IPP HURRAY!

www.hurray.isep.ipp.pt

Technical Report

sMapReduce: A Programming Pattern for
Wireless Sensor Networks

Vikram Gupta

Eduardo Tovar

Luis Miguel Pinho

Junsung Kim

Karthik Lakshmanan
Ragunathan (Raj) Rajkumar

HURRAY-TR-110604
Version:
Date: 06-29-2011

Technical Report HURRAY-TR-110604 sMapReduce: A Programming Pattern for Wireless Sensor Networks

sMapReduce: A Programming Pattern for Wireless Sensor Networks

Vikram Gupta, Eduardo Tovar, Luis Miguel Pinho, Junsung Kim, Karthik Lakshmanan, Ragunathan
(Raj) Rajkumar

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. Anténio Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail:

http://www.hurray.isep.ipp.pt

Abstract

Wireless Sensor Networks (WSNs) are increasingly used invarious application domains like home-automation, agricul-
ture, industries and infrastructure monitoring. As applica-tions tend to leverage larger geographical deployments
ofsensor networks, the availability of an intuitive and user-friendly programming abstraction becomes a crucial factorin
enabling faster and more efficient development, and re-programming of applications. We propose a
programmingpattern named sMapReduce, inspired by the Google MapRe-duce framework, for mapping application
behaviors on to asensor network and enabling complex data aggregation. Theproposed pattern requires a user to create a
network-levelapplication in two functions: sMap and Reduce, in order toabstract away from the low-level details
without sacrificingthe control to develop complex logic. Such a two-fold divi-sion of programming logic is a natural-fit
to typical sensornetworking operation which makes sensing and topologicalmodalities accessible to the user.

© IPP Hurray! Research Group 1
www.hurray.isep.ipp.pt

sMapReduce: A Programming Pattern for
Wireless Sensor Networks

ABSTRACT

Wireless Sensor Networks (WSNs) are increasingly used in
various application domains like home-automation, agricul-
ture, industries and infrastructure monitoring. As applica-
tions tend to leverage larger geographical deployments of
sensor networks, the availability of an intuitive and user-
friendly programming abstraction becomes a crucial factor
in enabling faster and more efficient development, and re-
programming of applications. We propose a programming
pattern named sMapReduce, inspired by the Google MapRe-
duce framework, for mapping application behaviors on to a
sensor network and enabling complex data aggregation. The
proposed pattern requires a user to create a network-level
application in two functions: sMap and Reduce, in order to
abstract away from the low-level details without sacrificing
the control to develop complex logic. Such a two-fold divi-
sion of programming logic is a natural-fit to typical sensor
networking operation which makes sensing and topological
modalities accessible to the user.

Categories and Subject Descriptors

H.4 Information Systems Applications|: Miscellaneous;
D.1.3 [Programming Techniques]: Concurrent Program-
ming— Distributed Programming; D.2.11 [Software Engi-
neering]: Software Architectures—Patterns

General Terms
Programming abstraction, Wireless Sensor Networks
Keywords

Wireless Sensor Networks, Macro-programming, Abstrac-
tions, Patterns

1. INTRODUCTION

Wireless Sensor Networks (WSNs) are being deployed for
a multitude of applications and to further promote the de-
velopment of sensing applications, the need for an efficient
yet user-friendly programming support has been stressed in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SESENA’11, 22-MAY-2011, Waikiki, Honolulu, USA

Copyright 2011 ACM 978-1-4503-0583-9/11/05 ...$10.00.

the past. Sensor Networks are generally deployed over a
large geographical area and often in difficult terrains. There-
fore, programming individual nodes can consume numerous
man-hours but the network may still lack the provisions for
reprogramming in most cases. Several middleware systems
have been proposed in the past that provide a uniform en-
vironment for programming sensor nodes.

Abstractions provided by network-level programming sys-
tems vary from sending application-specific tiny virtual ma-
chines to individual nodes [10] to query-based schemes (like
[11, 19]). A key design-decision behind a programming ab-
straction is the trade-off between control available to the
programmer and ease-of-use. Many schemes allow program-
mers to specify the application needs in network-level pro-
grams, in turn providing both control and significant ab-
straction. However, most of such schemes are designed with
abstraction as the key focus and the patterns behind sen-
sor network operation are neglected. These approaches may
provide high degree of abstraction but they lack the freedom
for a programmer to make simple optimizations not obvious
for an automated solution.

In this paper, we propose sMapReduce, a programming
abstraction to divide the network-level user program into
explicit sMap and Reduce functions. Most of the sensor
networking applications can be visualised as accomplish-
ing two important and largely disjoint functions, namely:
1) Sense and compute,) Forward and Aggregate. Isolat-
ing these functions at the programming abstraction level
helps a programmer not only to visualize the network op-
eration with ease, but also helps implementing complex ap-
plication logic. The sMap operation maps the application
behavior to the structure of the network. Hence, we call
our approach sMapReduce, which stands for structure-Map
& Reduce. Structure means the network topology and the
configuration of nodes, including the hardware and software
capabilities. By application behavior, we mean the expected
functionality of the structure of the network of sensor nodes.
The Reduce function handles the responsibility of data ag-
gregation in the network-tree topology.

Several abstraction concepts from the field of distributed
computer systems can be adapted to sensor networks. Sen-
sor networking applications are typically less data-intensive
but data is highly correlated to physical location as nodes
are deployed to sense the environment. In addition, gath-
ering data efficiently from the nodes in a multihop network
requires aggressive packet scheduling and aggregation to re-
duce the radio and computation resource-utilization. Our
proposed programming pattern is inspired from the MapRe-
duce framework [3], a popular data-processing approach in
distributed systems. MapReduce framework requires a pro-

grammer to divide the processing job into Map and Reduce
functions. Map takes a key-value pair as input and converts
it to another intermediate key-value pair; Reduce does the
job of combining this intermediate output from Map. Re-
searchers have adapted MapReduce for processing of data on
large sensor networks [7] with the premise that nodes carry
huge amount of data and parallel computations are required
in some applications. We take this concept a step further
by mapping behavior to sensor nodes based on their logical
and physical topology. The reduce concept is employed to
implement aggregation logic over the network tree.

The rest of the paper is organized as follows. Related
work is presented in Section 2. Section 3 provides the de-
tails of sMapReduce pattern with illustrative examples. The
design of a layered architecture to support such a program-
ming pattern is described in Section 4. Finally, we present
discussion and conclusions about our proposed pattern in
Section 5.

2. RELATED WORK

Many macro-programming schemes have been proposed
in the past that allow a user to program a wireless sen-
sor network as a whole. Some of those approaches involve
programming individual nodes over the air via the deliv-
ery of application-specific virtual machines [10]. On the
other hand, several macro-programming systems support
programming at an abstract higher level such as [5]. The
programming system proposed in [9] extends ‘C’ language
for programming at a network level. None of those schemes,
however, focus on isolating sensing jobs from data-collection,
making network-level programming complex while also not
providing appropriate support for efficient data-aggregation.

Design Patterns are a widely accepted software engineer-
ing approach for software design. The concept of software
patterns was made popular by Ward et al. in [1]. With the
growing popularity of sensor networks and the challenges in
programming sensor nodes, researchers have shown consid-
erable interest in proposing design patterns for sensor net-
works. Several software design approaches for WSNs are
outlined and elaborately classified in [13]. Many design pat-
terns are proposed in [2] to support interactions between
Sensor Web and sensor infrastructure through an interme-
diary layer. TinyOS is a popular operating system for sen-
sor networks and its developers describe the software pat-
terns behind its design in [4]. Various design patterns are
proposed in [16] for unifying various middleware and ab-
stractions such that users can effectively program multiple
WSN’s using different programming systems. None of these
patterns, however, attempt to optimize the programming
based on the self-evident operation of sensor network.

A macroprogramming approach comparable to ours is Reg-
iment [14] that uses the concept of abstract subsets or re-
gions [17, 12, 18] for selecting the nodes to be involved in
computation. Regiment provides programming constructs
to map sensor readings to data-types and other functions
for convenient mapping of data to data or node subset to
other subset. However, there is no explicit isolation between
functionality assignment and data aggregation, thus making
it hard for a programmer to understand the design, execu-
tion and coordination of the application. The complexity
of programs in Regiment can be high because of complex
operations, but the programmer still may not have much
control as there is almost no freedom of explicit mapping of
functionality to the nodes.

Query-based approaches [11, 19] provide convenient queries

for data collection from the sensor network. They also trans-
parently perform aggregation along the network tree to op-
timize the resource usage. One major drawback of such
database-like approaches is that the application logic is im-
plemented by an automated query planner, and the pro-
grammer does not have control over behavior mapping over
structure of nodes. In the following sections, we propose
sMapReduce programming pattern to assist in the explicit
assignment of functionality to nodes while maintaining a
user-friendly abstraction.

3. sMapReduce PATTERN

In this section, we describe our proposed sMapReduce pro-
gramming pattern for developing applications on sensor net-
works. As has been emphasized earlier, bifurcated opera-
tion of sensor networks into behavior mapping and data-
aggregation motivates corresponding split in network-level
programs. The user programs each application using two
key functions: sMap and Reduce. Main objective of sMap is
to associate sensing and decision-making jobs to the sen-
sor nodes and Reduce function handles collection of data
through the network-tree while allowing the user to imple-
ment complex aggregation logic. sMapReduce is a higher-
level programming pattern that maintains its expressiveness
though disjoint sMap and Reduce functions.

A simplified example of sMap function is shown in Fig-
ure la. The sMap function takes three input arguments.
service_name is the identifier of the application to be exe-
cuted on the sensor nodes and list_of_nodes is a handler
for data structure (or a database) containing topology and
tree information of the nodes. period is the period in ms at
which the application repeats itself. The information about
the sensor nodes, their hardware and location is compiled
and stored in a data-structure during deployment. Most
sensor network deployments are done manually, hence the
mapping of physical location to a node id can be obtained
at this phase. Once such mapping is available, a programmer
can refer to a node through its unique id, or through more
abstract concept of physical location, logical location in the
tree or even filtered based on sensor capability. The sen-
sor capability can be specified by availability of certain type
of sensor, computation power or available battery capacity.
Even in case of dynamic topologies, the underlying routing
and communication infrastructure can share the responsi-
bility of providing frequently updated logical node location
and topology information to the programming abstraction.

The functionality of nodes is decided in an sMap func-
tion. The user can make use of predefined library functions
and programming constructs to create programs for the net-
work. Some of the commonly used programming features
have been listed in Table 1. Table 2 provides list of opera-
tors to select a subset of nodes from list_of_nodes. In the
example shown in Figure 1, we present a simple sMap ap-
plication for collecting temperature from all nodes in the
network. Code for this application consists of a for loop to
iterate through the list of nodes, an instruction using get ()
to read the temperature reading and then an smap_emit ()
to send the temperature reading along with the node id to-
wards the gateway.

The Reduce section of the program is used to specify the
aggregation scheme. A separate dedicated section in the
program to perform aggregation provides more freedom and
flexibility to implement data collection algorithms. The user
can assign aggregation responsibilities to different nodes in
the network tree. It makes it easier to overlay complex ag-

Table 1: List of programming constructs
[Construct | Details |
data structure containing the
list of nodes and their properties
Data to be returned
by each node
Function to read sensor

list_of_nodes

smap_emit ()

get () values into integers,
takes sensor name as argument
set () Function to set a GPIO Pin
clear() Clear a GPIO Pin
toggle () Toggle a GPIO Pin

Table 2: List of operators for selecting participating
nodes from among the list_of_nodes

| Operators | Details |

LEAF. Nodes on the periphery of the network
INNER. All nodes except the leaf nodes

HOP (k) . All nodes at k*® hop from the gateway
HAS(t) . All nodes that have a t type sensor

BATT(c) . All nodes having remaining

battery capacity of atleast ¢
CONN(n) . Nodes having at least n neighbors

gregation algorithms over the tree through higher-level ab-
stractions for node addressing. This two-fold advantage is
made possible by separating the sensing operation from the
data-aggregation in sMap and Reduce sections. Figure 1b
shows an example of a reduce function for calculating the
sum of temperature readings obtained in the sMap section
in Figure la. In this example, INNER operator is used to
select non-leaf nodes and the sum of the input temperature
data is calculated over all nodes. Sum of these temperature
readings can be used to calculate a more useful parameter
such as average temperature at the gateway node. It is triv-
ial to compute commutative operations like sum, maximum,
minimum and count. Moreover, as a user can access the
nodes according to their physical location or logical location
in the network tree, more complex aggregations schemes can
be implemented as well.

3.1 A Target Tracking Example

Target tracking is a common application in sensor net-
works and requires considerable coordination between nodes.
We provide an example implementation using signal strength
of beacons from a target node in order to demonstrate the
advantage of using sMapReduce. The application logic is
split into sMap and Reduce functions as shown in Figure 3.
sMap function reads the Received Signal Strength Indica-
tor (RSSI) values from received packets as shown in line 3
in Figure 3a. The reduce function in Figure 3b triangulates
the location of the target when an intermediate node receives
information packets from at least three children nodes.

In the sMap function each node generates four values:
RSSI, corresponding time stamp, location of target and its
own ID, as shown in line 5 in Figure 3a. The Reduce function
receives these values from sMap, and evaluates an aggrega-
tion at all intermediate nodes. As shown in the example
topology in Figure 2, only node 6 is able to collect three val-
ues required for triangulation of the target node T tracked by
nodes 1, 2 and 3. The Reduce function in the example im-
plements the majority of the application logic because only
an intermediate node can process the RSSI information to

1 smap (service_name , list_of_nodes , period){
2 for each node in list_of_nodes

3 temp_value = gets (TEMP) ;

4 smap_emit (temp_value ,node_id);

5 end

(a) sMap Function

1 reduce(data,list_of_nodes){

2 for each node in INNER.list_of_nodes

3 sum += data.temp_value; //AGGREGATION

4 end

5 return sum;

6
(b) Reduce Function

Figure 1: A simple example for collecting sum of
temperatures from a wireless sensor network

Gateway

Target =~ 0 T T e e e e
Figure 2: An example topology to demonstrate lo-
cation tracking of a target node

estimate the location of the target. The reduce function also
ascertains temporal correlation of RSSI values from different
nodes by checking whether the all time stamps are lie than
a window of size win (line 6, Figure 3b). It is evident from
this example that sMapReduce performs aggregation close to
the leaf nodes, reducing the communication and computa-
tion overhead near the gateway node. The triangulate()
function in line 8 calculates location of target node based
on RSSI values and coordinates of infrastructure nodes. Its
implementation is omitted for brevity purposes, as it does
not influence the goal or design of our proposed pattern.

Approaches like TinyDB do not capture sensing or topo-
logical modalities, as the aggregation is handled by an auto-
mated query planner. The design of application logic might
be simpler in TinyDB in many cases but sMapReduce allows
a programmer more control with an implicit understanding
of physical and logical location of nodes. More complex
schemes like Regiment do not isolate the functionality from
aggregation explicitly, which can complicate the application
logic with sensing job being undesirably coupled to various
points in the program.

3.2 Mapping Applications for Mobile Nodes
The sociometric badge [15] is an example sensor network
application that targets assisted-living scenarios. The in-
frastructure for such an application is expensive to main-
tain once the nodes have been distributed and deployed.

1 smap(target_track ,list_of_nodes , period){
2 for each node in list_of_nodes

3 rssi_v = get (RSSI);

4 ts = get(time);

5 smap_emit (rssi_v ,ts,node_id , loc);

6 end

(a) sMap Function

1 reduce(data,list_of_nodes){

2 for each node in INNER.list_of_nodes
3 if (data.loc != NULL)

4 return data.loc;

5 else

6 if (max(ts)—min(ts)<=win

7 && size(data.rssi_v) >= 3)

8 triangulate (rssi_v , loc);

9 else

10 return data;
11 end

12 end

13 end

14 }

(b) Reduce Function
Figure 3: A location tracking example using RSSI
values of packets received by infrastructure nodes
from a mobile target.

Adding additional features is likely to be impossible, and
the lack of resources on specific nodes restricts the services
that they can offer. The presence of mobile nodes also adds
additional complexity with respect to node reprogramming
and data aggregation. The proposed programming pattern
sMapReduce, provides a flexible and extensible mechanism
to develop such systems, which could consist of both mo-
bile and static sensor nodes. In order to support such sys-
tems, sMapReduce introduces two new aspects: (i) multi-
level mapreduce function support, and (ii) periodic map ex-
ecution. This enables system designers to use sMapReduce
on sensor network systems with mobile nodes. Figure 4a
shows an example system, where a mobile node called Fire-
Fly badge [8], is used to build the above-mentioned assisted
living infrastructure. The FireFly badge could be hosting
two location-based applications: (i) emergency alarm that
needs to be loaded when the user is in a bathroom, and (ii)
a schedule reminder that needs to be loaded when the user
is in a living room. The smap_location function is executed
periodically, and it tracks the location of the FireFly badge
so that smap_location can map the corresponding applica-
tion to the badge. Then, smap_service, the second level
map function, will map schedule_reminder to the badge if
the user is in the living room and emergency_alarm if the
users is in the bathroom. Therefore, depending on the user
location, a different application can be dynamically mapped
on to the mobile node, and this enables programming of
context-sensitive map/reduce operations. This example thus
illustrates a simple scenario where the multi-level mapping
and periodic map execution features of sMapReduce can en-
able its use in networks with mobile nodes, where platforms
such as [14, 10, 11] cannot be easily applied.

3.3 Features

© 0O UL Wi

1 target_service = smap_location (

FireFly_Badge, list_of_nodes , period);

2 data = smap_service(target_service .name,

target_service .nodes, target_service.
period);

3 result = reduce(data,list_of_nodes);

(a) An example code for supporting mobile nodes

1 smap_location (service , list_of_nodes,

period) {
for each node in INNER.list_of_nodes
if (node.location = bathroom)
smap_emit (emergency_alarm) ;
else if(node.location = livingroom)
smap_emit (schedule_reminder);
end
end

}

(b) Implementation of the first level sMap function
Figure 4: Example of mobile node support

Programming Abstraction

Aggregator

‘ Forwarder H Aggregator

Receiver

= 2 A

| Sensor OS
Figure 5: sMapReduce system architecture showing
three major layers to support a network-level pro-
gramming abstraction

The design of the sMapReduce programming pattern is
based on the principle that typical sensor network operation
consists of two relatively disjoint functions. One associates
a behavior to sensor nodes and other executes data aggrega-
tion over the distributed network. Hence, dividing the user
program in explicit sMap and Reduce sections is a natural-
fit to sensor network operation. We provide below some
features of the pattern to emphasize on the design decisions
behind the sMapReduce.

Two-fold operation Typical sensor network operation con-
sists of programming of the nodes and collection of
data. These two are handled independently at dif-
ferent layers in the network. Further details of this
operation are provided in Section 4.

Data correlation A sensor network is a distributed sys-
tem where data of interest is the physical environment
itself. Therefore, any computation on data should
be conducted in the close neighborhood of the sensor
node.

| Programming Abstraction |
I T
Aggregator
Aggrgator

—
S
—
Receiver
o

Code Interpreter
¥ *

Sensor OS

Figure 6: Operation of sMap and Reduce planes.
sMap operation involves top-down mapping of be-
havior to each node from gateway to leaf nodes, and
Reduce handles data aggregation from leaf-nodes up-
wards

Programmer Support Explicit division of programs into
sMap and Reduce sections allow the programmers to
easily isolate the key functions, thus helping in easy
inference and debugging of applications.

Balanced abstraction and control sMapReduce provides
easy to use libraries and abstractions to deploy large
scale applications in addition to the ability to address
individual nodes for fine-grained control to the user.

Expressiveness sMapReduce is a pattern derived from the
operation of a sensor network, and it allows the pro-
grammer to conveniently map behavior of sensing and
aggregation to network structure. The programmer
can leverage subtle optimizations without much com-
plexity in the application logic.

4. SYSTEM DESIGN

As previously stated, a typical operation of a sensor net-
work involves two major components; one handles the pro-
gramming of and coordination among nodes and another,
governs aggregation of data over the multi-hop network tree.
We can conceptualize this two-fold operation as two inde-
pendent planes that we call sMap plane and Reduce plane.
Based on this concept, sMapReduce facilitates a programmer
to distribute functionality in two separate sections. Archi-
tecture of a typical framework to support proposed abstrac-
tion consists of three major layers as shown in Figure 5.

More details of different layers are provided in [6], with the
design and implementation of a macro-programming frame-
work to support multiple applications. As shown in Figure 5,
the proposed abstraction needs to be supported by three
similar layers, but various components of the architecture
are designed to help integrate the sMap and Reduce oper-
ations into the coordinated programming environment. In
the following subsections, we briefly explain the operation
of the system from the context of sMapReduce.

4.1 sMap Plane

In the sMap operation of the system, the primary function
is to assign specific behavior to each of the nodes in the net-
work. Behavior in this case means all tasks executing on the
node, along with communication handling and participating
in data forwarding and aggregation. The layered structure
along with sMap and Reduce operations is shown in Fig-
ure 6. The top-layer of this architecture is the programming

Actuator
LN

.
~ \ *
~. <« 4

4 Sensor

Figure 7: A network with both sensors and actu-
ators to demonstrate that local decision to actuate
may not always be isolated from the Reduce logic

abstraction for the user to create network level programs
in sMap and Reduce sections. The user-written program
is compiled and converted into byte-codes to be executed
on individual nodes. Byte-code execution implements the
node behavior with the support from the sensor operating
system. Byte-code is sent via the wireless network to each
of the nodes, which is handled by a data-handler in the In-
tegration Layer. The data-handler connects all sections of
sensor networking infrastructure spread over various layers,
from the user-end PC at the top to the gateway node and
intermediate nodes in the middle and to leaf nodes at the
bottom. Once the byte-codes are delivered to each node ac-
cording to their function, a code-interpreter converts them
to sensor networking OS instructions. The byte-codes con-
tain both the program to be executed and the aggregation
scheme to be followed at each intermediate node. The main
job of the sMap plane is to provide network abstraction and
assign jobs to nodes while maintaining coordination among
multiple applications and network hops.

4.2 Reduce Operation

Once the nodes receive the byte-code specifying their func-
tionality /behavior, the nodes start the execution of the new
application. The role of each node in the Reduce plane is
also included in the byte-code where the intermediate nodes
in the network tree help in aggregation of data. The aggre-
gation of data is specified by the user in the Reduce section
of the program. The role of aggregation can be different for
different nodes, depending on both the physical and logical
location of the node in the multi-hop network. A leaf node
should only forward locally sensed and computed informa-
tion, and intermediate nodes may combine the data from
their respective children nodes. In addition to aggregation,
the Reduce plane should align, merge and schedule pack-
ets to reduce the overhead in communication. The Reduce
plane is implemented through an aggregator module at every
node and the Integration Layer supports the communication
of data among different aggregator modules. Figure 6 shows
how the Reduce plane overlaps over the right half of the
system architecture. This split in the operation of sensor
network justifies having explicit sMap and Reduce sections.

S. DISCUSSION AND CONCLUSIONS

Most applications of sensor networks are usually designed
under the “Sense and Send” functional motive, implying that
the sensor nodes typically sense the physical environment,

and send the data to a gateway node through a tree rooted
at the gateway. Data can be aggregated along the tree to
save the communication involved. Almost any application
which can be classified into such model can benefit from
the sMapReduce programming pattern. Applications with
a more mesh-like topology nodes however, may not bene-
fit from this pattern as explicit mapping and aggregation
may not be possible or required. It should be noted that if
there is a requirement of collecting data at a node in a mesh
structure, the underlying graph can be reduced to a tree and
sMapReduce can then be employed with ease. In case of ap-
plications that require localized decision making instead of
at the root node, it may not be possible to separate the
Reduce logic from sMap logic in a straightforward fashion.
For example in the topology shown in Figure 7, some nodes
(dark shade) have actuation capabilities in addition to the
sensing nodes (light shade). If an application logic involves
actuation at node R based on sensing from nodes P and Q,
the reduce logic will invariably involve actuation logic. In
this case, behavior mapping is not limited to sMap section
and explicit distinction is no longer possible.

sMapReduce is a programming pattern that can enable
most common sensor networking applications including sim-
ple data-collection ones to target tracking applications with
complex logic and aggregation. As future work, we would
like to explore similar patterns that can allow programmers
to express applications for even more generic topologies with
desirable ease.

6. REFERENCES

[1] BEck, K., AND CUNNINGHAM, W. Using pattern
languages for object-oriented program. In OOPSLA
’87 workshop on Specification and Design for
Object-Oriented Programming (1987).

[2] BRORING, A., FOERSTER, T., AND JIRKA, S.
Interaction patterns for bridging the gap between
sensor networks and the sensor web. In Pervasive
Computing and Communications Workshops
(PERCOM Workshops), 2010 8th IEEFE International
Conference on (2010), pp. 732 —737.

[3] DEAN, J., AND GHEMAWAT, S. Mapreduce: Simplified
data processing on large clusters. OSDI (2004), 13.

[4] Gay, D., LEvis, P., AND CULLER, D. Software design
patterns for tinyos. In Proceedings of the 2005 ACM
SIGPLAN/SIGBED conference on Languages,
compilers, and tools for embedded systems (Chicago,
Nlinois, USA, 2005), LCTES ’05, ACM, pp. 40—49.

[5] GumMADI, R., KOTHARI, N., GOVINDAN, R., AND
MiLLsTEIN, T. Kairos: a macro-programming system
for wireless sensor networks. In SOSP ’05: Proceedings
of the twentieth ACM symposium on Operating
systems principles (Brighton, United Kingdom, 2005),
ACM, pp. 1-2.

[6] GupTa, V., KiM, J., PANDYA, A., LAKSHMANAN, K.,
RAJKUMAR, R., AND TOVAR, E. Nano-cf: A
coordination framework for macro-programming in
wireless sensor networks. CISTER/ISEP Technical
Report, HURRAY-TR-110110.

[7] JARDAK, C., RIIHIJARVI, J., OLDEWURTEL, F., AND
MAHONEN, P. Parallel processing of data from very
large-scale wireless sensor networks. In Proceedings of
the 19th ACM International Symposium on High
Performance Distributed Computing (Chicago, Illinois,
2010), HPDC ’10, ACM, pp. 787-794.

[8] KANDHALU, A., LAKSHMANAN, K., AND RAJKUMAR,
R. U-connect: a low-latency energy-efficient
asynchronous neighbor discovery protocol. In
Proceedings of the 9th ACM/IEEE International
Conference on Information Processing in Sensor
Networks (2010), ACM, pp. 350-361.

[9] KoTHARI, N., GUMMADI, R., MILLSTEIN, T., AND
GoVINDAN, R. Reliable and efficient programming
abstractions for wireless sensor networks. In
Proceedings of the 2007 ACM SIGPLAN conference
on Programming language design and implementation
(San Diego, California, USA, 2007), PLDI '07, ACM,
pp- 200-210.

[10] Levis, P., AND CULLER, D. Mate: a tiny virtual
machine for sensor networks. In Proceedings of the
10th international conference on Architectural support
for programming languages and operating systems (San
Jose, California, 2002), ASPLOS-X, ACM, pp. 85-95.

[11] MADDEN, S. R., FRANKLIN, M. J., HELLERSTEIN,

J. M., AND HonG, W. Tinydb: an acquisitional query
processing system for sensor networks. ACM Trans.
Database Syst. 30, 1 (2005), 122-173.

[12] MotToLA, L., AND Picco, G. P. Logical
neighborhoods: A programming abstraction for
wireless sensor networks. In Lecture Notes in
Computer Science : Distributed Computing in Sensor
Systems, vol. 4026,/2006, Springer Berlin / Heidelberg,
pp. 150-168.

[13] MoTTOLA, L., AND Picco, G. P. Programming
wireless sensor networks: Fundamental concepts and
state-of-the-art. ACM Computing Surveys (2010).

[14] NEWTON, R., MORRISETT, G., AND WELSH, M. The
regiment macroprogramming system. In Proceedings of
the 6th international conference on Information
processing in sensor networks (Cambridge,
Massachusetts, USA, 2007), IPSN 07, ACM,
pp. 489-498.

[15] OLcuiN, O., ET AL. Sociometric badges: Wearable
technology for measuring human behavior.

[16] TE1, K., FukAazawA, Y., AND HONIDEN, S. Applying
design patterns to wireless sensor network
programming. In Computer Communications and
Networks, 2007. ICCCN 2007. Proceedings of 16th
International Conference on (2007), pp. 1099 —1104.

[17] WELSH, M., AND MAINLAND, G. Programming sensor
networks using abstract regions. In NSDI’0/:
Proceedings of the 1st conference on Symposium on
Networked Systems Design and Implementation (San
Francisco, California, 2004), USENIX Association,
pp. 3-3.

[18] WHITEHOUSE, K., SHARP, C., BREWER, E., AND
CULLER, D. Hood: a neighborhood abstraction for
sensor networks. In MobiSys ’04: Proceedings of the
2nd international conference on Mobile systems,
applications, and services (Boston, MA, USA, 2004),
ACM, pp. 99-110.

[19] YAO, Y., AND GEHRKE, J. The cougar approach to
in-network query processing in sensor networks.
SIGMOD Rec. 31, 3 (2002), 9-18.

