from flow τi. Figure 6 shows an algorithm that computes
this assuming that the generalized jitter of all links of all
frames of other flows are known.

In practice, this assumption is usually false. One can
however extend the ideas of holistic schedulability
analysis [5] to the case where only the generalized jitter
of source nodes are known. It works like this. Assume
that the generalized jitter on the source nodes for each
flow is what is specified and assume for every flow that
the generalized jitter for links that are not from the
source, is zero. Then calculate response times of each
resource along the pipeline using the algorithm in
Figure 6. Then let the generalized jitter of a resource be
as calculated in the algorithm in Figure 6. Repeat the
process of calculating the response times and updating
generalized jitter until the jitter updating leads to the same
jitter already assumed. Then the values of Ri

k output from
the algorithm in Figure 6 can be compared to their
deadlines. And this forms an admission controller.

Conclusions

Schedulability analysis of switched Ethernet is well-
explored in the research literature of real-time computing
with a focus on industrial settings rather than voice-over-
IP and video-conferencing. For this reason, the analysis in

the previous research literature did neither deal with
multihop networks nor the generalized multiframe model.

We have taken this step and presented a schedulability
analysis for traffic generated according to the generalized
multiframe model in multihop networks comprising
software-implemented Ethernet switches.

It can be seen that CIRC(N), the time required until a
task is served again, heavily influences the delay. Hence,
faster processors are clearly needed. An alternative
approach is the use of multiprocessors; this is typically
the case of today´s network processors. If m, the number
of processors, is equally divisible by NINTERFACES(N),
one can assign NINTERFACES(N)/m network interfaces
to each processor. Clearly, if a network interface is
assigned to a processor then both of the tasks that are
assigned to this network interface are assigned to that
processor aswell. In this way, quite large switches are
implementable. For example, if a network processor
comprises 16 processors and each of them have the same
capability as the PC running Click, then a 48 port switch
can be implemented with a NCIRC(N)=11.1μs. Such a
switch can comfortably deal with links of speed
1 Gigabit/s.

Acknowledgements

This work was partially funded by the Portuguese
Science and Technology Foundation (Fundação para
Ciência e Tecnologia - FCT) and the ARTIST2 Network
of Excellence on Embedded Systems Design.

References
[1] "Telefonkaos i Region Skåne," in Svenska dagbladet, 2007.

[2] J. Evans and C. Filsfils, "Deploying Diffserv at the Network
Edge for Tight SLAs, Part 1," in IEEE Internet Computing.,
vol. 8, 2004, pp. 61-65.

[3] B. Turner, "Why There's No Internet QoS and Likely Never
Will Be," in Internet Telephony Magazine, vol. 10, 2007.

[4] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin,
"Resource ReSerVation Protocol (RSVP) -- Version 1
Functional Specification”, RFC 2205," 1997.

[5] K. Tindell and J. Clark, "Holistic schedulability analysis for
distributed hard real-time systems," Microprocessing and
Microprogramming, vol. 40, pp. 117 – 134, 1994.

[6] S. Baruah, D. Chen, S. Gorinsky, and A. Mok, "Generalized
multiframe tasks," Real-Time Systems, vol. 17, pp. 5-22,
1999.

[7] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek, "The Click modular router," ACM Transactions
on Computer Systems, vol. 18, pp. 263-297, 2000.

[8] C. A. Waldspurger and W. E. Weihl, "Stride Scheduling:
Deterministic Proportional-Share Resource Management,"
MIT Laboratory for Computer Science June 1995.

