

Semi-Partitioned Scheduling of Fork-Join
Tasks using Work-Stealing

Conference Paper

CISTER-TR-151007

Cláudio Maia

Patrick Meumeu Yomsi

Luís Nogueira and Luis Miguel Pinho

Conference Paper CISTER-TR-151007 Semi-Partitioned Scheduling of Fork-Join Tasks using ...

© CISTER Research Center
www.cister.isep.ipp.pt

1

Semi-Partitioned Scheduling of Fork-Join Tasks using Work-Stealing

Cláudio Maia, Patrick Meumeu Yomsi, Luís Nogueira and Luis Miguel Pinho

CISTER Research Center

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail:

http://www.cister.isep.ipp.pt

Abstract

This paper explores the behavior of parallel fork-join tasks on multicore platforms by resorting to a semi-
partitioned scheduling model. This model offers a promising framework to embedded systems which are subject
to stringent timing constraints as it provides these systems with very interesting properties. The proposed
approach consists of two stages—an offline stage and an online stage. During the offline stage, a multi-frame task
model is adopted to perform the fork-join task-to-core mapping so as to improve the schedulability and the
performance of the system, and during the online stage, work-stealing is exploited among cores to improve the
system responsiveness as well as to balance the execution workload. The objective of this work is twofold: (1) to
provide an alternative technique that takes advantage of the semi-partitioned scheduling properties by offering
the possibility to accommodate fork-join tasks that cannot be scheduled in any pure partitioned environment, and
(2) to reduce the migration overhead which has shown to be a traditional major source of non-determinism in
global approaches. The simulation results show an improvement of the proposed approach over the state-of-the-
art of up to 15% of the average response-time per task set.

Semi-Partitioned Scheduling of Fork-Join Tasks

using Work-Stealing

Cláudio Maia, Patrick Meumeu Yomsi, Luı́s Nogueira and Luis Miguel Pinho

CISTER/INESC-TEC, ISEP, Polytechnic Institute of Porto

Email: {crrm, pamyo, lmn, lmp}@isep.ipp.pt

Abstract—This paper explores the behavior of parallel fork-
join tasks on multicore platforms by resorting to a semi-
partitioned scheduling model. This model offers a promising
framework to embedded systems which are subject to strin-
gent timing constraints as it provides these systems with very
interesting properties. The proposed approach consists of two
stages—an offline stage and an online stage. During the offline
stage, a multi-frame task model is adopted to perform the fork-
join task-to-core mapping so as to improve the schedulability
and the performance of the system, and during the online stage,
work-stealing is exploited among cores to improve the system
responsiveness as well as to balance the execution workload. The
objective of this work is twofold: (1) to provide an alternative
technique that takes advantage of the semi-partitioned scheduling
properties by offering the possibility to accommodate fork-
join tasks that cannot be scheduled in any pure partitioned
environment, and (2) to reduce the migration overhead which has
shown to be a traditional major source of non-determinism in
global approaches. The simulation results show an improvement
of the proposed approach over the state-of-the-art of up to 15%

of the average response-time per task set.

Keywords—Parallel Tasks, Semi-Partitioned Scheduling, Real-
time Systems, Work-Stealing

I. INTRODUCTION

Multicore platforms are now very common in the embed-
ded systems domain as they provide more computing power
for the execution of complex applications. Recent platforms,
such as Tilera [25] and Keystone [13] are few examples of
such platforms. They comprise several cores on a single chip
and include several mechanisms (e.g., pipelines, caches, etc.) to
increase the average performance of the applications they host.
While an increase in performance might be a good indicator
in several industry domains such as the high performance
computing and multimedia, the picture changes completely
when it comes to the real-time systems domain. Here, most
applications must guarantee stringent timing constraints in
addition to their classical functional requirements, thus making
predictability of paramount importance.

The boost in performance brought by the emerging multi-
core platforms also increased substantially the complexity of
the scheduling problem of real-time tasks on these platforms.
While in uniprocessors the scheduling problem reduces to de-
ciding when to schedule each task, a new dimension orthogonal
to this one adds to the problem when shifting to multicores:
it must also be decided where to execute each task. In order
to solve this challenge, several real-time scheduling algorithms
have been proposed in the literature for multiprocessor systems
(see [10] for a comprehensive and up-to-date survey).

Multicore platforms make the simultaneous execution of
tasks possible by taking advantage of their parallel structure.
To this end, parallelism is extracted at compile time from the
loops of the application by using programming frameworks
such as OpenMP [21] and Java Fork-Join [17], in addition to
the explicit parallelism that may be inherent to the application
or the problem to solve. These frameworks resort to the
dynamic scheduling properties provided by the work-stealing
algorithm proposed by Blumofe and Leiserson [6]. In sum-
mary, work-stealing is a scheduling algorithm which allows
an idle core1 at a time instant t, say core A, to steal some
workload from another busy core, say core B. This property
allows system designers to reduce the average response-time
of the executed task set on the target platform. In this process,
Core B is usually chosen randomly and is referred to as
“victim”. While the randomness in the selection of Core B
is acceptable in several computing domains, no guarantee
can actually be provided regarding the timing behavior of
the tasks, unfortunately. This drawback, which represents a
huge limitation for the adoption of the original work-stealing
algorithm in the real-time systems domain, is due to the
possibility of priority inversion as shown by Maia et al. [20].
Hence, it is necessary to modify the original algorithm to
circumvent this issue. To this end, using multiple per-core
priority deques [20] is just an example. Another property
provided by work-stealing is its ability to balance the platform
workload at runtime. This property allows for a better control
of the platform energy consumption [2], [14].

The computation model considered in this paper is a variant
of the semi-partitioned model of execution with task-level
migration. We recall that in semi-partitioning scheduling [1],
[11], [15], there are two steps: (Step 1) a task-to-core mapping
is performed at design time to assign tasks to specific cores
with no possible migration for these tasks at runtime. The
subset of tasks that have successfully been assigned during
this process is referred to as non-migrating tasks. If some
tasks cannot be assigned, then in (Step 2) the remaining tasks,
referred to as migrating tasks, are scheduled by using a global
scheduling approach to seek for a valid schedule, i.e., each
migrating task is allowed to execute on more than one core.
Considering the time instant at which a migration occurs, semi-
partitioned scheduling can be further classified into two sub-
categories: (1) Task-level migration [11], where various jobs
of a migrating task are allowed to be assigned to different
cores, but once a job is assigned to a core, migration of this
job prior to its completion is forbidden; and (2) Job-level
migration [15], where various jobs of a migrating task are

1An idle core at a time instant t is a core with no pending workload at t.

allowed to be assigned to different cores, and migration of
each job prior to its completion is also allowed. In this work,
we consider task-level migration and restrict the behavior
of each migrating task as follows. The subset of selected
cores to execute each migrating task is decided at design
time and remains unchanged at runtime in order to improve
both the schedulability of the system and its utilization factor.
Further, the job activation of each migrating task at runtime
is performed relatively to a task-to-core strategy elaborated at
design time.

Due to the intrinsic nature of parallel real-time tasks in
real world applications, it is common to find some tasks
with a density greater than one (i.e., a single core cannot
execute such a task entirely while meeting its timing re-
quirements). Thus, new models must be elaborated to ac-
commodate such tasks. To this end, recent works [16], [23],
[24] propose decomposition-based and non-decomposition-
based techniques. Decomposition-based techniques require the
knowledge of the task structure beforehand. These techniques
allow decomposing each parallel task with density greater
that one into a set of sequential sub-tasks with density less
than or equal to one for which the precedence constraints
are guaranteed through the usage of intermediate release
times and deadlines. This decomposition is performed with
the objective of scheduling the sequential sub-tasks by us-
ing well-known multiprocessor scheduling algorithms. Non-
decomposition techniques on the other hand do not require
any knowledge of the task structures beforehand in order to
determine the schedulability of a parallel task.

In this paper, we consider fork-join real-time tasks (i.e., a
special case of parallel real-time tasks) and we assume that
their structure is known beforehand. Thus, we take advan-
tage of decomposition-based techniques to convert tasks with
density greater than one into a set of sub-tasks with density
less than or equal to one as long as the original parallel
structure of the task is preserved. The potential parallelism
of the migrating tasks is explored at runtime by resorting
to the load balancing property provided by a variant of the
work-stealing algorithm [20]. Our main objective is to provide
evidence of the benefits of knowing the structure of parallel
tasks and to exploit work-stealing in the real-time systems
domain. As such, besides reducing the average response time
of the tasks and contributing to the minimization of the energy
consumption of the system, we free additional room in the
schedule for the scheduling of less-critical tasks (e.g., aperiodic
tasks, best-effort tasks). The proposed model limits the number
and cost of migrations, which has been recognized as one
of the main sources of non-determinism on multicores, by
limiting work-stealing to occur between cores that share a copy
of a task2.

To the best of our knowledge, there is no schedulability test
for parallel tasks with a density greater than one on multicore
platforms which assumes a partitioned earliest deadline first (P-
EDF) scheduler on each core. As soon as a test is developed
in this scope, for parallel fork-join tasks with density greater
than one, we strongly believe that our model can be easily
adapted and applied to parallel tasks with density greater than
one.

2Two or more cores executing a migrating task share a copy of this task.

Contributions. The contribution of this work is threefold:
(1) we present a complete framework that allows the schedul-
ing of parallel fork-join real-time tasks onto a multicore
platform together with the associated schedulability analysis;
(2) As it is assumed that cores that share a task have a local
copy of this task, not only we reduce the overhead concerning
task fetching but also the number of task migrations due to
the offline task-to-core mapping; (3) As the regions of each
parallel fork-join task can execute simultaneously on different
cores, we take advantage of the work-stealing mechanism to
reduce the average response time of the parallel tasks without
jeopardizing the schedulability of the whole system. To the best
of our knowledge, this work is the first effort in the direction to
use work-stealing mechanism in a real-time setting when tasks
are scheduled using a semi-partitioned scheduling approach.

Paper organization. The rest of this paper is organized as
follows. Section II presents the related work. Section III
describes the model of computation used throughout the paper.
Section IV details our proposed approach. Section V presents a
motivating example for proof of concepts. Section VI presents
the schedulability analysis of the proposed approach. Sec-
tion VII reports on the simulation results from experiments
conducted on synthetic task sets. Finally, Section VIII con-
cludes the paper and presents the perspectives.

II. RELATED WORK

There exists three task models which support intra-task
parallelism in real-time systems: (1) the fork-join model;
(2) the synchronous task model; and finally (3) the directed
acyclic graph (DAG) model. From these models, the fork-
join model (see Figure 1a) is the most simple in terms of
parallel structure. The fork-join model allows for fork and
join operations to occur infinitely as long as each task starts
and ends with a sequential sub-task. Specifically, the initial
sequential sub-task may fork into several independent sub-
tasks, which can execute simultaneously in parallel. These
sub-tasks join in a sequential sub-task upon completion and
the process may repeat again. This model is a restricted class
of the synchronous task model. Specifically, in the fork-join
model presented in [16], segments must have the same number
of parallel sub-tasks and there is a restriction on the number
of sub-tasks that each task can fork into (not greater than
the number of cores on the platform). These restrictions do
not apply to the synchronous model [24]. Note that there are
precedence constraints among sub-tasks, which are enforced
by the order of the segments.

The DAG model [7], [18], [23] is the most general model
in which each sub-task is represented as a node and the edges
connecting the nodes represent the dependencies between sub-
tasks. In this model, there is no restriction on the execution
requirement of each node, and the execution times may vary
among nodes. In order to perform the schedulability analysis of
these three models, decomposition-based techniques [16], [23],
[24] and non-decomposition based techniques [7], [18] have
been proposed. Resource and capacity augmentation bounds
have been derived as a mean to evaluate the schedulability
of a task set using various scheduling algorithms, and as an
alternative, response-time analysis [9], [19] can also be used
to analyze synchronous parallel tasks.

(a) Example of a parallel fork-join
task execution

(b) Example of the corresponding serialized
fork-join task execution

Figure 1: Illustration of a fork-join task execution

Very few techniques using the same framework as the one
developed in this paper exist in the literature. Bado et al. [3]
proposed a semi-partitioned approach with job-level migration
for fork-join tasks, which is similar to the one in [16] in the
sense that the authors limit the task parallelism to the minimum
degree possible. However, due to the assignment methods
proposed in their paper for the offsets and local deadlines,
they did not provide any guarantee on the fact that sub-tasks
actually execute in parallel. While their work is similar to ours
w.r.t. the adopted class of schedulers (semi-partitioned), we
differ in that we relax the constraint of restricting the task
parallelism and we use task-level migration instead of job-level
migration, thus further reducing the number of migrations at
runtime.

III. SYSTEM MODEL

Task specifications. We consider a set τ
def
= {τ1, . . . , τn}

composed of n sporadic fork-join tasks. Each sporadic fork-

join task τi
def
= 〈Si, Di, Ti〉, 1 ≤ i ≤ n, is characterized by a

finite sequence of segments Si
def
= [s1i , s

2
i , ..., s

ni

i], with ni ∈ N,
a relative deadline Di and a period Ti. These parameters are
given with the following interpretation: at runtime, each task τi
generates a potentially infinite number of successive jobs τi,j ,
with a finite sequence of segments Si each, arriving at time ai,j
such that ai,j+1 − ai,j ≥ Ti and which must complete within

[ai,j , di,j) where di,j
def
= ai,j +Di is its absolute deadline. Job

τi,j is said to be active at time t if and only if ai,j ≤ t and is
not completed yet. More precisely, an active task is said to be
running at time t if it is being executed. Otherwise the active
task is said to be ready.

Each segment ski ∈ Si (with 1 ≤ k ≤ ni) is composed of a

set of independent sub-tasks3 tsk
i

def
= {t1

sk
i

, . . . , tvk

sk
i

}, where vk

denotes the number of sub-tasks belonging to segment ski , and
the sequence represents dependencies between segments. That
is, for all sℓi , s

r
i ∈ Si such that ℓ < r, the sub-tasks belonging

to sri cannot start executing unless those of sℓi have completed.
The execution requirement of sub-tasks tq

sk
i

(with 1 ≤ q ≤ vk)

is denoted by eq
sk
i

. The total execution requirement of task

τi, denoted by Ci, is the sum of the execution requirements

of all the sub-tasks in Si, i.e., Ci
def
=

∑ni

k=1

∑vk

q=1 e
q

sk
i

. The

3There is no communication, no precedence constraints and no shared
resources (except for the cores) between sub-tasks.

minimum execution requirement of task τi, denoted as Pi, is
defined as the time that τi takes to execute when the number of
cores is infinite4, i.e., Pi =

∑ni

k=1 cski , where csk
i

denotes the

worst-case execution time of segment k. We assume that all
the sub-tasks in a segment have the same worst-case execution
time csk

i
. The utilization factor of τi is Ui =

Ci

Ti
, its density is

λi =
Ci

min(Di,Ti)
, the total density of τ is λτ

def
=

∑n
i=1 λi and

finally, the total utilization factor of τ is Uτ
def
=

∑n
i=1 Ui.

For each task τi, we assume Di ≤ Ti, which is commonly
referred to as the constrained-deadline task model. The task
set τ is said to be A-schedulable if algorithm A can schedule
τ such that all the jobs of every task τi ∈ τ meet their
deadline Di. Figure 1a illustrates a fork-join task τi with
ni = 5 segments and Figure 1b its serialized representation.

Moreover, we model each migrating task as a multiframe
task. The multiframe task model (as presented by Mok et
al. [22] and later generalized by Baruah et al. [4]) allows
system designers to model a task by using a static and finite
list of total execution requirements corresponding to successive
jobs (or frames in this model). Specifically, by repeating this
list (possibly ad infinitum), a periodic sequence of execution
requirements is generated such that the execution time of each
frame is bounded from above by the corresponding value in
the periodic sequence.

Platform and scheduler specifications. We consider a

platform π
def
= {π1, π2, . . . , πm} comprising m homogeneous

cores, i.e., all the cores have the same computing capabili-
ties and are interchangeable. On each core there is a fully
preemptive EDF scheduler. EDF scheduling policy dictates
that the smaller the absolute deadline of a job, the higher
its priority. The schedulability of a task set scheduled under
EDF for uniprocessors can be evaluated by using the Demand
Bound Function (DBF) [5]. The DBF of a task τi, denoted by
DBF(τi, t), is the maximum cumulative execution requirement
of jobs of τi in any interval of length t. Formally, DBF(τi, t)
is defined as:

∀t ≥ 0, DBF(τi, t)
def
=

(⌊

t−Di

Ti

⌋

+ 1

)

· Ci (1)

The DBF of a task set τ is derived as DBF(τ, t)
def
=

∑

τi∈τ DBF(τi, t).

4A task which consists of a single sub-task in each of its segments is
considered a sequential task.

As each job is composed of sub-tasks, every sub-task is
assumed to execute on at most one core at any time instant
and can be interrupted prior to its completion by another sub-
task with a higher priority. A preempted sub-task is assumed
to resume its execution on the same core as the one it was
executing on prior to preemption. We assume that each pre-
emption is performed at no cost or penalty. Finally, we allow
work-stealing among a selected subset of cores at runtime. Our
work-stealing approach works as follows. At runtime whenever
a core reaches a parallel section of a task and spawns sub-
tasks, these are pushed into a double-ended queue (in short
deque)5. A core always executes the sub-tasks by popping
them from the local deque. Whenever a core with a copy of a
task becomes idle, then it can steal some workload (sub-tasks)
from the chosen core (known as the victim) by checking its
deque. Note that in this stealing strategy in contrast to the
traditional stealing mechanism, the stealing core is no longer
randomly chosen. Work-stealing is allowed only among the
offline selected cores for the migrating tasks. The motivation
for this choice is that jobs of the migrating tasks execute on
selected cores according to an execution pattern determined
offline and by allowing work-stealing only among these cores,
it is possible to decrease the average response-time of each
migrating task, thus contributing to the overall decrease in the
system responsiveness.

IV. PROPOSED APPROACH

In this paper we propose a semi-partitioned model with
work-stealing for parallel tasks. The proposed approach con-
sists of three phases referred to as task assignment, offline
scheduling, and online scheduling. The intuitive idea behind
each phase is summarized below:

1) Task assignment. In this phase, tasks are catego-
rized according to their density. Then, a task-to-
core assignment heuristic is applied to determine the
non-migrating and the migrating tasks. The heuristic
considers the demand of each core after each “new”
task is assigned by using the demand bound function
(see Equation 1). In this process, sequential tasks are
evaluated first so that the capacity of the cores are
filled as much as possible and thus, let the work
stealing mechanism be exploited by parallel tasks in
order to decrease their response times.

2) Offline scheduling. In this phase, the execution pattern
of each migrating task (i.e., its execution sequence) is
determined so as to meet all the timing requirements
of the system. This process consists of mapping the
jobs (frames) of each migrating task to the cores and
form an execution sequence (by using the multiframe
model) so that the schedulability on each core can
be verified by using uniprocessor schedulability tech-
niques.

3) Online scheduling. In this phase, the structure of
each parallel task is considered and the work-stealing
mechanism is applied among cores that share a copy
of a migrating task. Specifically, an idle core with
a copy of a migrating task can contribute to the
execution of this task by stealing workload from

5A deque is a special type of queue that allows operations on both sides of
the queue, i.e., it works as a stack and queue at the same time.

another core and executing the (stolen) workload.
Before stealing any workload, an admission control
test is performed on the stealing core in order not
to jeopardize the schedulability of the tasks already
assigned to this core in Phase 2 (Offline Scheduling).

Note that by allowing work-stealing it is possible to have
load-balancing among cores, and consequently a decrease
in the average response time of the parallel tasks. Another
important aspect of the proposed approach is that the initiative
of stealing is always on the idle core, which is advantageous
because instead of having a busy core pushing work into the
deque of an idle core, the idle core does all this work leaving
the busy core executing its tasks. Now, let us discuss the
specifics of each phase.

A. Task assignment phase

In this phase tasks are categorized according to their
density and then a first-fit decreasing (FFD) heuristic is im-
plemented to partition tasks into cores. The categorization is
as follows:

1) Light weight tasks (Class 1) — Tasks with λi ≤ 0.5.
Class 1 most likely consists of sequential tasks and
tasks with a low degree of parallelism for which
work-stealing is of little interest or the gain is small.6

2) Heavy weight tasks (Class 2) — Tasks with λi > 0.5.
Class 2 most likely consists of tasks with a great
degree of parallelism for which the gain relative to
applying work-stealing is high.

After the task categorization, the FFD heuristic is applied
to the sequential tasks in Class 1 and then in Class 2 in order
to favor the assignment of sequential tasks to the cores as they
cannot benefit from any parallelism. This process is repeated as
long as the system is deemed schedulable. Then, the heuristic
is applied to parallel tasks in Class 1 and then Class 2 in
order to increase the probability of taking advantage of the
work-stealing mechanism at runtime. All the tasks successfully
assigned to the cores are referred to as non-migrating tasks and
the remaining tasks, i.e., those that have not been successfully
assigned by the FFD heuristic, are referred to as candidate
migrating tasks. The system is then deemed schedulable if
and only if an execution pattern is found for each candidate
migrating task so that all the timing requirements are met.

If all tasks are assigned to cores by following the FFD
heuristic, then there is no candidate migrating task and there-
fore no migrating task in the system. In this case, there is
no need for parallelization and/or work-stealing as a fully
partitioned assignment of the tasks to the available cores
has been found. Using work-stealing in this situation would
just help load-balancing the execution workload at the cost
of allowing for unnecessary migrations among cores. If a
task cannot be assigned to any core by following the FFD
heuristic without jeopardizing its schedulability, then this task
is classified as a candidate migrating task. Now, if a pattern
of execution of jobs of this task to cores can be found in such
a way that all the timing requirements are met, then this task

6The threshold for classifying tasks into heavy and light varies in the
literature, nevertheless a density of 0.5 is usually regarded as a good threshold
for classifying tasks.

is treated as a multiframe task and will potentially be subject
to work-stealing at runtime if it presents a parallel section or
instead is treated as a traditional multiframe task if it has a
sequential behavior. A semi-partitioned scheduling approach
is used for the migrating tasks which follow an assignment
sequence defining the cores responsible for the execution of
each of their jobs (frames).

At the end of this procedure if there is a task that has not
succesfully been assigned to the cores, i.e., the task is neither a
non-migrating nor a migrating task, then the system is deemed
unschedulable in the current platform. We recall that for non-
migrating tasks, work-stealing is forbidden so as to limit the
overhead related to this operation. The intuitive idea behind
our assignment policy is to increase the probability of tasks
with a high degree of parallelism to be classified as migrating
tasks as only these tasks will then benefit from work-stealing
among selected cores at runtime and will have their average
response time reduced.

B. Offline scheduling phase

After the task assignment phase, let τπj denote the set
of tasks assigned to core πj (with 1 ≤ j ≤ m). It follows
that τπj = τ

πj

NM ∪ τ
πj

M where τ
πj

NM denotes the subset of non-

migrating tasks and τ
πj

M denotes the subset of migrating tasks,
assigned to πj , respectively.

We remind the reader that each core runs an EDF scheduler,
so the schedulability of the non-migrating tasks on each core
is guaranteed as long as the load is less than 1, i.e.,

load(πj)
def
= sup

t≥0

{

DBF(τ
πj

NM, t)

t

}

≤ 1, ∀πj ∈ π (2)

In Equation 2, DBF(τ
πj

NM, t) is defined by using Equation 1.

Concerning the migrating tasks, their jobs are distributed
among the cores by following an execution pattern that does
not jeopardize the schedulability of each individual core.
Once this operation is completed, uniprocessor schedulability
analysis techniques can then be applied as follows.

Definition 1: The number of frames (taken from [11]). The
number of frames ki to consider for each migrating task τi is
computed as follows:

ki
def
=

H

Ti

, where H
def
= lcmτj∈τ{Tj} (3)

In Equation 3, lcmτj∈τ{Tj} denotes the least common multiple
of the periods of all the tasks in τ . Goossens et al. [12] proved
that this number of frames per migrating task is conservative
and safe.

Definition 2: The execution pattern (taken from [11]). The
job-to-core assignment sequence σ of the migrating task τi is

defined through ki sub-sequences as σ
def
= (σ1, σ2, . . . , σki

)
where the sub-sequence σs (with 1 ≤ s ≤ ki) is given in turn
by the m-tuple σs = (σ1

s , . . . , σ
m
s). By following a uniform

job-to-core assignment, the sth job of task τi is assigned to
core πj if and only if:

σj
s =

⌈s+ 1

ki
·M [i, j]

⌉

−
⌈ s

ki
·M [i, j]

⌉

= 1 (4)

A direct advantage of this job-to-core assignment is its
ability to considerably reduce the number of task migrations,
as after the assignment each job knows exactly which core is
responsible for its execution. For the sake of completeness, let
us describe the algorithm that computes the execution pattern
of each migrating task. Informally speaking, the algorithm
tries to find the largest number of jobs that can be executed
on a core until either all jobs are allocated or some jobs
cannot be allocated. In this latter case, the task is deemed
not schedulable. The algorithm works as follows:

1) In order to track the current job-to-core assignment,
a matrix of integers M [1 . . . n, 1 . . .m] is used where
M [i, j] = x means that x jobs of task τi out of ki
will execute on core πj (1 ≤ i ≤ n and 1 ≤ j ≤ m).

2) The matrix M [i, 1] is first initialized to ki, i.e., all
jobs of τi are assigned to the first core. Obviously,
the result of the schedulability test will be not schedu-
lable as it is a migrating task. Otherwise it would
be assigned to this core during the FFD task-to-core
assignment phase.

3) The number ki is decremented by one unit (i.e.,
M [i, 1] := ki − 1) and an execution pattern for
this number of ki jobs is computed by applying
Equation 4. For each specific execution pattern, the
schedulability of the system is checked. The value
of M [i, 1] is decremented as long as the task is not
schedulable. At some point, say when M [i, 1] :=
ki − α[i,1] (with 1 < α[i,1] < ki) and the system
becomes schedulable, M [i, 1] jobs of task τi are
assigned to this core, an execution pattern which does
not jeopardize the schedulability of the core is found
and the algorithm moves on to the next core.

4) The number of jobs just allocated (M [i, 1]) is re-
moved from ki and the result is considered as the
new value of ki in Equation 4 for this new core, i.e.,
ki := ki − M [i, 1]. This process is iterated accross
all the cores until all the jobs are assigned to a core.
Otherwise, the algorithm keeps reducing the value of
ki in step 3 until a number of jobs (eventually zero)
can be accommodated in the current core.

At the end of these steps, if all the jobs of τi are not
allocated, then τi is not schedulable as a migrating task and
thus the system is deemed not schedulable.

C. Online scheduling phase

This phase is meant to take advantage of the multicore
platform and the execution behavior of the migrating parallel
tasks at runtime. This is performed by using the work-stealing
algorithm between cores that share a copy of these tasks
(referred to as “selected cores”) for the execution of the parallel
sections of the migrating tasks. We recall that this operation is
used to reduce their average response times. Below we state
the four necessary rules (R1 to R4) that we implemented for
an efficient usage of the work-stealing algorithm:

R1: At least one selected core must be idle when there
are parallel sub-tasks in the ready state awaiting for
execution;

R2: Idle selected cores are allowed to steal workload (sub-
tasks) only from the deque of another selected core;

R3: When stealing workload from the deque of another
selected core, the idle core must always steal the high-
est priority parallel sub-task from the list of deques
in order to avoid priority inversions (this situation
occurs when the number of migrating tasks is greater
than 1 and the tasks have different priorities);

R4: After choosing a parallel sub-task to steal, say from
core A to core B, an admission test must be per-
formed on core B to guarantee that its schedulability
is not jeopardized by this additional workload.

We recall that by only allowing work-stealing to occur
between selected cores we avoid the overhead of fetching
the code of the task from the main memory as the code
of the migrating task is already loaded on these cores after
the execution of the first job in the core (recall that these
cores share migrating tasks and have a local copy of them).
Whenever a core performs a steal, data is fetched from the
memory of another core which is in a certain extent equivalent
to a migration, however in this case the task is already loaded
in the core and only input data is fetched. Moreover, the
number of migrations is limited by the task-to-core mapping
(performed offline) which forces a job to execute in the pre-
assigned cores instead of having to migrate between cores as
it would happen in a global approach.

V. EXAMPLE OF THE APPROACH

This section illustrates the concepts of the proposed ap-
proach as discussed in the previous section. We consider the
task set τ = {τ1, τ2, τ3, τ4} with the following parameters
(τi = {Ci, Di, Ti}): τ1 = {3, 5, 6}, τ2 = {3, 5, 8}, τ3 =
{2, 3, 4}, τ4 = {1, 8, 8}. We assume that all the tasks have a
sequential behavior except τ1 for which the execution consists
of three regions: (i) a sequential region of one time unit,
then (ii) a parallel region of two sub-tasks of 0.5 time units
each, and finally (iii) a sequential region of one time unit.
We assume that tasks in τ are released synchronously and
scheduled on the homogeneous platform π = {π1, π2}. Finally,
we assume that an EDF scheduler is running on each core.

During the assignment phase, let us assume that tasks
τ3 and τ4 are assigned to π1; and τ2 is assigned to π2 as
they cannot benefit from any parallelism. Then task τ1 can
neither be assigned to π1 nor to π2 without jeopardizing the
schedulability of the corresponding core. Figure 2a illustrates
the schedules in which τ1 is tentatively assigned to π1 (there is
a deadline miss at time t = 11), and to π2 (there is a deadline
miss at time t = 5).

Now let us apply our proposed methodology to this task
set. There is a single parallel task in the system:

(1) Task assignment phase: during this phase, τ3 and τ4 are
assigned to π1; and τ2 is assigned to π2. For the same reasons
as in the previous case task τ1 can neither be assigned to π1

nor to π2, so it is considered as a candidate migrating task.

(2) Offline scheduling phase: during this phase, an execution
pattern which does not jeopardize the schedulability of the
cores for the migrating task τ1 is found. Task τ1 is then
treated as a multiframe task on each core with the following
characteristics as ki = 24/6 = 4: τ11 = ((3, 0, 0, 0), 5, 6) and
τ21 = ((0, 3, 3, 3), 5, 6). This is given with the interpretation

that the first job of τ1 executes in core 1 and the remaining 3
jobs execute in core 2.

(3) Online scheduling phase: during this phase, task τ1 takes
advantage of the work-stealing mechanism in order to reduce
its average response time. Indeed, at time instant t = 3, core
π1 is executing the parallel region of task τ1 and core π2 is idle
with sufficient resources, so it can steal one parallel sub-task
from the deque of π1. The same phenomenon occurs again at
time t = 7.5. Figure 2b illustrates the resulting schedule, the
system is schedulable.

VI. SCHEDULABILITY ANALYSIS

In this section, we derive the schedulability analysis of a
set of constrained-deadline fork-join tasks onto a homogeneous
multicore platform. A modification as explained in Section IV
of the semi-partitioned model is adopted and we assume
that each core runs an EDF scheduler, while allowing work-
stealing among the “selected cores”, i.e., cores that share a
copy of a migrating task. The schedulability analysis of the
task set must be performed in the three phases of the proposed
approach, as follows.

(1) Task assignment phase: during this phase, the schedula-
bility of the system is performed by applying the traditional
demand bound function based analysis to non-migrating tasks,
i.e., by using Equation 2.

(2) Offline scheduling phase: during this phase, we should
make sure that the additional workload to each core related to
the assignment of the migrating tasks (i.e., the workload related
to τ

πj

M for core πj) does not jeopardize the schedulability of
the core. Specifically, for each migrating task, say τi, we use a
modified DBF based schedulability test as presented in [11]. In
this test, the execution pattern of each migrating task τi is taken
into account. More precisely, the number of intervals of length
(ki · Ti) occurring in any interval of length t ≥ 0 is computed

as s
def
= ⌊ t

ki·Ti
⌋; Since [0, t) = [0, s · ki · Ti) ∪ [s · ki · Ti, t),

then the number of frames that contribute to the additional
workload on core πj consists of two terms: (i) The number
of non-zero frames in the interval [0, s · ki · Ti] denoted as

s · ℓji (where ℓji is the number of frames out of ki that
were successfully assigned to πj). The corresponding workload

is s · ℓji · Ci; and (ii) an upper-bound on the number of
non-zero frames in the interval [s · ki · Ti, t), denoted as

nbi(t) = ⌊ (tmod(ki·Ti))−Di

Ti
⌋+1. The corresponding workload

is wj
i = maxki−1

c=0 (
∑c+nbi(t)−1

η=c Ci,ηmod ki
). It follows that an

upper-bound on the total workload associated to the migrating
task τi on core πj is computed as:

DBFj(τi, t)
def
= si · ℓ

j
i · Ci + wj

i (5)

Consequently,

DBF(τ
πj

M , t)
def
=

∑

τi∈τ
πj

M

DBFj(τi, t) (6)

Finally, the schedulability at the end of this phase is
guaranteed if:

load(πj)
def
= sup

t≥0

{

DBF(τ
πj

NM, t) + DBF(τ
πj

M , t)

t

}

≤ 1, ∀πj ∈ π (7)

(a) Schedule under fully partitioned EDF (b) Schedule using WS-based EDF

Figure 2: Illustrative example of the proposed approach.

Figure 3: Result after the offline analysis

(3) Online scheduling phase: In this phase the schedulability
analysis obtained in phase 2 must be extended in order to take
into account the potential extra workload related to the work-
stealing mechanism allowed among cores sharing copies of
migrating tasks. Figure 3 illustrates an example of the schedule
of a job of a task, say τi, on a core, say πj , after the offline
scheduling phase. In this figure, we can see a fork-join task
with its fork points (φ1 and φ2) and synchronization points (µ1

and µ2). The job offers a slack7 as the offline scheduling phase
has been performed without jeopardizing the schedulability of
the core. The intuitive idea behind this phase is to exploit the
stealing windows (ω1 and ω2 in the example) and the available
slack of each job to accommodate the stolen workload.

A work-stealing operation is feasible from one core, say
core A, to another core, say core B, if core B can execute the
stolen workload (parallel sub-task from the deque of core A)
before a time instant which may affect the scheduling decisions
initially taken on core B. These time instants are actually
the synchronization points of the parallel segments (µ1 and
µ2 in the example). Such a time instant is referred to as
an intermediate deadline for the stolen sub-task. To compute
this intermediate deadline for each stealing window, we can
take advantage of the slack available for each job, i.e., the
intermediate deadline of the nth parallel segment can be
computed as follows:

d(n)s

def
= φn +ms ∗ cs(n)

i

+ slack(φn) (8)

In Equation 8, φn denotes the time instant at which the nth

parallel segment spawns the sub-tasks, ms denotes the number
of sub-tasks spawned in this segment, c

s
(n)
i

denotes its worst-

case execution time, and slack(φn) represents the slack of

7The slack of a job is the maximum amount of time that the remaining
execution of the job can be delayed on its activation to complete within its
deadline [8].

Figure 4: Example of work-stealing and intermediate deadline
computation

the job at time φn. Figure 4 illustrates the computation of
the intermediate deadlines for the stealing windows using
Equation 8. In this figure, core π2 can steal sub-tasks from
core π1 in the first stealing window ω1 and in the second
stealing window ω2. The intermediate deadline for the sub-
tasks that may be stolen in ω1 is computed by using Equation 8

and the result is d
(2)
s . As the sub-task execution is less than the

intermediate deadline, the stealing operation may occur safely.
In the same manner, the intermediate deadline for the sub-task

that may be stolen in ω2 is computed and the result is d
(4)
s . For

the same reasons as for the first sub-task, the stealing operation
may occur safely.

Now we have everything we need to decide on the actual
occurrence of each stealing operation. Before core B can steal
a sub-task from core A, an admission control test has to be
performed on core B. As mentioned previously, there should
be no pending execution workload on core B (see rule R1). If
this is the case, then two possible scenarios can occur during
the stealing operation of a sub-task in the nth parallel region
of task τi: (1) no release occurs in core B between φn and

d
(n)
s : In this case core B can safely steal a sub-task from

core A in this stealing window provided that the execution of
the stolen sub-task meets its intermediate deadline; or (2) at
least a release occurs in core B in this stealing window. In this
case, we can distinguish between two sub-cases. (2.1) some

releases have their deadline before d
(n)
s : In this sub-case, we

should update the idle time interval in the stealing window
by subtracting the interference related to the corresponding
new job releases from the size of the stealing window; (2.2)

some releases have their deadline after d
(n)
s : In this case, no

guarantees can be provided on the schedulability of the system
as the stolen job may modify the scheduling decisions initially
taken on core B. In this latter case we decide not to perform
the stealing operation.

VII. SIMULATION RESULTS

This section reports on the results of the simulation of
our proposed approach on a set of synthetic and randomly
generated task sets. To this end achievement, we conducted an
extensive set of experiments on systems with implicit deadline
tasks (i.e., Di = Ti for every task τi). As the main focus of
our work is the improvement obtained on the average response
time of each task, we strongly believe that this assumption is
not restrictive and does not affect the overall behavior of the
proposed approach (i.e., for constrained deadline tasks). The
simulation environment is described as follows.

Figure 5: Profile of the task generation for two cores

Considered platform. We consider a platform consisting of
two or four homogeneous cores (i.e, all cores have the same
computing capabilities and are interchangeable). This allows
us to isolate the gain of our approach over a fully partitioned
task-to-core assignment.

Tasks generation. Each task τi is of type sequential or parallel.
The number of each type of tasks depends on the generation
itself and is not controlled beforehand. Tasks are created until
the total utilization of the task set does not exceed the total
platform capacity (i.e., Uτ ≤ m).

Tasks are created by randomly selecting a number of
segments k ∈ [1, 3, 5, 7]. When k = 1, the task is sequen-
tial, otherwise it is parallel. In case of a parallel task (i.e.,
k ∈ [3, 5, 7]), the number of sub-tasks is nsubtsk ∈ [k, 10].
The worst-case execution time per sub-task (Ci,subtsk) in
each task varies in the interval [1,max Ci subtsk] where
max Ci subtsk = 2 for performance reasons. From the
generated values we compute the worst-case execution time
of each task (Ci =

∑

∀ subtsk∈τi
Ci,subtsk). Then we de-

rive the remaining parameters: the period Ti and utilization
Ui. The period Ti is uniformly generated in the interval
[Ci, nsubtsk ∗ max Ci subtsk ∗2]. This interval allows us to

have a task utilization (recall that Ui = Ci

Ti
) that falls in the

interval [0.50, 1] if all nodes are assigned max Ci subtsk,

or [0.25, 1] if all nodes are assigned the minimum value for
Ci,subtsk

8.

The above procedure is repeated until 1000 task sets with
migrating tasks are generated for two cores and four cores.

In Figure 5 it is possible to see the total number of
task sets generated (Y − axis) as a function of the system
utilization (X − axis). Four lines are represented: in dashed
blue the unschedulable task sets; in dashed green the number
of discarded task sets; in dashed red the schedulable task
sets (with migrating and non-migrating tasks); and finally, in
dashed purple the total number of generated task sets. The
discarded task sets line presents the number of task sets that
were rejected from the analysis due to a high number of ki
frames. Indeed, the number of frames is tightly associated to
the pattern of execution of each migrating task. Therefore, this
pattern needs to be computed in order to assess the runtime
schedule. If this number is too large, then the complexity of
the computation of the patterns also increases, which leads
to higher computation times. Therefore, we opted to discard
task sets with ki > 10. In our opinion this parameter does not
compromise the results and their conclusions.

Considered metrics. In order to evaluate our proposed ap-
proach, we measure the gain obtained for each generated
task set in terms of average worst-case response times by
applying work-stealing and without applying work-stealing to
the migrating tasks. That is, for each task set we generate
the complete schedule for the two approaches: the approach
that schedules migrating tasks without applying the work-
stealing mechanism among the selected cores is denoted
as Approach-NS; and the approach that applies the work-
stealing mechanism among the selected cores is denoted as
Approach-S. After generating both schedules for each task
set, we compute the average response-time of the jobs of each
task throughout the hyperperiod by summing the response time
of each individual job and by dividing the obtained result by
the number of jobs in one hyperperiod. This process is applied
to both approaches.

The improvement, i.e., the gain of Approach-S over
Approach-NS is computed by applying the following formula
for each task τi:

AVτi =
AV NS

τi
−AV S

τi

AV NS
τi

· 100 (9)

In Equation 9 (AV NS
τi

denotes the average response-time

for task τi in Approach-NS and AV S
τi

denotes its average
response-time in Approach-S. It follows that the average gain
for each task in the task set is computed by dividing AVτ as
follows.

AVτ =
1

|τ |
·
∑

τi∈τ

AVτi (10)

Figures 6a and 6b illustrate the average gain for two and four
cores respectively.

8As we evaluate the behavior of each task set in the interval [0, H], where
H denotes the least common multiple of the periods of all the tasks in the task
set, and as Ti in our generation depends on Ci, the higher the Ci the higher
the Ti. Consequently, the higher the hyperperiod of the task set. By limiting
Ci,subtsk we are also limiting the amount of time we need to generate the
schedule.

(a) Average execution time gain for two cores (b) Average execution time gain for four cores

Figure 6: Simulation results

Interpretation of the results. The improvement in terms of
average response-time per task (in %) is grouped by utilization
— see Figure 6a and Figure 6b, when using Approach-S
over Approach-NS. For each figure, the distribution of data is
depicted in the form of box plot. In the plot, for each utilization
value, it is possible to see the minimum and maximum values
of gain per task, the median and the mean (in the form of a
diamond shape), the first and third quartiles and finally the
outliers in the shape of a cross. Moreover, the line in red
depicts a linear regression on the data (the mean value was
used to compute the regression) in order to depict the pattern
of prediction of the gain per task.

Considering two cores, for task sets with high utilizations
(above 1.56), there starts to be a clear illustration of the
proposed approach. In the best case, this gain reaches nearly
15% of the average response-time per task, which is non
negligible. This gain is obtained around 1.60 of utilization. By
increasing the utilization of the task sets the gain per task starts
to decrease. This is expected due to the increasing lack of idle
time available for stealing. The trend shows that above 1.93
of utilization, the work-stealing mechanism becomes of little
interest. This is explained by the fact that the total workload
on each core in very high, thus leaving very small room for
improvement on the average response time of each migrating
task through work-stealing. It is important to note that task
sets with utilizations below 1.54 are not included in the plot
as they do not contain any migrating task.

Considering four cores, it can be seen that the pattern is
similar to the one depicted using two cores. This behavior
suggests that work-stealing is useful for task sets with migrat-
ing tasks with utilizations that span from the lowest possible
utilization for task sets with migrating tasks up to the platform
capacity. Closer to this upper limit, the benefit of stealing
is limited. This trend is also shown by the linear regression
line where it is possible to predict the average gain per task
as a function of the utilization of the task set. From this,
we conjecture that the proposed approach is scalable with an
increase in the number of cores.

Overheads of the approach. The objective of this work is to
show that it is possible to decrease the average response time
of tasks and use this newly generated free time slots to execute

less critical tasks (e.g., aperiodic or best-effort tasks). While
such a decrease involves overhead costs, such as the number
and cost of migrations or even the impact of online admission
control on the overall approach, we did not explicitly measure
them. Still we provide an overview of the existing costs and
their possible impact on system performance.

We assume that cores that share a migrating task have a lo-
cal copy of this task. However, keeping task copies is platform
dependent as for some platforms it might not be possible to
have copies due to memory constraints. In our approach local
copies are used for migrating tasks which might be subject to
stealing, and having a local copy prevents fetching the task
code from the main memory. Whenever a stealing operation
occurs a core fetches data from another core’s memory in order
to help in the execution of the task. While this is not a task
migration per se, it has some commonalities as data needs to be
moved from one core to another. This may cause interference
in the execution of other tasks in the system (for instance
due to the existence of shared resources). In our approach this
overhead only occurs when stealing occurs and is performed
by a core that is idle, so part of the cost is supported by the
idle core (which is neglectable due to the idleness of the core).
Considering the number of data transfers, this number can be
bounded in our framework as in the worst-case the number of
data fetches when stealing depends on the number of subtasks
in each segment and the number of cores that share the task.

Considering the online admission control, our test requires
the current time instant and the available slack at a specific
time instant. Both of these variables can be easily computed
in any given platform either by using the platform timing
functions and a cumulative function that computes the slack
for the current job. Therefore, we consider that this does not
pose any significant overhead in our approach.

VIII. CONCLUSION AND FUTURE WORK

In this paper we combined techniques that allow us to
schedule fined grained parallel real-time tasks onto multicore
platforms. By using the proposed technique we can sched-
ule systems with high utilizations. Moreover, the proposed
technique takes advantage of the semi-partitioned scheduling
properties by offering the possibility to accommodate parallel

tasks that cannot be scheduled in any pure partitioned envi-
ronment, then it reduces the migration overhead which has
shown to be a traditional major source of non-determinism
in global approaches. Parallel tasks are heavy in their nature
and therefore a natural candidate for this model if execution
time constraints are present. Our results show that by using
work-stealing it is possible to achieve an average gain on the
response-times of the parallel tasks between 0 and nearly 15%
per task, which may leave extra idle time in the schedule to
execute less critical tasks in the platform (i.e., aperiodic, best-
effort).

Concerning the future work, we would like to continue
pursuing the exploration of this idea of work-stealing in real-
time settings as it appears to be very promising. Moreover, we
would like to see the variation in terms of average response-
times by applying different allocation heuristics, and increasing
number of cores as a way to measure the scalability of the
proposed approach.

ACKNOWLEDGMENTS

This work was partially supported by National Funds
through FCT/MEC (Portuguese Foundation for Science and
Technology) and co-financed by ERDF (European Regional
Development Fund) under the PT2020 Partnership, within
project UID/CEC/04234/2013 (CISTER Research Centre);
also by FCT/MEC and ERDF through COMPETE (Op-
erational Programme ’Thematic Factors of Competitive-
ness’), within project(s) FCOMP-01-0124-FEDER-020447
(REGAIN); also by FCT/MEC and the EU ARTEMIS JU
within project(s) ARTEMIS/0001/2013 - JU grant nr. 621429
(EMC2); also by the European Union under the Seventh
Framework Programme (FP7/2007-2013), grant agreement no

611016 (P-SOCRATES); also by FCT/MEC and the ESF
(European Social Fund) through POPH (Portuguese Human
Potential Operational Program), under PhD grant SFRH / BD
/ 88834 / 2012.

REFERENCES

[1] J. H. Anderson, V. Bud, and U. C. Devi. An edf-based scheduling
algorithm for multiprocessor soft real-time systems. In Proceedings

of the 17th Euromicro Conference on Real-Time Systems, ECRTS ’05,
pages 199–208, Washington, DC, USA, 2005. IEEE Computer Society.

[2] H. Aydin and Q. Yang. Energy-aware partitioning for multiprocessor
real-time systems. In Parallel and Distributed Processing Symposium,

2003. Proceedings. International, pages 9 pp.–, April 2003.

[3] B. Bado, L. George, P. Courbin, and J. Goossens. A semi-partitioned
approach for parallel real-time scheduling. In Proceedings of the 20th

International Conference on Real-Time and Network Systems, RTNS,
pages 151–160, New York, NY, USA, 2012. ACM.

[4] S. Baruah, D. Chen, S. Gorinsky, and A. Mok. Generalized multiframe
tasks. Real-Time Syst., 17(1):5–22, July 1999.

[5] S. Baruah, A. Mok, and L. Rosier. Preemptively scheduling hard-real-
time sporadic tasks on one processor. In Real-Time Systems Symposium,

1990. Proceedings., 11th, pages 182–190, Dec 1990.

[6] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded compu-
tations by work stealing. J. ACM, 46(5):720–748, sep 1999.

[7] V. Bonifaci, A. Marchetti-Spaccamela, S. Stiller, and A. Wiese. Fea-
sibility analysis in the sporadic dag task model. In Real-Time Systems

(ECRTS), 2013 25th Euromicro Conference on, pages 225–233, July
2013.

[8] G. C. Buttazzo. Hard Real-Time Computing Systems: Predictable

Scheduling Algorithms and Applications. Springer Publishing Company,
Incorporated, 3rd edition, 2011.

[9] H. S. Chwa, J. Lee, K.-M. Phan, A. Easwaran, and I. Shin. Global
edf schedulability analysis for synchronous parallel tasks on multicore
platforms. In Real-Time Systems (ECRTS), 2013 25th Euromicro

Conference on, pages 25–34, July 2013.

[10] R. I. Davis and A. Burns. A survey of hard real-time scheduling for
multiprocessor systems. ACM Comput. Surv., 43(4):35:1–35:44, oct
2011.

[11] F. Dorin, P. M. Yomsi, J. Goossens, and P. Richard. Semi-partitioned
hard real-time scheduling with restricted migrations upon identical
multiprocessor platforms. CoRR, abs/1006.2637, 2010.

[12] J. Goossens, P. Richard, M. Lindström, I. I. Lupu, and F. Ridouard.
Job partitioning strategies for multiprocessor scheduling of real-time
periodic tasks with restricted migrations. In Proceedings of the 20th

International Conference on Real-Time and Network Systems, RTNS
’12, pages 141–150, New York, NY, USA, 2012. ACM.

[13] T. Instruments. Keystone architecture. www.ti.com/lit/ug/sprugw8c/
sprugw8c.pdf, Apr. 2015.

[14] J. Kang and D. Waddington. Load balancing aware real-time task
partitioning in multicore systems. In Embedded and Real-Time Comput-

ing Systems and Applications (RTCSA), 2012 IEEE 18th International

Conference on, pages 404–407, Aug 2012.

[15] S. Kato, N. Yamasaki, and Y. Ishikawa. Semi-partitioned scheduling of
sporadic task systems on multiprocessors. In Real-Time Systems, 2009.

ECRTS ’09. 21st Euromicro Conference on, pages 249–258, July 2009.

[16] K. Lakshmanan, S. Kato, and R. R. Rajkumar. Scheduling parallel
real-time tasks on multi-core processors. In Proceedings of the 2010

31st IEEE Real-Time Systems Symposium, RTSS ’10, pages 259–268,
Washington, DC, USA, 2010. IEEE Computer Society.

[17] D. Lea. A java fork/join framework. In Proceedings of the ACM 2000

conference on Java Grande, JAVA ’00, pages 36–43, New York, NY,
USA, 2000.

[18] J. Li, K. Agrawal, C. Lu, and C. Gill. Analysis of global edf for parallel
tasks. In Real-Time Systems (ECRTS), 2013 25th Euromicro Conference

on, pages 3–13, July 2013.

[19] C. Maia, M. Bertogna, L. Nogueira, and L. M. Pinho. Response-
time analysis of synchronous parallel tasks in multiprocessor systems.
In Proceedings of the 22Nd International Conference on Real-Time

Networks and Systems, RTNS ’14, pages 3:3–3:12, New York, NY,
USA, 2014. ACM.

[20] C. Maia, L. Nogueira, and L. Pinho. Scheduling parallel real-time
tasks using a fixed-priority work-stealing algorithm on multiprocessors.
In Industrial Embedded Systems (SIES), 2013 8th IEEE International

Symposium on, pages 89–92, June 2013.

[21] A. Marowka. Parallel computing on any desktop. Commun. ACM,
50:74–78, September 2007.

[22] A. Mok and D. Chen. A multiframe model for real-time tasks. Software

Engineering, IEEE Transactions on, 23(10):635–645, Oct 1997.

[23] M. Qamhieh, L. George, and S. Midonnet. A stretching algorithm for
parallel real-time dag tasks on multiprocessor systems. In Proceedings

of the 22Nd International Conference on Real-Time Networks and

Systems, RTNS ’14, pages 13:13–13:22, New York, NY, USA, 2014.
ACM.

[24] A. Saifullah, K. Agrawal, C. Lu, and C. Gill. Multi-core real-time
scheduling for generalized parallel task models. In Real-Time Systems

Symposium (RTSS), 2011 IEEE 32nd, pages 217–226, Nov 2011.

[25] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,
M. Mattina, C.-C. Miao, J. F. Brown III, and A. Agarwal. On-chip
interconnection architecture of the tile processor. IEEE Micro, 27(5):15–
31, Sept. 2007.

www.ti.com/lit/ug/sprugw8c/sprugw8c.pdf
www.ti.com/lit/ug/sprugw8c/sprugw8c.pdf

