

Task assignment algorithms for
heterogeneous multiprocessors

Technical Report

CISTER-TR-140510

Version:

Date: 1/1/2014

Gurulingesh Raravi

Vincent Nélis

Technical Report CISTER-TR-140510 Task assignment algorithms for heterogeneous multiprocessors

© CISTER Research Unit
www.cister.isep.ipp.pt 1

Task assignment algorithms for heterogeneous multiprocessors
Gurulingesh Raravi, Vincent Nélis

CISTER Research Unit

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: guhri@isep.ipp.pt, nelis@isep.ipp.pt

http://www.cister.isep.ipp.pt

Abstract
Consider the problem of assigning implicit-deadline sporadic tasks on a heterogeneous multiprocessor platform
comprising a constant number (denoted by 't') of distinct types of processors --- such a platform is referred to as a
't-type platform'. We present two algorithms, LPGim and LPGnm, each providing the following guarantee. For a
given t-type platform and a task set, if there exists a task assignment such that tasks can be scheduled to meet
their deadlines by allowing them to migrate only between processors of the same type (intra-migrative), then (i)
LPGim succeeds in finding such an assignment where the same restriction on task migration applies (intra-
migrative) but given a platform in which only one processor of each type is (1 + a*(t-1)/t) times faster and (ii)
LPGnm succeeds in finding a task assignment where tasks are not allowed to migrate between processors (non-
migrative) but given a platform in which every processor is (1+a) times faster. The parameter 'a' is a property of
the task set; it is the maximum of all the task utilizations that are no greater than one. To the best of our
knowledge, for t-type heterogeneous multiprocessors, (i) for the problem of intra-migrative task assignment, no
previous algorithm exists with a proven bound and hence, our algorithm, LPGim, is the first of its kind and (ii) for
the problem of non-migrative task assignment, our algorithm, LPGnm, has superior performance compared to
state-of-the-art.

A

Task assignment algorithms for heterogeneous multiprocessors
(Submitted to Special Issue on Real-Time, Embedded and Cyber-Physical Systems)

Gurulingesh Raravi and Vincent N

´

elis, Polytechnic Institute of Porto, Portugal

Consider the problem of assigning implicit-deadline sporadic tasks on a heterogeneous multiprocessor plat-
form comprising a constant number (denoted by t) of distinct types of processors — such a platform is
referred to as a t-type platform. We present two algorithms, LPG

IM

and LPG
NM

, each providing the follow-
ing guarantee. For a given t-type platform and a task set, if there exists a task assignment such that tasks
can be scheduled to meet their deadlines by allowing them to migrate only between processors of the same
type (intra-migrative), then (i) LPG

IM

succeeds in finding such an assignment where the same restriction
on task migration applies (intra-migrative) but given a platform in which only one processor of each type is
1+↵⇥ t�1

t times faster and (ii) LPG
NM

succeeds in finding a task assignment where tasks are not allowed
to migrate between processors (non-migrative) but given a platform in which every processor is 1 + ↵ times
faster. The parameter ↵ is a property of the task set; it is the maximum of all the task utilizations that
are no greater than one. To the best of our knowledge, for t-type heterogeneous multiprocessors, (i) for the
problem of intra-migrative task assignment, no previous algorithm exists with a proven bound and hence,
our algorithm, LPG

IM

, is the first of its kind and (ii) for the problem of non-migrative task assignment, our
algorithm, LPG

NM

, has superior performance compared to state-of-the-art.

Categories and Subject Descriptors: D.4.7 [Operating Systems]: Organization and Design—Real-time sys-
tems and embedded systems; G.4 [Mathematical Software]: Algorithm design and analysis

General Terms: Algorithms, Performance, Theory

Additional Key Words and Phrases: Heterogeneous multiprocessors, Real-time scheduling

1. INTRODUCTION
This paper addresses the problem of assigning a set of real-time tasks on a heteroge-
neous multiprocessor platform. We consider implicit-deadline sporadic tasks, that is, a
task generates a (potentially infinite) sequence of jobs where each job has an execution
time and a deadline and for each task, the deadline of a job of this task is equal to
the minimum time between job arrivals of this task. Such tasks can be used to model
a range of applications where the software needs to perform an operation repeatedly
on incoming or sampled data, e.g., feedback control systems, signal processing or mul-
timedia playout. We consider a heterogeneous multiprocessor platform comprising a
constant number (denoted by t) of distinct types of processors. We refer to such a plat-
form as a t-type platform. On such a platform, the execution time of a task depends on
the type of processor on which it executes. Our interest in considering such a platform
model is motivated by the fact that many chip makers offer chips having a constant
number of distinct types of processors [Apple Inc. 2013; AMD Inc. 2013; Intel Corp.
2013a; 2013b; 2013c; Nvidia Inc. 2013; Qualcomm Inc 2013; Samsung Inc. 2013; Texas
Instruments 2013; Alben 2013]. For scheduling tasks on such platforms, we consider
three migration models: non-migrative, intra-migrative and fully-migrative.

In the non-migrative model (sometimes referred to as partition model in the lit-
erature), every task is statically assigned to a processor before run-time and all its
jobs must execute only on that processor at run-time. The challenge is to find, before
run-time, a task-to-processor assignment such that, at run-time, on each processor, the
given scheduling algorithm meets all deadlines of the tasks assigned on that processor.
Scheduling tasks to meet deadlines is a well-understood problem in the non-migrative
model. One may use Earliest Deadline First (EDF) [Liu and Layland 1973] on each
processor, for example. EDF is an optimal scheduling algorithm on a uniprocessor sys-
tem [Liu and Layland 1973; Dertouzos 1974], with the interpretation that, for every
valid arrival pattern, if a schedule exists that meets deadlines then EDF constructs a
schedule that meets deadlines as well. Therefore, assuming that an optimal scheduling

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 G. Raravi and V. N

´

elis

algorithm is used on every processor, the challenging part is to find a task-to-processor
assignment such that, there exists a schedule that meets all deadlines — such an as-
signment is said to be feasible assignment hereafter. Even in the simpler case of iden-
tical multiprocessors, finding a feasible task-to-processor assignment is NP-Complete
in the strong sense [Johnson 1973]. Hence, this result continues to hold for t-type mul-
tiprocessors as well. In this work, we propose an algorithm, LPG

NM

, for this problem
which outperforms state-of-the-art.

In the intra-migrative model, every task is statically assigned to a processor type be-
fore run-time, rather than to an individual processor. Then, the jobs of each task can
migrate at run-time from one processor to another as long as these processors are of
the same type. Similar to the non-migrative model, once tasks are assigned, schedul-
ing them to meet all deadlines under the intra-migrative model is well-understood,
e.g., one may use an optimal identical multiprocessor scheduling algorithm, such as,
ERfair [Anderson and Srinivasan 2000], DP-Fair [Levin et al. 2010] or U-EDF [Nelis-
sen et al. 2012]. Once again, assuming that an optimal algorithm is used for schedul-
ing tasks on processors of each type, the challenging part is to find a feasible task-to-
processor-type assignment such that, there exists a schedule that meets all deadlines.
Even in the simpler case, in which each processor type has only one processor, finding
a feasible task-to-processor-type assignment is NP-Complete in the strong sense (for
the reasons discussed earlier). Hence, this result continues to hold for t-type platforms
having one or more processors of each type as well. In this work, we propose an algo-
rithm, LPG

IM

, for this problem, for which no previous algorithm (with a proven bound)
exists.

In the fully-migrative model, jobs are allowed to migrate from any processor to
any other processor at run-time, irrespective of the processor types. Even though this
model is powerful in theory1, it is rarely applicable in practice because job migration
between processors of different types is hard to achieve as different processor types
typically differ in their instruction sets, register formats, etc. Hence, in this work, we
decided not to consider this model.

This work relies on the resource augmentation framework [Phillips et al. 1997] to
characterize the performance of the algorithms. We define the approximation ratio
AR

IM

of an intra-migrative algorithm A
IM

(resp., AR

NM

of a non-migrative algorithm
A

NM

) against an intra-migrative adversary as the lowest number such that, for every
task set ⌧ and platform ⇡, it holds that, if it is possible for an intra-migrative algo-
rithm (i.e., the adversary) to meet all deadlines of ⌧ on ⇡ then algorithm A

IM

(resp.,
A

NM

) outputs an intra-migrative (resp., non-migrative) assignment which meets all
the deadlines of ⌧ on a platform ⇡

(AR

IM

) (resp., ⇡(AR

NM

)) whose processors are AR

IM

(resp., AR

NM

) times faster than the corresponding processors in ⇡. Hence, a low ap-
proximation ratio indicates high performance; the best achievable is 1 (which reflects
the optimal algorithm for a given problem). Therefore, we aim to design algorithms
with finite (and ideally small) approximation ratios.

Related work. The non-migrative task assignment problem on heterogeneous mul-
tiprocessors has been studied in the past [Baruah 2004b; 2004a; Raravi et al. 2012;
Raravi et al. 2013; Raravi and Nélis 2012; Wiese et al. 2013]. It is a well-known
fact that the non-migrative task assignment problem is equivalent to the problem
of scheduling a set of non-real-time jobs, arriving at time zero, on unrelated paral-
lel machine, so that they all finish before a specified time. This equivalent problem has
been studied in [Horowitz and Sahni 1976; Lenstra et al. 1990; Jansen and Porkolab

1The fully-migrative model is more “powerful” than the intra-migrative model which in turn is more power-
ful than the non-migrative model, in the sense that, for a given task set and a computing platform, the set
of fully-migrative solutions is a superset of the set of intra-migrative solutions which is a superset of the set
of non-migrative solutions.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Task assignment algorithms for heterogeneous multiprocessors A:3

Table I: Summary of state-of-the-art task assignment algorithms along with the algo-
rithm proposed in this paper.
Computing Adversary Task Assignment Algorithms

Platform Task migration Algorithm Task migration Approx. ratio Complexity
t-typea non-migrative [Baruah 2004a] non-migrative 2 polynomial
t-type non-migrative [Baruah 2004b] non-migrative 2 polynomial
t-type non-migrative [Lenstra et al. 1990] non-migrative 2 polynomial
t-type fully-migrative [Correa et al. 2012] non-migrative 4 polynomial
2-typeb non-migrative [Raravi et al. 2013] non-migrative 2 polynomial
2-type intra-migrative [Raravi et al. 2012] intra-migrative 1.5 polynomial
2-type intra-migrative [Raravi et al. 2012] non-migrative 2 polynomial

2-type non-migrative [Raravi and Nélis 2012] non-migrative PTASc exponential
in 1/✏

t-type non-migrative [Horowitz and non-migrative PTAS exponential
Sahni 1976] in processors

t-type non-migrative [Jansen and non-migrative PTAS exponential
Porkolab 1999] in processors

t-type non-migrative [Wiese et al. 2013] non-migrative PTAS exponential
in 1/✏

t-type intra-migrative LPG

IM

, [This work] intra-migrative 1 +

⇣
↵ ⇥ t�1

t

⌘
d polynomial

t-type intra-migrative LPG

NM

, [This work] non-migrative 1 + ↵ 2 polynomial
a A heterogeneous multiprocessor platform having t � 2 processor types.
b A heterogeneous multiprocessor platform having only two processor types.
c A PTAS takes an instance of an optimization problem and a parameter ✏ > 0 as inputs and, in time polynomial in the

problem size (although not necessarily in the value of ✏), produces a solution that is within a factor 1+✏ of being optimal.
d The parameter 0 < ↵ 1 is a property of the task set; it is the maximum of all the utilizations that are no greater than 1.

1999; Correa et al. 2012]. For the problem of assigning implicit-deadline sporadic tasks
on heterogeneous multiprocessors, in [Baruah 2004b; 2004a; Lenstra et al. 1990], au-
thors propose non-migrative algorithms with an approximation ratio of 2 against a
non-migrative adversary. The approach discussed in [Lenstra et al. 1990] comes clos-
est to our work since it formulates the task assignment problem as a Mixed Integer
Linear Program (MILP) and then relaxes it to a Linear Program (LP) and finally uses a
rounding technique to obtain non-migrative task assignment. We also follow the same
approach in this work; however, by formulating MILP in a different way and using a
different rounding technique, we obtain a better bound for our non-migrative task as-
signment algorithm than the one in [Lenstra et al. 1990]. Further, we also provide an
algorithm for intra-migrative task assignment problem and prove its bound (whereas
authors in [Lenstra et al. 1990] study only the non-migrative assignment problem).

The approaches proposed in [Raravi et al. 2012; Raravi et al. 2013; Raravi and Nélis
2012] are applicable only for two-type platforms (a special case of t-type in which t = 2)
and hence are not applicable for generic t-type (t � 2) platforms.

Moving to algorithms whose approximation ratios have been proven against a more
powerful adversary, recently, in [Correa et al. 2012], it is shown that if a task set can be
scheduled by an optimal algorithm on a heterogeneous platform with full migrations
(i.e., jobs can migrate between processors of any type) then, an optimal algorithm for
scheduling tasks on a heterogeneous platform with no migrations (i.e., non-migrative
assignment) needs processors four times as fast.

In [Horowitz and Sahni 1976; Jansen and Porkolab 1999; Raravi and Nélis 2012;
Wiese et al. 2013], polynomial-time approximation schemes (PTASs) have been pro-
posed for the problem of non-migrative task assignment. A PTAS takes an instance
of an optimization problem and a parameter ✏ > 0 as inputs and, in time polynomial
in the problem size (although not necessarily in the value of ✏), produces a solution
that is within a factor 1 + ✏ of being optimal. PTAS is theoretically a significant result
since such algorithms partition the task set in polynomial time, to any desired degree
of accuracy. However, (most often) their practical significance is severely limited due
to a very high run-time complexity that they incur.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 G. Raravi and V. N

´

elis

The state-of-the-art along with the contributions of this paper are summarized in
Table I. Each row in the table corresponds to a different algorithm. For example, the
first row in the table is read as follows: for a t-type platform, a non-migrative algorithm
is proposed in [Baruah 2004a] and it has an approximation ratio of 2 against non-
migrative adversary.

Contributions and significance of this work. Consider a t-type platform ⇡ and
an implicit-deadline sporadic task set ⌧ in which, it holds that: 8k 2 {1, 2, . . . , t}, for
every task in ⌧ , utilization of each task on a type-k processor is either no greater than
↵ or is equal to 1, where 0 < ↵ 1. We first present an intra-migrative algorithm,
LPG

IM

, which offers the following guarantee. If there exists a feasible intra-migrative
assignment of ⌧ on ⇡ then LPG

IM

succeeds in finding such a feasible intra-migrative
assignment of ⌧ but on ⇡

0 in which only one processor of each type is 1 + ↵ ⇥ t�1

t

times
faster than the corresponding processor in ⇡ (for defining its approximation ratio, we
say that LPG

IM

needs a platform ⇡

(1+↵⇥ t�1

t) in which every processor is 1+↵⇥ t�1

t

times
faster). Then, we modify LPG

IM

to obtain LPG

NM

, a non-migrative algorithm which
offers the following guarantee. If there exists a feasible intra-migrative assignment of
⌧ on ⇡ then LPG

NM

succeeds in finding a feasible non-migrative assignment of ⌧ but
on ⇡

(1+↵) in which every processor is 1 + ↵ times faster.
We believe that the significance of this work is two-fold. First, for the problem of find-

ing an intra-migrative assignment of real-time tasks on t-type platforms, no previous
algorithm with a proven approximation ratio exists and hence our algorithm, LPG

IM

, is
the first for this problem. Second, for the problem of non-migrative task assignment on
t-type platforms, our algorithm, LPG

NM

, has superior performance compared to state-
of-the-art. This can be seen from Table I since (i) LPG

NM

has a tighter bound (i.e., its
approximation ratio, 1+↵ 2, is quantified using the parameter, ↵, which is a charac-
teristic of the task set) and that too against a more powerful intra-migrative adversary
when compared to the bounds of algorithms in [Baruah 2004a; 2004b; Lenstra et al.
1990] (whose approximation ratio, 2, is a constant against non-migrative adversary),
(ii) among algorithms with approximation ratio proven against an adversary with a
migration model of intra-migrative or greater power [Correa et al. 2012], LPG

NM

of-
fers the best approximation ratio and (iii) compared to PTAS algorithms [Horowitz and
Sahni 1976; Jansen and Porkolab 1999; Wiese et al. 2013] whose practical significance
is severely limited as they incur a very high time-complexity (exponential in processors
or exponential in 1/✏), our algorithm offers a lower (i.e., polynomial) time-complexity.

2. SYSTEM MODEL
We consider the problem of scheduling a task set ⌧ of n independent implicit-
deadline sporadic tasks on a t-type heterogeneous multiprocessor platform ⇡ com-
prising m processors. In platform ⇡, the set of m

k

processors of type-k is denoted by
⇡

k

= {p
1

, p

2

. . . , p

mk}, where 1 k t and p

j

denotes a processor of type-k, where
1 j m

k

. It then holds that:
S

t

k=1

⇡

k

= ⇡ and
T

t

k=1

⇡

k

= ; and finally
P

t

k=1

m

k

= m.
Each task ⌧

i

2 ⌧ is characterized by a worst-case execution time (WCET) and a min-
imum inter-arrival time T

i

. Each task ⌧

i

releases a (potentially infinite) sequence of
jobs, with the first job released at any time during the system execution and subse-
quent jobs released at least T

i

time units apart. Each job released by ⌧

i

has to complete
its execution within T

i

time units (also referred to as deadline) from its release. On
a t-type platform, the WCET of a task depends on the type of the processor on which
the task executes. We denote by C

k

i

the WCET of a task ⌧

i

when executed on a type-k
processor, where k 2 {1, 2, . . . , t}. We denote by u

k

i

def

= C

k

i

/T

i

the utilization of task ⌧

i

on
a type-k processor and u

k

i

is a real number in [0, 1][{1} — if ⌧
i

cannot be executed on

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Task assignment algorithms for heterogeneous multiprocessors A:5

Minimize Z subject to the following constraints:
I1. 8⌧

i

2 ⌧ :

P
k2{1,2,...,t} x

k

i

= 1

I2. 8k 2 {1, 2, . . . , t} :

P
⌧i2⌧

x

k

i

⇥ u

k

i

 Z⇥m
k

I3. 8⌧
i

2 ⌧, 8k 2 {1, 2, . . . , t} : x

k

i

2 {0, 1} are integers

Fig. 1: MILP-Feas(⌧,⇡) — MILP formulation for assigning tasks in ⌧ to processor types in ⇡.

a type-k processor then u

k

i

is set to1. Let ↵ be a real number defined as follows:

↵

def

= max

⌧i2⌧,k2{1,2,...,t}

�
u

k

i

: u

k

i

 1

(1)

Then it holds that the utilization of any task on any processor type is either no greater
than ↵ or is equal to1, i.e.,

8k 2 {1, 2, . . . , t} , 8⌧
i

2 ⌧ : (u

k

i

 ↵) _ (u

k

i

=1) (2)

3. MILP-ALGO: AN OPTIMAL INTRA-MIGRATIVE ALGORITHM
In this section, an optimal intra-migrative algorithm is presented for assigning tasks
in ⌧ to processor types in ⇡, that is, for each task set, it succeeds in finding a feasible
assignment, if such an assignment exists. The proposed algorithm is based on solving
a Mixed Integer Linear Programming (MILP) formulation. As described in Section 1,
once the tasks are assigned to processor types, we assume that, an optimal identi-
cal multiprocessor scheduler (e.g., [Anderson and Srinivasan 2000; Levin et al. 2010;
Nelissen et al. 2012]) is used to schedule the tasks on processors of each type. From
the feasibility tests of identical multiprocessor scheduling, the following necessary and
sufficient set of conditions must hold for intra-migrative assignment to be feasible:

8k 2 {1, 2, . . . , t} : 8⌧
i

2 ⌧

k

: u

k

i

 1 (3)
8k 2 {1, 2, . . . , t} :

P
⌧i2⌧

k u
k

i

 m

k

(4)

where ⌧

k denotes the set of tasks that are assigned to processors of type-k. The first
condition is essential since the system model does not allow parallel execution of any
job. The second condition is essential as it ensures that the computing workload does
not exceed the processing capacity [Horn 1974].

Given these necessary and sufficient feasibility conditions, we now propose an opti-
mal intra-migrative task assignment algorithm, MILP-Algo, which works as follows.

First, solve the MILP formulation, MILP-Feas(⌧,⇡), shown in Fig. 1. In this formula-
tion, variable Z is the objective function to be minimized and it denotes the maximum
capacity that is used on any processor type (which is given by max

k2{1,2,...,t}
P

⌧i2⌧

k x
k

i

⇥
u

k

i

). Each variable x

k

i

indicates whether a task ⌧

i

is assigned to a processor type-k or
not. The first set of constraints specifies that every task must be entirely assigned. The
second set of constraints asserts that at most Z⇥m

k

capacity of type-k processors can
be used. The third set of constraints asserts that each task must be integrally assigned
to one of the t processor types.

Second, using the solution of this MILP formulation, assign the tasks to processor
types as follows. If Z > 1 then declare failure as this indicates that the feasibility
condition shown in Eq. (4) is violated (implying that the task set is not intra-migrative
feasible). Otherwise, for each task ⌧

i

2 ⌧ , assign ⌧

i

to type-k processors only if xk

i

= 1.
We now show that the MILP-Algo is an optimal intra-migrative task assignment algo-
rithm.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 G. Raravi and V. N

´

elis

LEMMA 3.1 (MILP-ALGO IS OPTIMAL). If there exists a feasible intra-migrative
assignment of ⌧ on ⇡ then MILP-Algo succeeds in finding such a feasible intra-migrative
assignment.

PROOF. Suppose that the task set ⌧ is intra-migrative feasible on platform ⇡ and
let X denote a feasible assignment. It can be seen that, 8⌧

i

2 ⌧ , by assigning values to
x

k

i

variables of MILP formulation, MILP-Feas(⌧,⇡), of Fig. 1 as:

if X (i) = k then x

k

i

 1

x

j

i

 0, 8j 2 {1, 2, . . . , t} ^ j 6= k

gives a (feasible) solution to the MILP formulation in which Z 1.
Now, suppose that there is a (feasible) solution with Z 1 to the MILP formula-

tion, MILP-Feas(⌧ , ⇡), of Fig. 1. Using this solution, define the assignment of tasks to
processor types as follows:

8⌧
i

2 ⌧ : X (i) k, if xk

i

= 1

By constraint I1 of the MILP formulation, each task is entirely assigned in the as-
signment X obtained as shown above. By constraint I2 of the MILP formulation, the
capacity of type-k processors is not exceeded in the assignment X (since Z 1 in the
feasible solution to MILP formulation). By constraint I3, each task is entirely assigned
to only one processor type. Hence, X is a feasible intra-migrative assignment.

In general, solving an MILP formulation has high computational complexity. In
particular, the decision problem MILP is NP-complete and even with knowledge of
the structure of the constraints in the modeling of heterogeneous multiprocessor
scheduling, no polynomial-time algorithm is known (p. 245 in [Garey and Johnson
1979]). Hence, we now propose a polynomial time-complexity (but non-optimal) intra-
migrative algorithm, LPG

IM

, by relaxing the MILP formulation to LP (which can be
solved in polynomial time [Karmakar 1984]) and using graph theory techniques.

4. AN OVERVIEW OF OUR NEW INTRA-MIGRATIVE ALGORITHM LPG
IM

We now give an overview of our intra-migrative algorithm, LPG
IM

. It has the following
four steps:

Step 1. We first relax the MILP formulation of Fig. 1 to LP formulation by allowing
all the x

k

i

variables to take real values in the range [0, 1] instead of binary values
{0, 1} and then solve it. In the solution returned by the LP solver, some tasks will
be integrally assigned to a processor type and the rest will be fractionally assigned
to more than one processor type. We show that, for this LP formulation, there exists
a (vertex) solution in which at most t � 1 tasks are fractionally assigned and such a
solution is of interest to us. This step is discussed in Section 5.

Step 2. From such a solution, we construct a bi-partite graph with (i) a set of nodes
corresponding to fractional tasks, (ii) another set of nodes corresponding to those pro-
cessor types to which these fractional tasks are assigned and (iii) a set of edges which
connect these task nodes and processor type nodes depending on the values of the x

k

i

variables (which also represent the weights of these edges). The solution (returned by
the LP solver) might be such that, upon representing it with a bi-partite graph, the
graph may contain a few circuits. This step is discussed in detail in Section 6 along
with the relevant graph theory terminology.

Step 3. The circuits in the graph, if any, are detected and broken, one by one. A
circuit is broken by re-adjusting the weights of the edges such that the weight of at
least one edge in the circuit becomes zero which is then deleted. While re-adjusting the
weights, it is ensured that, for each processor type, its used capacity after re-adjusting
the weights does not exceed its used capacity before re-adjusting. This step (discussed

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Task assignment algorithms for heterogeneous multiprocessors A:7

Minimize Z subject to the following constraints:
R1. 8⌧

i

2 ⌧ :

P
k2{1,2,...,t} x

k

i

= 1

R2. 8k 2 {1, 2, . . . , t} :

P
⌧i2⌧

x

k

i

⇥ u

k

i

 Z⇥m
k

R3. 8⌧
i

2 ⌧, 8k 2 {1, 2, . . . , t} : x

k

i

� 0 are real numbers

Fig. 2: LP-Feas(⌧,⇡) — Relaxed LP formulation for assigning tasks in ⌧ to processor types in ⇡.

in Section 7) reduces the complexity of the problem when assigning the at most t � 1

fractional tasks integrally to processor types, in the final step.
Step 4. The at most t� 1 fractional tasks are assigned integrally to processor types.

We show that, in order to do this, the algorithm needs a platform in which only one
processor of each type is 1 + ↵ ⇥ t�1

t

times faster. This step is discussed in Section 8
along with the proof of approximation ratio of this four step intra-migrative algorithm,
LPG

IM

.

5. STEP 1 OF LPG
IM

: SOLVING THE LP FORMULATION
First, we relax the MILP formulation, MILP-Feas(⌧,⇡), to an LP formulation, LP-
Feas(⌧,⇡), as shown in Fig. 2. In this LP formulation, all the variables have the same
meaning as in the MILP formulation and the first two sets of constraints are the
same as well. Only the third set of constraints is different (i.e., relaxed) and it now
asserts that a task can either be integrally assigned or fractionally assigned to proces-
sor types. We then solve the LP formulation using standard LP solvers (e.g., IBM ILOG
CPLEX [IBM 2013]). Since the LP formulation is less constrained than the MILP, the
following lemma trivially holds.

LEMMA 5.1. Let Z

MILP

and Z

LP

be the values of the objective functions that any
MILP solver and LP solver would return by solving MILP-Feas(⌧,⇡) and LP-Feas(⌧,⇡),
respectively. It then holds that, Z

LP

 Z

MILP

.

Among all the optimal solutions to an LP formulation, at least one solution lies at a
vertex of the feasible region2 (see, pp. 117 in [Luenberger and Ye 2008]). We are inter-
ested in such a solution, as it reflects a task assignment in which at most t�1 tasks are
fractionally assigned between different processor types (referred to as fractional tasks,
hereafter) — see Lemma 5.2 below. We would like to mention that, if the solution re-
turned by the solver is not a vertex solution then it can always be converted into a
vertex solution [Baruah 2004b].

LEMMA 5.2. Consider an optimal solution for LP-Feas(⌧,⇡), that lies at the vertex of
the feasible region. For such a solution, it holds that, at most t� 1 tasks are fractionally
assigned.

PROOF. The proof is based on Fact 2 in [Baruah 2004b]: “consider a linear program
on n variables, in which each variable x

i

is subject to the non-negativity constraint,
i.e., x

i

� 0. Suppose that there are further m linear constraints. If m < n, then at each
vertex of the feasible region (including the basic solution), at most m of the variables
have non-zero values”. Clearly, the LP formulation of Fig. 2 is a linear program on
n

0
= n ⇥ t + 1 variables (i.e., n ⇥ t x

k

i

variables and one Z variable), all subject to non-
negativity constraint, and m

0
= n + t further linear constraints (n constraints due to

R1 plus t constraints due to R2). As m

0
< n

0 (we assume n � 2 ^ t � 2; otherwise the
problem becomes trivial), we know from the above fact that in every optimal solution

2The feasible region of an LP in n-dimensional space is the region over which all the constraints are satisfied.
Further, in general, LP solvers (such as CPLEX [IBM 2013]) always return optimal vertex solution.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 G. Raravi and V. N

´

elis

at the vertex of the feasible region, it holds that, at most m

0
= n + t variables take

non-zero values. Since Z is certain to be non-zero, it holds that:

the number of non-zero x

k

i

variables is at most n+ t� 1 (5)
We know that, for each task ⌧

i

2 ⌧ , there exists at least one k 2 {1, 2, . . . , t} such that
x

k

i

> 0. Let num denote the number of tasks for which there exists at least two k such
that x

k

i

> 0. It follows from the definition of num that the total number of non-zero
variables is at least num⇥2 + (n� num) which can be rewritten as at least n+ num. If
num � t then:

the number of non-zero x

k

i

variables is at least n+ t (6)
This contradicts Eq. (5). Hence, num < t, which implies that the number of tasks
fractionally assigned between different processor types is at most t� 1.

The remaining three steps focus on assigning these (at most) t � 1 fractional tasks
integrally to processor types.

6. STEP 2 OF LPG
IM

: FORMING THE BI-PARTITE GRAPH
In this step, using the vertex solution, in which at most t � 1 tasks are fractionally
assigned, we construct a bi-partite graph3. The graph is constructed with only (i) frac-
tional tasks and (ii) those processor types to which at least one fractional task is as-
signed (referred to as fractional processor types). Hence, while forming the graph, we
ignore all the tasks that are integrally assigned and all the processor types to which
no fractional task is assigned. Let G = (A,B,E) denote such a bi-partite graph and it
is formed as follows:

— each fractional task ⌧

i

2 ⌧ , is represented by a task node ⌧
i

2 A defined by a one-to-one
mapping.

— each fractional processor type-k, k 2 {1, 2, . . . , t}, is represented by a processor type
node ⇡

k 2 B defined by a one-to-one mapping.
— a task node ⌧

i

2 A is connected by an edge e

k

i

2 E to a processor type node ⇡

k 2 B if
and only if 0 < x

k

i

< 1. Each edge e

k

i

2 E has a weight set to x

k

i

.
Observe that, since the bi-partite graph is constructed only with fractional tasks and

fractional processor types, the graph may contain a few circuits (defined below).

Definition 6.1 (Circuit). A circuit C = {n
1

! n

2

! · · · ! n

s

! n

1

} in a graph
G = (A,B,E) is a path in which each node is visited exactly once except one node
which is visited twice, i.e., both at the start and at the end. Each circuit C can also be
denoted by a corresponding subgraph G

C

=

�
A

C

,B

C

,E

C

�
✓ G containing only those

nodes and edges that are in C.

For convenience, we use C and G

C interchangeably, in the rest of the paper. The fol-
lowing lemma states that a circuit in a bi-partite graph is always an even circuit.

LEMMA 6.2 (FROM THEOREM 1.2.18 IN [WEST 2000]). Any circuit C =

{n
1

! n

2

! · · ·! n

s=2Nc ! n

1

}, where N

c

> 0 is a positive integer, in a bi-partite
graph G = (A,B,E), always has an even number of distinct nodes, with half the
number of nodes from the set A and the other half from the set B.

PROOF. In cycle, C = {n
1

! n

2

! . . .! n

s

! n

1

}, let the node n

1

be in set A (abbre-
viated n

1

2 A). If n
1

2 A then by definition of bi-partite graph, it must be that n
2

2 B,

3A bi-partite graph is a graph with two disjoint sets of vertices such that every edge connects a vertex in
one set to a vertex in the other set.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Task assignment algorithms for heterogeneous multiprocessors A:9

Table II: Values of xk

i

variables output by the LP solver.

Tasks Values of indicator variables
x

1
i x

2
i x

3
i x

4
i x

5
i

⌧1 1 0 0 0 0
⌧2 0 0 0 1 0
⌧3 0.7 0 0 0 0.3
⌧4 0.5 0 0.5 0 0
⌧5 0 0 0 1 0
⌧6 0 0.1 0.5 0 0.4
⌧7 0 0 0 0 1

τ3 τ6 τ4

e5
6

π5 π1 π3 π2

e1
3

(a) The bi-partite graph constructed from
Table II; circuit is indicated by black edges.

τ1= τ4 τ2= τ6 τ3= τ3

xl1 xr1 xl2 xr2 xl3 xr3

π1=π1
 π2=π3

 π3=π5

(b) The circuit of Fig. 3a (with Nc = 3 task
and Nc = 3 processor type nodes) after re-
arranging and re-indexing.

Fig. 3: An example to illustrate the bi-partite graph (formed from fractional tasks and processor
types) and the concept of a circuit.

n

3

2 A, n
4

2 B and so on. In general, it holds that, n
2j+1

2 A and n

2j

2 B. Since C is a
cycle, n

s

2 B so that s = 2N

c

for some positive integer N

c

. Therefore, cycle C has even
number of nodes (and half the nodes in circuit C are from set A and the other half are
from set B). Hence the proof.

PROPERTY 1 (FOLLOWS FROM LEMMA 6.2). In a circuit G

C

=

�
A

C

,B

C

,E

C

�
, it

holds that,
��
A

C

��
=

��
B

C

��
= N

c

, where N

c

> 0 is a positive integer.

We now illustrate these concepts with an example.

Example 6.3. Consider a task set ⌧ of 7 tasks and a t-type platform ⇡ with t =

5. Let the solution output by the LP solver be as shown in Table II. The bi-partite
graph constructed from this solution using the fractional tasks (⌧

3

, ⌧

4

and ⌧

6

) and the
fractional processor types (type-1, type-2, type-3 and type-5), is shown in Fig. 3a. As
can be seen, there is a circuit C =

�
⌧

3

! ⇡

1 ! ⌧

4

! ⇡

3 ! ⌧

6

! ⇡

5 ! ⌧

3

in the graph,

with 6 distinct nodes in which N

c

= 3 nodes each are from the set A and the set B.
The graph corresponding to this circuit is given by G

C

=

�
A

C

,B

C

,E

C

�
where A

C

=

{⌧
3

, ⌧

4

, ⌧

6

}, BC

=

�
⇡

1

,⇡

3

,⇡

5

and E

C

=

�
e

1

3

, e

1

4

, e

3

4

, e

3

6

, e

5

6

, e

5

3

.

Definition 6.4 (shared processor type node). A fractional processor type node
⇡

k 2 B in a graph G = (A,B,E) is said to be shared only if it is connected to at least
two task nodes ⌧

i1

2 A and ⌧

i2

2 A. Otherwise, it is said to be non-shared.

For example, in Fig. 3a, although all the four nodes, ⇡1, ⇡2, ⇡3 and ⇡

5, are fractional
processor type nodes, only ⇡

1, ⇡3 and ⇡

5, are shared processor type nodes.

LEMMA 6.5. If there is no circuit in a graph G = (A,B,E) then there exists at least
one task node in A that is connected to at most one shared processor type node in B.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 G. Raravi and V. N

´

elis

Further, since this task is fractional, we know that, it is also connected to at least one
non-shared processor type node in B.

PROOF. From Definition 6.1 and 6.4, it holds that, in a circuit, each task node is con-
nected to exactly two shared processor type nodes. Thus, it can be easily proven that, if
every task node in a graph G = (A,B,E) is connected to at least two shared processor
type nodes then there exists at least one circuit in G. Hence, by contraposition, it holds
that, if there is no circuit in graph G then not every task node is connected to at least
two shared processor type nodes. This implies that, if there is no circuit in graph G

then there exists at least one task node ⌧

i

2 A that is connected to at most one shared
processor type node. Since all the task nodes in G are fractional, the task node ⌧

i

must
be connected to at least two processor type nodes and hence to at least one non-shared
processor type node. Hence the proof.

The circuit shown in Fig. 3a can be re-arranged as shown in Fig. 3b. Note in Fig. 3b
that, the nodes are re-indexed. For ease of explanation, we use this notion of re-
arranged graph in the next step.

Finally, we define the capacity used on a processor type in a circuit C by the tasks in
that circuit as follows.

Definition 6.6 (Capacity used on a processor type in a circuit). Consider a cir-
cuit GC

=

�
A

C

,B

C

,E

C

�
in a graph G. The capacity Cj

C

used on a processor type-j node,
⇡

j 2 B

C, by the task nodes 8 ⌧
i

2 A

C, is given by:

Cj

C

def

=

X

⌧

i

2A

C

: x

j

i

>0

x

j

i

⇥ u

j

i

(7)

Remark about notation. In Eq. (7), index j is used for processor type instead of (the
earlier notation) k. This is to avoid any confusion since the processor type nodes are
re-indexed in the circuit (as shown in Fig. 3b).

7. STEP 3 OF LPG
IM

: DETECTING AND REMOVING THE CIRCUITS IN THE GRAPH
In the graph constructed as described in the previous section, if there are any circuits
then we break all such circuits, in this step. Each circuit is broken by re-adjusting
the weights of the edges (xj

i

) within the circuit such that the weight of at least one
edge becomes zero, which breaks the circuit. The edge whose weight becomes zero is
removed from the graph. While manipulating the weights of edges in a circuit G

C

=�
A

C

,B

C

,E

C

�
, it is ensured that, for each (shared) processor type ⇡

j 2 B

C, its capacity
used by the tasks in the circuit after re-adjusting the weights (denoted by Cj

0

C

) does
not exceed its original used capacity, i.e., before re-adjusting the weights (denoted by
Cj

C

). Breaking all the circuits reduces the complexity of the problem when assigning
the (at most) t � 1 fractional tasks integrally to processor types, which is discussed in
Section 8. We now discuss, in detail, how to detect and remove circuits from the graph.

A circuit in a graph can be detected using Depth First Search (DFS) algorithm, gener-
ally found in textbooks (e.g., see Chap. 22.3 in [Cormen et al. 2001]). Hence, we mainly
focus on removing the detected circuits in our graph. The following lemma shows how
to remove at least one edge in the given circuit without increasing the capacity used
on any of the shared processor types that are in the circuit.

LEMMA 7.1. Consider a circuit GC

=

�
A

C

,B

C

,E

C

�
(with N

c

task and N

c

processor
type nodes — see Property 1) arranged as shown in Fig. 3b. Let x

`

i

and x

r

i

denote the
fraction of task ⌧

i

(8i 2 {1, 2, . . . , N
c

}) that is assigned to the shared processor type
which is on ⌧

i

’s “left” and ⌧

i

’s “right”, respectively. From Fig. 3b and Definition (1),

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Task assignment algorithms for heterogeneous multiprocessors A:11

Cj

C

, 8j 2 {1, 2, . . . , N
c

}, can be re-defined as:

Cj

C

=

⇢
(x

r

Nc
⇥ u

r

Nc
) + (x

`

1

⇥ u

`

1

) if j = 1

(x

r

j�1

⇥ u

r

j�1

) + (x

`

j

⇥ u

`

j

) if j 2 {2, . . . , N
c

} (8)

If it holds that
NcY

g=1

u

r

g

u

`

g

� 1 (9)

then after updating the fractional assignments as follows:

x

r

0

i

= x

r

i

� ✏

u

`

i

⇥
i�1Y

g=1

u

r

g

u

`

g

(10)

x

`

0

i

= x

`

i

+

✏

u

`

i

⇥
i�1Y

g=1

u

r

g

u

`

g

(11)

where
Q

i�1

g=1

u

r

g

u

`
g

is assumed to be 1 for i = 1 and where ✏ > 0 denotes a real number such
that

✏ = min

z2[1,2,...,Nc]

8
<

:
x

r

z

⇥ u

`

zQ
z�1

g=1

u

r

g

u

`
g

9
=

; (12)

the following properties are satisfied:

P1.. 8j 2 {1, 2, . . . , N
c

} : Cj

0

C

 Cj

C

, where Cj

0

C

denotes the capacity used on shared
processor type j, after updating the fractional assignments.
P2.. 8i 2 {1, 2, . . . , N

c

} : x

`

0

i

+ x

r

0

i

= x

`

i

+ x

r

i

.
P3.. 8i 2 {1, 2, . . . , N

c

} : x

`

0

i

� 0 and x

r

0

i

� 0.
P4.. 9i 2 {1, 2, . . . , N

c

} : x

r

0

i

= 0.

PROOF. We now prove each of these four properties.
Proof of P1. This will be shown separately for processor type j = 1 and 8j 2
{2, 3, . . . , N

c

}.
Case 1: j = 1. From Eq. (8) and (10), we have:

from Eq. (8): C1

0

C

= (x

r

0

Nc
⇥ u

r

Nc
) + (x

`

0

1

⇥ u

`

1

) (13)

from Eq. (10): x

r

0

Nc
= x

r

Nc
� ✏

u

`
Nc

⇥
Q

Nc�1

g=1

u

r

g

u

`
g

(14)

From Eq. (11) and from the assumption that
Q

i�1

g=1

u

r

g

u

`
g
= 1 for i = 1, we have:

x

`

0

1

= x

`

1

+

✏

u

`

1

(15)

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 G. Raravi and V. N

´

elis

Thus, by substituting Eq. (14) and (15) in Eq. (13) yields:

C1

0

C

=

x

r

Nc
� ✏

u

`

Nc

⇥
Nc�1Y

g=1

u

r

g

u

`

g

!
⇥ u

r

Nc
+

✓
x

`

1

+

✏

u

`

1

◆
⇥ u

`

1

= (x

r

Nc
⇥ u

r

Nc
)� ✏⇥

NcY

g=1

u

r

g

u

`

g

+

�
x

`

1

⇥ u

`

1

�
+ ✏

from (8)
= C1

C

+ ✏⇥

1�

NcY

g=1

u

r

g

u

`

g

!
from (9)
 C1

C

(16)

Case 2: j 2 {2, . . . , N
c

} . From Eq. (8) and from Eq. (10) and (11), we have:

Cj

0

C

= (x

r

0

j�1

⇥ u

r

j�1

) + (x

`

0

j

⇥ u

`

j

) (17)

x

r

0

j�1

= x

r

j�1

� ✏

u

`

j�1

⇥
j�2Y

g=1

u

r

g

u

`

g

(18)

x

`

0

j

= x

`

j

+

✏

u

`

j

⇥
j�1Y

g=1

u

r

g

u

`

g

(19)

Thus, by substituting Eq. (18) and (19) in Eq. (17) yields:

Cj

0

C

=

x

r

j�1

� ✏

u

`

j�1

⇥
j�2Y

g=1

u

r

g

u

`

g

!
⇥ u

r

j�1

+

x

`

j

+

✏

u

`

j

⇥
j�1Y

g=1

u

r

g

u

`

g

!
⇥ u

`

j

= (x

r

j�1

⇥ u

r

j�1

) + (x

`

j

⇥ u

`

j

)�

✏⇥

u

r

j�1

u

`

j�1

⇥
j�2Y

g=1

u

r

g

u

`

g

!
+

✏⇥

j�1Y

g=1

u

r

g

u

`

g

!

= (x

r

j�1

⇥ u

r

j�1

) + (x

`

j

⇥ u

`

j

)�

✏⇥

j�1Y

g=1

u

r

g

u

`

g

!
+

✏⇥

j�1Y

g=1

u

r

g

u

`

g

!

= (x

r

j�1

⇥ u

r

j�1

) + (x

`

j

⇥ u

`

j

)

from (9)
= Cj

C

(20)

From Eq. (16) and (20), it can be seen that, performing operations shown in Eq. (10)
and (11) satisfies property P1.
Proof of P2. For every i 2 {1, . . . , N

c

}, it can be seen that adding Eq. (10) and (11)
results in x

`

0

i

+ x

r

0

i

= x

`

i

+ x

r

i

, and hence the property immediately follows.
Proof of P3. Since ✏ > 0, it is trivial from Eq. (11) that 8i 2 {1, . . . , N

c

}: x`

0

i

> x

`

i

> 0.
Then, from Eq. (10), any x

r

0

i

will be negative if and only if

x

r

i

<

✏

u

`

i

⇥
i�1Y

g=1

u

r

g

u

`

g

from (12)
< min

z2{1,2,...,Nc}

8
<

:
x

r

z

⇥ u

`

zQ
z�1

g=1

u

r

g

u

`
g

9
=

;⇥
1

u

`

i

⇥
i�1Y

g=1

u

r

g

u

`

g

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Task assignment algorithms for heterogeneous multiprocessors A:13

Since the min term evaluates to x

r

i⇥u

`
i

Qi�1

g=1

ur

g

u`
g

, we have:

x

r

i

<

x

r

i

⇥ u

`

iQ
i�1

g=1

u

r

g

u

`
g

⇥ 1

u

`

i

⇥
i�1Y

g=1

u

r

g

u

`

g

<

x

r

i

⇥ u

`

i

u

`

i

< x

r

i

which is impossible. Hence x

r

0

i

� 0.
Proof of P4. From Eq. (12), it holds that:

9i 2 {1, 2, . . . , N
c

} : ✏ =

x

r

i

⇥ u

`

iQ
i�1

g=1

u

r

g

u

`
g

(21)

For such i, Eq. (10) can be re-written as:

x

r

0

i

= x

r

i

� ✏

u

`

i

⇥
i�1Y

g=1

u

r

g

u

`

g

(22)

Substituting the value of ✏, we obtain, 9i 2 {1, 2, . . . , N
c

} : x

r

0

i

= 0. Hence the property
holds.
As a conclusion, we showed that modifying the fractional assignments of the tasks
according to Eq. (10) and (11) ensures that all the four properties P1, P2, P3 and P4
are satisfied. Hence the proof.

Lemma 7.1 showed that, in a circuit with N

c

task nodes, if
Q

Nc

g=1

u

r

g

u

`
g
� 1 then

transferring the fractions from “right to left” within the circuit will (i) delete an edge
(as its weight becomes zero, by P4) so that the circuit breaks and (ii) ensures that
8j 2 {1, 2, . . . , N

c

} : Cj

0

C

 Cj

C

. Since no fraction was moved to/from those processor
types that are in set B but not in circuit C, their capacities remain unaffected. Hence,
8⇡j 2 B : Cj

0

C

 Cj

C

. Analogously, it can be shown that if
Q

Nc

g=1

u

r

g

u

`
g
< 1 then transferring

the fractions from “left to right” within the circuit will also yield the same result. The
claim is presented formally below in Lemma 7.2 but the proof which is very similar to
the proof of Lemma 7.1, is omitted due to space constraint.

LEMMA 7.2. Consider a circuit GC

=

�
A

C

,B

C

,E

C

�
(with N

c

task and N

c

processor
type nodes — see Property 1) arranged as shown in Fig. 3b. Let x

`

i

and x

r

i

denote the
fraction of task ⌧

i

(8i 2 {1, 2, . . . , N
c

}) that is assigned to the shared processor type
which is on ⌧

i

’s “left” and ⌧

i

’s “right”, respectively. From Fig. 3b and Definition (1),
Cj

C

, 8j 2 {1, 2, . . . , N
c

}, can be re-defined as:

Cj

C

=

⇢
(x

r

Nc
⇥ u

r

Nc
) + (x

`

1

⇥ u

`

1

) if j = 1

(x

r

j�1

⇥ u

r

j�1

) + (x

`

j

⇥ u

`

j

) if j 2 {2, . . . , N
c

}

If it holds that
NcY

g=1

u

r

g

u

`

g

< 1

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 G. Raravi and V. N

´

elis

then after updating the fractional assignments as follows:

x

r

0

i

= x

r

i

+

✏

u

`

i

⇥
i�1Y

g=1

u

r

g

u

`

g

and x

`

0

i

= x

`

i

� ✏

u

`

i

⇥
i�1Y

g=1

u

r

g

u

`

g

where
Q

i�1

g=1

u

r

g

u

`
g

is assumed to be 1 for i = 1 and where ✏ > 0 denotes a real number such
that

✏ = min

z2[1,2,...,Nc]

8
<

:
x

r

z

⇥ u

`

zQ
z�1

g=1

u

r

g

u

`
g

9
=

;

the following properties are satisfied:

P1.. 8j 2 {1, 2, . . . , N
c

} : Cj

0

C

 Cj

C

, where Cj

0

C

denotes the capacity used on shared
processor type j, after updating the fractional assignments.
P2.. 8i 2 {1, 2, . . . , N

c

} : x

`

0

i

+ x

r

0

i

= x

`

i

+ x

r

i

.
P3.. 8i 2 {1, 2, . . . , N

c

} : x

`

0

i

� 0 and x

r

0

i

� 0.
P4.. 9i 2 {1, 2, . . . , N

c

} : x

`

0

i

= 0.

Thus, each circuit identified in the graph (for example, using DFS [Cormen et al.
2001]) can be broken using the procedure described above (i.e., either using Lemma 7.1
or Lemma 7.2). Observe that, while removing the circuits, zero or more fractional tasks
may get integrally assigned to processor types but for all practical purposes, it is suf-
ficient for us to know that, at the end of this step, (i) there are at most t� 1 fractional
tasks (by Lemma 5.2) and (ii) there are no circuits in the graph anymore. In the final
step, we integrally assign these (at most) t� 1 fractional tasks to processor types.

8. STEP 4 OF LPG
IM

: INTEGRALLY ASSIGNING THE FRACTIONAL TASKS
In this section, we describe how to assign the fractional tasks integrally to processor
types. This fourth step takes as input the output of the previous step, i.e, a graph G =

(A,B,E) with no circuits and with at most t� 1 fractional tasks, and works iteratively
on this input graph. In each iteration y, our algorithm chooses one fractional task
⌧

i

2 A and assigns it integrally to one of the processor types in B. Then, it removes
that fractional task node from A, deletes all the edges incident on ⌧

i

and removes from
B all the non-shared processor type nodes to which ⌧

i

was fractionally assigned. This
procedure of integrally assigning a task and then deleting a few nodes and edges is
repeated until the graph becomes empty, which implies that all the fractional tasks
have been integrally assigned to processor types.

We now introduce two additional sets of notations that we will use extensively in
the rest of the section while describing the working of this fourth step and proving its
correctness. The first set of notations can be seen as “global” with respect to the input
graph G while the second set of notations can be seen as “local” with respect to each
task in the graph.

Global notations w.r.t. the graph. Recall that, in this step, we use the circuit-
free graph G = (A,B,E) output by the previous step. Since this graph contains only
fractional tasks and fractional processor types (see Section 6), this step deals with
only these tasks and processor types. For the purpose of this section, we re-index the
fractional tasks in A and the fractional processor types in B as follows. In graph G =

(A,B,E), let ⌧

i

denote the i’th task (node) in A and let ⇡

j denote the j’th processor
type (node) in B. Since this step works iteratively, let y denote the iteration counter.
During this step, assigning a fractional task integrally to one of the processor types
comes at the cost of additional computing capacity required on the processor type for

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Task assignment algorithms for heterogeneous multiprocessors A:15

τ1

x1(1)

τ2 τ3

π1 π2 π3 π4

π1(1) π1(3)

π1(2)
π2(3)
π2(2)

π3(3)

x1(2)
x1(3)

x2(2) x2(3) x3(3)

Fig. 4: The graph of Fig. 3a after breaking the circuit (as described in Section 7) and
re-indexing the nodes.

accommodating this task entirely. We denote by Cj

+

[y] the cumulative extra capacity
required on processor type ⇡

j 2 B from iteration 1 until the beginning of iteration y.
Since some of the processor type nodes are deleted from the graph at the end of each
iteration, let Pin

[y] denote the set of processor type nodes that are still in the graph at
the beginning of iteration y and let Pout

[y] denote the set of all the processor types that
have been removed from the graph from iteration 1 till the beginning of iteration y. It
holds by definition that, Pin

[1] = B and P

out

[1] = �.
For example, in the previous section, let the circuit in the graph shown in Fig. 3a be

broken by removing the edge e

5

3

. In that case, the graph output by the previous step,
after re-indexing the task and processor types, is shown in Fig. 4. In Fig. 4, the re-
indexed task nodes ⌧

1

, ⌧
2

and ⌧

3

denote the original task nodes ⌧

3

, ⌧
4

and ⌧

6

of Fig. 3a,
respectively. Analogously, the re-indexed processor type nodes ⇡

1, ⇡2, ⇡3 and ⇡

4 denote
the original processor type nodes ⇡

1, ⇡2, ⇡3 and ⇡

5 of Fig. 3a, respectively.
Local notations w.r.t. a task in the graph. Since this fourth step of LPG

IM

con-
siders one fractional task ⌧

i

2 A in each iteration and assigns it integrally to one
of the processor types to which it is fractionally assigned, we also define some nota-
tions with respect to task ⌧

i

. Let ⇡(i) =

�
⇡

1

(i),⇡

2

(i), . . . ,⇡

|⇡(i)|
(i)

denote the set of

processor types to which task ⌧

i

2 A is assigned in G, where 8j 2 {1, 2, . . . , |⇡(i)|},
⇡

j

(i) 2 ⇡(i) denote the j’th processor type to which task ⌧

i

is assigned. Let X(i) =�
x

1

(i), x

2

(i), . . . , x

|⇡(i)|
(i)

denote the set of fractional assignments of task ⌧

i

2 A, where
8j 2 {1, 2, . . . , |⇡(i)|}, xj

(i) 2 X(i) denotes the fractional assignment of task ⌧

i

to its j’th
processor type, i.e., its fractional assignment to ⇡

j

(i). Let Cj

+

(i)[y] denote the cumula-
tive extra capacity required on processor type ⇡

j

(i) from iteration 1 to iteration y.
Note that these two sets of notations, i.e., global and local, can be used

to refer to the same processor type node. For example, in Fig. 4, it can be
seen that: ⇡(1) =

�
⇡

1

(1) = ⇡

1

, ⇡(2) =

�
⇡

1

(2) = ⇡

1

, ⇡

2

(2) = ⇡

3

and ⇡(3) =�

⇡

1

(3) = ⇡

2

, ⇡

2

(3) = ⇡

3

, ⇡

3

(3) = ⇡

4

.

Finally, since G is formed using only fractional tasks and fractional processor types
(see Section 6), observe that:

8⌧
i

2 A :

|⇡(i)|X

j=1

x

j

(i) = 1 (23)

With these new notations, we now describe the working of this fourth step of LPG
IM

algorithm. The pseudo-code of this step is provided in Algorithm 1 and it can be sum-
marized as follows. As long as there is a task node in the graph, Algorithm 1 chooses a
task ⌧

i

which is connected to only non-shared processor type nodes (line 3–4). If there is
no such task then it chooses a task which is connected to exactly one shared processor
type node (line 5–6) — we will prove in Lemma 8.2 that there always exists such a task.
Then, Algorithm 1 tries to integrally assign the chosen task ⌧

i

to one of its non-shared

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 G. Raravi and V. N

´

elis

ALGORITHM 1: Step 4 of LPG
IM

algorithm for assigning the fractional tasks integrally to
processor types.
Input : G = (A,B,E): A graph output by Step 3 of LPG

IM

representing task assignment with
no circuits and at most t� 1 fractional tasks

1 y 1, Pin[y] B, Pout[y] � ;
2 while A is not empty do
3 if 9⌧` 2 A connected to only non-shared processor types then
4 ⌧i ⌧` ;
5 else
6 ⌧i a task in A that is connected to exactly one shared processor type ;
7 end
8 foreach non-shared processor type ⇡

`(i) 2 ⇡(i) do
9 newCap C`

+

(i)[y] +
P|⇡(i)|

j=1,j 6=` x
j(i)⇥ u

j
i ;

10 if newCap ↵⇥ t�1

t then
11 assign ⌧i to ⇡

`(i) ;
12 C`

+

(i)[y] newCap ;
13 break the foreach-loop ;
14 end
15 end
16 if ⌧i is not assigned then
17 assign ⌧i to the only shared processor type, say ⇡

z(i), to which it is connected ;
18 Cz

+

(i)[y] Cz
+

(i)[y] +
P|⇡(i)|

j=1,j 6=z x
j(i)⇥ u

j
i ;

19 end
// remove (i) the task ⌧

i

from A and (ii) all the non-shared processor types

that are connected to ⌧i from B (and the edges connecting ⌧i to these

processor types

20 y y+1;
21 A A \ {⌧

i

};
22 delpt {⇡k 2 B | 9xk

i > 0 and ⇡

k is non-shared};
23 B B \ delpt;
24 Pin[y] Pin[y] \ delpt;
25 Pout[y] Pout[y][delpt;
26 E E \{ek

i

| ⇡k 2 ⇡(i) and ⇡

k is non-shared};
27 end

processor types. We say that it fails to assign ⌧

i

to a processor type ⇡

`

(i) 2 ⇡(i) if the
(cumulative) extra capacity required on ⇡

`

(i), after assigning ⌧

i

to it, exceeds ↵ ⇥ t�1

t

.
If the extra capacity does not exceed that threshold on any one of the non-shared pro-
cessor types then ⌧

i

is integrally assigned to it (lines 8–15). Otherwise, ⌧
i

is assigned to
its (sole) shared processor type (lines 16–19), and we also show in Lemma 8.2 that this
assignment cannot fail. Finally, the algorithm removes ⌧

i

from the graph, as well as
all its non-shared processor type nodes and all the edges connected to ⌧

i

(lines 21–26),
and iterates with another task until the graph becomes empty.

Now, we prove the approximation ratio of the intra-migrative algorithm, LPG

IM

,
with the help of Property 2 and the intermediate Lemma 8.1.

PROPERTY 2. It holds, from lines 21–26 of Algorithm 1, that at each iteration y:

P

in

[y][Pout

[y] = B and P

in

[y]\Pout

[y] = ; (24)

LEMMA 8.1. 8⌧
i

2 A, 9⇡j

(i) 2 ⇡(i) such that xj

(i) � 1

|⇡(i)| .

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Task assignment algorithms for heterogeneous multiprocessors A:17

PROOF. The proof is by contradiction. If 8⇡j

(i) 2 ⇡(i), if x

j

(i) <

1

|⇡(i)| then
P|⇡(i)|

j=1

x

j

(i) < |⇡(i)|⇥ 1

|⇡(i)| < 1, which contradicts Eq. (23). Hence the proof.

LEMMA 8.2. Consider a task set ⌧ which is intra-migrative feasible on a platform
⇡. After running steps 1 to 3 of LPG

IM

, if the graph G = (A,B,E) (with no circuits and
at most t�1 fractional tasks) that was output by step 3, is given as input to Algorithm 1
(step 4 of LPG

IM

) then Algorithm 1 succeeds to integrally assign the at most t � 1 frac-
tional tasks in A to the processor types in B and in order to succeed it only requires that
each processor type in B are provided with an additional capacity of ↵⇥ t�1

t

.

PROOF. The proof is split into three parts where we show:
Part 1. At lines 3–7, there always exists, at each iteration y, a task ⌧

i

assigned to at
most one shared processor type.
Part 2. At the beginning of the first iteration (y = 1), it holds that

P
⇡

j2P

in

[1]

Cj

+

[1]

↵⇥ |Pout

[1]|
t

.
Part 3. At the beginning of each iteration y � 1, if it holds that

X

⇡

j2P

in

[y]

Cj

+

[y] |Pout

[y]|
t

⇥ ↵ (25)

then the task ⌧

i

chosen on line 4 (or line 6) can be assigned integrally to one of its non-
shared processor types on lines 8–15 (or, to its (sole) shared processor type on lines 16–
19). Then, after assigning ⌧

i

integrally, Eq. (25) remains satisfied at the beginning of
the next iteration y+1.
Proof of Part 1. Here we show that, at each iteration y, there always exists a task
⌧

i

assigned to at most one shared processor type. Since the input graph G = (A,B,E)

does not contain any circuit, we know from Lemma 6.5 that, at the first iteration of
Algorithm 1, there is a task ⌧

i

2 A which is assigned to at most one shared proces-
sor type. Then, at the end of each iteration y � 1 one task is deleted from the graph
(line 21) and all the non-shared processor types connected to that task are also deleted
(lines 22–25). Since removing nodes and edges from the graph cannot create a new
circuit, the graph will always be circuit-free in all the subsequent iterations of Algo-
rithm 1. Hence, from Lemma 6.5, at every iteration y � 1 there is always a task ⌧

i

2 A

assigned to at most one shared processor type.
Proof of Part 2. Here we show that at the beginning of the first iteration (y = 1),
it holds that

P
⇡

j2P

in

[1]

Cj

+

[1] |Pout

[1]|
t

⇥ ↵. At the beginning of the first iteration,
no fractional task in G has been integrally assigned to a processor type yet. Hence,
the extra capacity needed on each processor type to accommodate the tasks of G that
have been already assigned is trivially zero, i.e. Cj

+

[1] = 0, 8⇡j 2 B. Besides, we have

P

out

[1] = � and thus it holds that
P

⇡

j2P

in

[1]

Cj

+

[1] = 0 |Pout

[1]|
t

⇥ ↵ = 0.
Proof of Part 3. Here we show that at each iteration y, as long as Eq. (25) holds (and
we have shown above that it holds for y = 1), the fractional task ⌧

i

chosen at line 4 (or
line 6) can be integrally assigned to one of the processor types connected to it. For this,
we need to investigate three cases:
Case 3.1. Task ⌧

i

is not assigned to a shared processor type (chosen on line 4). In this
case, we need to show that ⌧

i

can be integrally assigned to at least one of its non-
shared processor type (on lines 8–15) and Eq. (25) holds true at the beginning of the
next iteration y+1.
Case 3.2. Task ⌧

i

is assigned to exactly one shared processor types (chosen on line 6)
and is successfully assigned integrally to (one of) its non-shared processor types on

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 G. Raravi and V. N

´

elis

line 8–15. In this case, we only have to show that Eq. (25) holds true at the beginning
of the next iteration y+1.
Case 3.3. Task ⌧

i

is assigned to exactly one shared processor type (chosen on line 6)
and fails to be assigned to any of its non-shared processor types. In this case, we need
to show that Algorithm 1 succeeds in integrally assigning ⌧

i

to its shared processor
type on lines 16–19 and Eq. (25) holds true at the beginning of the next iteration y+1.
In the three cases proven below, we assume that Eq. (25) holds true at the beginning
of iteration y and then show that it also holds at the beginning of iteration y+1.
Proof of Case 3.1. We prove this case by contradiction, i.e., we assume that Algo-
rithm 1 tried to integrally assign the task ⌧

i

to every non-shared processor type (to
which ⌧

i

is fractionally assigned) but failed to do so and then we show that it is impos-
sible for this to happen. From the case, ⌧

i

failed to be integrally assigned to its non-
shared processor types, which means that for every processor type node ⇡

j

(i) 2 ⇡(i),
migrating all the fractional assignments of ⌧

i

to ⇡

j

(i) requires an extra capacity on
that processor type j greater than ↵⇥ t�1

t

, i.e., the following |⇡(i)| inequalities hold:

8` 2 [1, |⇡(i)|] :
P|⇡(i)|

j=1

j 6=`

�
x

j

(i)⇥ u

`

i

�
+ C`

+

(i)[y] > ↵⇥ t�1

t

re-writing, 8` 2 [1, |⇡(i)|] :
P|⇡(i)|

j=1

j 6=`

�
x

j

(i)⇥ u

`

i

�
> ↵⇥ t�1

t

� C`

+

(i)[y]

By summing these |⇡(i)| inequalities, we get
|⇡(i)|X

`=1

|⇡(i)|X

j=1

j 6=`

�
x

j

(i)⇥ u

`

i

�
>

✓
|⇡(i)|⇥ ↵⇥ t� 1

t

◆
�

|⇡(i)|X

`=1

C`

+

[y] (26)

In the left-hand side of Eq. (26), each x

j

(i) appears (|⇡(i)|�1) times and since 8`, u`

i

 ↵

(from Eq. (2)), for the left-hand side of Eq. (26), we have:
|⇡(i)|X

`=1

|⇡(i)|X

j=1

j 6=`

x

j

(i)⇥ u

`

i

 ↵⇥ (|⇡(i)|� 1)⇥
|⇡(i)|X

j=1

x

j

(i)

from (23)
= ↵⇥ (|⇡(i)|� 1) (27)

Regarding the right-hand side of Eq. (26), since we know that ⇡(i) ✓ P

in

[y], we have
|⇡(i)|X

`=1

C`

+

(i)[y]
X

⇡

j2P

in

[y]

Cj

+

[y]

from (25)
 ↵⇥ |Pout

[y]|
t

Therefore, for the RHS of Eq. (26), we have:
✓
|⇡(i)|⇥ ↵⇥ t� 1

t

◆
�

0

@
|⇡(i)|X

`=1

C`

+

(i)[y]

1

A �
✓
|⇡(i)|⇥ ↵⇥ t� 1

t

◆
�
✓
↵⇥ |Pout

[y]|
t

◆
(28)

By combining Eq. (26), (27) and (28), we obtain:

↵⇥ (|⇡(i)|� 1) >

✓
|⇡(i)|⇥ ↵⇥ t� 1

t

◆
�
✓
↵⇥ |Pout

[y]|
t

◆
(29)

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Task assignment algorithms for heterogeneous multiprocessors A:19

Then, since ⇡(i) ✓ P

in

[y], we have
��
P

in

[y]

�� � |⇡(i)| and thus |Pout

[y]| t � |⇡(i)|. Using
this, Eq. (29) is re-written as:

↵⇥ (|⇡(i)|� 1) >

✓
|⇡(i)|⇥ ↵⇥ t� 1

t

◆
�
✓
↵⇥ t� |⇡(i)|

t

◆

, |⇡(i)|�
�
|⇡(i)|⇥ t�1

t

�
>

|⇡(i)|
t

, 1

t

>

1

t

which is impossible and contradicts the assumption that ⌧

i

could not be integrally
assigned to any of its non-shared processor types and hence Algorithm 1 succeeds in
doing so. This concludes Case 3.1.
Proof of Case 3.2. Task ⌧

i

is assigned to exactly one shared processor type and is
successfully assigned integrally on lines 8–15 to (one of) its non-shared processor types
in ⇡(i). Here, we only need to show that Eq. (25) holds true at the beginning of the
next iteration y+1. The proof is somewhat similar to that of Case 3.1. Let us assume,
without loss of generality, that ⇡1

(i) is the shared processor type in ⇡(i). After assigning
⌧

i

to (one of) its non-shared processor type, we have,
| Pout

[y +1] | = | Pout

[y] | + |⇡(i)|� 1 (30)
| Pin

[y +1] | = | Pin

[y] | � |⇡(i)|+ 1 (31)
The “-1” and “+1” is the shared processor type node ⇡

1

(i) which is not removed from the
graph. Hence, ⇡1

(i) remains in P

in

[y +1] and is not added to P

out

[y +1]. As explained in
the proof of Case 3.1, since ⌧

i

is integrally assigned to (one of) its non-shared processor
type, say ⇡

`

(i), and since ⇡

`

(i) 62 P

in

[y +1] as ⇡

`

(i) is removed from graph, we have
X

⇡

j2P

in

[y +1]

Cj

+

[y +1] =

X

⇡

j2P

in

[y +1]

Cj

+

[y] (32)

and since P

in

[y +1] ⇢ P

in

[y], we can rewrite Eq. (32) as:
X

⇡

j2P

in

[y +1]

Cj

+

[y +1]
X

⇡

j2P

in

[y]

Cj

+

[y]

from (25)
 ↵⇥ |Pout

[y]|
t

from (30)
= ↵⇥

✓
|Pout

[y +1]|
t

� |⇡(i)|� 1

t

◆

< ↵⇥ |Pout

[y +1]|
t

(since |⇡(i)| � 2)

This concludes Case 3.2.
Proof of Case 3.3. Task ⌧

i

is assigned to exactly one shared processor type and fails
to be integrally assigned on lines 8–15 to any of its non-shared processor types in
⇡(i). In this case, we need to show that Algorithm 1 succeeds in integrally assigning
⌧

i

to its (sole) shared processor type on lines 16–19 and Eq. (25) holds true at the
beginning of the next iteration y+1. As in the previous case, let us assume, without
loss of generality, that ⇡

1

(i) 2 ⇡(i) is the shared processor type connected to ⌧

i

. We
prove by contradiction that the integral assignment of ⌧

i

to ⇡

1

(i) cannot fail, i.e. by
contradiction, we assume that it does fail and then show that it is impossible for this
to happen.

From the case, task ⌧

i

also failed to be assigned to all its non-shared processor types
⇡

j

(i) 2 ⇡(i) ^ j 6= 1 (on lines 8–15), which means that for every processor type node
⇡

j

(i) 2 ⇡(i), migrating all the fractional assignments of ⌧
i

to that node ⇡

j

(i) requires

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 G. Raravi and V. N

´

elis

an extra capacity on that processor type j that exceeds ↵ ⇥ t�1

t

. This scenario is same
as Case 3.1 and thus it leads to contradiction. Hence, the assumption that Algorithm 1
fails to integrally assign ⌧

i

to its only shared processor type ⇡

1

(i) is not true and there-
fore, Algorithm 1 must succeed in doing so.

Now, we assume that ⌧

i

is integrally assigned to ⇡

1

(i) and show that Eq. (25) still
holds at the beginning of the iteration y+1. Assigning ⌧

i

integrally to ⇡

1

(i) gives

C1

+

(i)[y +1] = C1

+

(i)[y] +

|⇡(i)|X

j=2

�
x

j

(i)⇥ u

1

i

�
(33)

As explained earlier, since the algorithm failed to assign ⌧

i

integrally to each of the
non-shared processor types, it holds 8⇡`

(i) 2 ⇡(i), ⇡`

(i) 6= ⇡

1

(i) that,

|⇡(i)|X

j=1

j 6=`

�
x

j

(i)⇥ u

`

i

�
>

✓
↵⇥ t� 1

t

◆
� C`

+

(i)[y] (34)

Since we know from Eq. (23) that,
P|⇡(i)|

j=1

x

j

(i) = 1, we have 8` 2 [1, |⇡(i)|]:
P|⇡(i)|

j=1

j 6=`

x

j

(i) = 1� x

`

(i) and Eq. (34) can be re-written as: 8⇡`

(i) 2 ⇡(i), ⇡`

(i) 6= ⇡

1

(i), it

holds that:

(1� x

`

(i))⇥ u

`

i

>

✓
↵⇥ t� 1

t

◆
� C`

+

(i)[y]

from (2), ↵⇥
�
1� x

`

(i)

�
>

✓
↵⇥ t� 1

t

◆
� C`

+

(i)[y]

re-writing, ↵⇥ x

`

(i) < ↵�
✓
↵⇥ t� 1

t

◆
+ C`

+

(i)[y]

re-writing, x

`

(i) <

↵

t

+ C`

+

(i)[y]

↵

(35)

By using Eq. (35) in Eq. (33), we get

C1

+

(i)[y +1] C1

+

(i)[y] +

|⇡(i)|X

j=2

↵

t

+ C`

+

(i)[y]

↵

!
⇥ u

1

i

from (2)
 C1

+

(i)[y] +

|⇡(i)|X

j=2

⇣
↵

t

+ C`

+

(i)[y]

⌘

 C1

+

(i)[y] +

✓
↵⇥ |⇡(i)|� 1

t

◆
+

|⇡(i)|X

j=2

C`

+

(i)[y] (36)

Now, let us focus on the term
P|⇡(i)|

j=2

Cj

+

(i)[y] from the right-hand side of the above
inequality. Since we know that:

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Task assignment algorithms for heterogeneous multiprocessors A:21

⇡(i) \ {⇡1

(i)} = P

in

[y] \(Pin

[y] \⇡(i)) \ ⇡1

(i), we can write:
|⇡(i)|X

j=2

Cj

+

(i)[y] =

X

⇡

j2P

in

[y]

Cj

+

[y]�

0

@
X

⇡

j2P

in

[y] \⇡(i)

Cj

+

[y]

1

A� C1

+

(i)[y]

from (25)
 ↵⇥ |Pout

[y]|
t

�

0

@
X

⇡

j2P

in

[y] \⇡(i)

Cj

+

(i)[y]

1

A� C1

+

(i)[y] (37)

By using Inequalities (36) and (37) together, we get

C1

+

(i)[y +1] C1

+

(i)[y] +

✓
↵⇥ |⇡(i)|� 1

t

◆
+

✓
↵⇥ |Pout

[y]|
t

◆
�

0

@
X

⇡

j2P

in

[y] \⇡(i)

Cj

+

[y]

1

A� C1

+

(i)[y]

✓
↵⇥ |⇡(i)|� 1

t

◆
+

✓
↵⇥ |Pout

[y]|
t

◆
�

X

⇡

j2P

in

[y] \⇡(i)

Cj

+

[y]

Here, we can re-use Eq. (30) since all the processor type nodes connected to ⌧

i

, except
⇡

1

(i), are deleted from the graph on line 21 (this case is similar to Case 3.2 in that
regard). So, the above equation can be re-written as:

C1

+

(i)[y +1]
✓
↵⇥ |⇡(i)|� 1

t

◆
+

✓
↵⇥ |Pout

[y +1]|� (|⇡(i)|� 1)

t

◆
�

X

⇡

j2P

in

[y] \⇡(i)

Cj

+

[y]

✓
↵⇥ |Pout

[y +1]|
t

◆
�

X

⇡

j2P

in

[y] \⇡(i)

Cj

+

[y] (38)

Now, let us look at the term
P

⇡

j2P

in

[y +1]

Cj

+

[y +1]:

X

⇡

j2P

in

[y +1]

Cj

+

[y +1] =

0

BB@
X

⇡j2P

in

[y +1]

⇡

j 6=⇡

1

(i)

Cj

+

[y +1]

1

CCA+ C1

+

(i)[y+1]

from (38)

0

BB@
X

⇡j2P

in

[y +1]

⇡

j 6=⇡

1

(i)

Cj

+

[y +1]

1

CCA+

✓
↵⇥ |Pout

[y +1]|
t

◆
�

X

⇡

j2P

in

[y] \⇡(i)

Cj

+

[y] (39)

From the case, we have P

in

[y +1] = P

in

[y] \⇡(i) [{⇡1

(i)}, and thus P

in

[y +1] \{⇡1

(i)} =

P

in

[y] \⇡(i). Hence,
X

⇡j2P

in

[y +1]

⇡

j 6=⇡

1

(i)

Cj

+

[y +1] =

X

⇡

j2P

in

[y] \⇡(i)

Cj

+

[y]

Using this on Eq. (39) leads to:
X

⇡

j2P

in

[y +1]

Cj

+

[y +1] ↵⇥ |Pout

[y +1]|
t

This concludes Case 3.3.
Hence the proof.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 G. Raravi and V. N

´

elis

COROLLARY 8.3. If there exists a feasible intra-migrative assignment of ⌧ on ⇡ then
LPG

IM

succeeds in finding such a feasible intra-migrative assignment of ⌧ but on a
platform ⇡

0 in which only one processor of each type is 1 + ↵⇥ t�1

t

times faster.

PROOF. This follows from Lemma 8.2. From Lemma 8.2, we have, if there exists a
feasible intra-migrative assignment of ⌧ on ⇡ then LPG

IM

succeeds in finding such a
feasible intra-migrative assignment of ⌧ but on a platform ⇡

00 in which each fractional
processor type (i.e., processor type in the graph to which a fractional task is assigned
after step 3 of LPG

IM

) has an additional capacity ↵ ⇥ t�1

t

than the corresponding pro-
cessor type in ⇡. Also, for those processor types that are not in the graph, LPG

IM

does
not require any additional capacity on those processors. However, increasing the ca-
pacity of those processors does not affect the performance guarantee (i.e., Lemma 8.2)
of LPG

IM

. Further, since there was no restriction was placed by step 4 of LPG
IM

algo-
rithm on how to distribute this additional required capacity among the processors of
each type, adding the entire ↵⇥ t�1

t

capacity to only one processor of each type satisfies
Lemma 8.2. Hence the proof.

THEOREM 8.4 (APPROXIMATION RATIO OF LPG

IM

). If there exists a feasible
intra-migrative assignment of ⌧ on ⇡ then LPG

IM

succeeds in finding such a feasible
intra-migrative assignment of ⌧ but on ⇡

(

1+↵⇥ t�1

t) in which every processor is 1+↵⇥ t�1

t

times faster than the corresponding processor in ⇡.

PROOF. This trivially follows from Corollary 8.3.

9. THE NON-MIGRATIVE ALGORITHM LPG
NM

We now present a non-migrative algorithm, LPG
NM

, an enhanced version of LPG

IM

,
for assigning tasks to individual processors on a t-type platform. We also evaluate its
performance against (a more powerful) intra-migrative adversary. The non-migrative
algorithm, LPG

NM

, works as follows.
Step 1. Assign tasks in ⌧ to processor types in ⇡

0 using LPG

IM

algorithm; in ⇡

0, only
one processor of each type is 1 + ↵⇥ t�1

t

times faster compared to ⇡. Recall that LPG
IM

assigns tasks to processor types and not to processors.
Step 2. Assign the tasks, that are assigned to type-k processors, to individual proces-

sors of type-k (8k 2 {1, 2, . . . , t}), using next-fit but allowing splitting of tasks between
consecutive processors. Such an assignment ensures that [Levin et al. 2010]: at most
m

k

�1 tasks are split between processors of type-k with at most one task split between
each pair of consecutive processors.

Step 3. Copy this assignment onto a faster platform ⇡

(1+↵) in which every processor
is 1 + ↵ times faster than ⇡.

Step 4. On platform ⇡

(1+↵), 8k 2 {1, 2, . . . , t}, assign a task split between consecutive
processors, say p and p+ 1, of type-k, to processor p, where p

1

 p < p

mk .
With this description of LPG

NM

algorithm, we now derive its approximation ratio.

THEOREM 9.1 (APPROXIMATION RATIO OF LPG

NM

.). If there exists a feasible
intra-migrative task assignment of ⌧ on ⇡ then LPG

NM

succeeds in finding a feasible
non-migrative task assignment of ⌧ on ⇡

(1+↵).

PROOF. We know from Corollary 8.3 that, if ⌧ is intra-migrative feasible on ⇡ then
LPG

IM

algorithm outputs a feasible intra-migrative assignment of ⌧ on ⇡

0, in which
only one processor of each type is 1+↵⇥ t�1

t

times faster and the remaining processors
are of the same speed as the corresponding processors in ⇡. Let p

mk denote the proces-
sor of type-k (8k 2 {1, 2, . . . , t}) whose speed is 1 + ↵⇥ t�1

t

times faster. So, in platform

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Task assignment algorithms for heterogeneous multiprocessors A:23

⇡

0, before assigning any tasks, it holds by definition that, 8k 2 {1, 2, . . . , t} of ⇡0:
8p 2 type-k ^ p 6= p

mk : FC[p] = 1 and (40)

p 2 type-k ^ p = p

mk : FC[p] = 1 + ↵⇥ t� 1

t

(41)

where FC[p] denotes the current available/free capacity on processor p. Since ⌧ is intra-
migrative feasible on ⇡, after Step 1 of LPG

NM

, it holds (Corollary 8.3) that, 8k 2
{1, 2, . . . , t} of ⇡0:

X

⌧i2⌧

k

u

k

i

 m

k

+

✓
↵⇥ t� 1

t

◆
(42)

where ⌧

k denotes the set of tasks assigned to type-k processors (i.e., to processor types
and not to individual processors). We also know from Eq. (2) and (3) that:

8k 2 {1, 2, . . . , t} : ⌧

i

2 ⌧

k

: u

k

i

 ↵ (43)
In Step 2, LPG

NM

assigns tasks to individual processors using “wrap-around” tech-
nique, which allows splitting of tasks between processors of same type. Combining
such an assignment with Eq. (40)–(42), it holds that,
8k 2 {1, 2, . . . , t} of ⇡0:

8p 2 type-k ^ p 6= p

mk : UC[p] =
X

⌧i2⌧ [p]

u

k

i

 1 (44)

p 2 type-k ^ p = p

mk : UC[p] =
X

⌧i2⌧ [p]

u

k

i

 1 +

✓
↵⇥ t� 1

t

◆
(45)

8p 2 type-k : FC[p] � 0 and (46)
at most m

k

� 1 tasks are fractionally assigned between type-k
processors with each task split between consecutive processors (47)

where ⌧ [p] and UC[p] denote the set of tasks assigned on processor p and the capacity
currently used on processor p, respectively.

On step 3, LPG
NM

copies this assignment onto the faster platform ⇡

(1+↵). In platform
⇡

(1+↵), before assigning any tasks, it holds by definition that, 8k 2 {1, 2, . . . , t} of ⇡(1+↵):
8p 2 type-k : FC[p] = 1 + ↵ (48)

From Eq. (44)–(48) and since the assignment is “copied” on ⇡

(1+↵), we have, 8k 2
{1, 2, . . . , t} of ⇡(1+↵):

8p 2 type-k ^ p 6= p

mk : UC[p] =
X

⌧i2⌧ [p]

u

k

i

 1 (49)

p 2 type-k ^ p = p

mk : UC[p] =
X

⌧i2⌧ [p]

u

k

i

 1 +

✓
↵⇥ t� 1

t

◆
(50)

8p 2 type-k ^ p 6= p

mk : FC[p] � ↵ (51)
p 2 type-k ^ p = p

mk : FC[p] � ↵/t (52)
at most m

k

� 1 tasks are fractionally assigned between type-k
processors with each task split between consecutive processors (53)

From Eq. (51), (53) and (43), it can be seen that, each of the at most m
k

� 1 fractional
tasks can be integrally assigned to each of the m

k

� 1 processors of type-k (i.e., 8p 2

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 G. Raravi and V. N

´

elis

type-k ^p 6= p

mk) in platform ⇡

(1+↵) in their respective free capacities. Combining this
with Eq. (50) yields: 8k 2 {1, 2, . . . , t} of ⇡(1+↵):

8p 2 type-k : UC[p] =
X

⌧i2⌧ [p]

u

k

i

 1 + ↵ (54)

Observe that uk

i

is the utilization of a task ⌧

i

on a processor of type-k on platform ⇡. Let
u

k

0

i

denote the utilization of task ⌧

i

on a processor of type-k on platform ⇡

(1+↵). Then
it holds (by definition of these platforms) that: 8⌧

i

2 ⌧ :

u

k0
i

u

k
i

=

1

1+↵

. Applying this on
Eq. (54) yields: 8k 2 {1, 2, . . . , t} of ⇡(1+↵):

8p 2 type-k : UC[p] =
X

⌧i2⌧ [p]

u

k

0

i

 1 (55)

Since Eq. (55) is a necessary and sufficient feasibility condition for task assignment on
a uniprocessor [Liu and Layland 1973], the non-migrative assignment of ⌧ on ⇡

(1+↵)

returned by LPG

NM

is feasible.

10. CONCLUSIONS
The heterogeneous multiprocessor model is more generic than identical or uniform
multiprocessor model, in terms of the systems that it can accommodate. Hence, it is
interesting to study heterogeneous multiprocessors since a solution designed for such
systems can also be applied to identical and uniform multiprocessors. Further, het-
erogeneous multiprocessors comprising a constant number of distinct types of proces-
sors, are increasingly becoming relevant [Apple Inc. 2013; AMD Inc. 2013; Intel Corp.
2013a; 2013b; 2013c; Nvidia Inc. 2013; Qualcomm Inc 2013; Samsung Inc. 2013; Texas
Instruments 2013; Alben 2013]. Generally, this called for designing algorithms for such
multiprocessors with provably good performance.

In this work, we considered the problem of finding a feasible assignment of implicit-
deadline sporadic tasks on t-type heterogeneous multiprocessors. For this problem, we
proposed two algorithms, LPG

IM

and LPG

NM

, and showed that they provide the fol-
lowing guarantee. For a given t-type platform and a task set, if there exists a feasible
intra-migrative task assignment then (i) LPG

IM

succeeds in finding such a feasible
intra-migrative assignment but given a platform in which only one processor of each
type is 1 + ↵ ⇥ t�1

t

times faster and (ii) LPG

NM

succeeds in finding a feasible non-
migrative task assignment but given a platform in which every processor is 1+↵ times
faster, where ↵ is a property of the task set; it is the maximum of all the task utiliza-
tions that are no greater than one. To the best of our knowledge, for t-type platforms,
(i) for the problem of intra-migrative task assignment, no previous algorithm with a
proven approximation ratio exists and hence, our algorithm, LPG

IM

, is the first of its
kind and (ii) for the problem of non-migrative task assignment, our algorithm, LPG

NM

,
outperforms the state-of-the-art.

REFERENCES
Jonah Alben. 2013. NVIDIA Brings Kepler, World’s Most Advanced Graphics Architecture, to Mobile De-

vices. http://blogs.nvidia.com/blog/2013/07/24/kepler-to-mobile/. (2013).
AMD Inc. 2013. AMD Accelerated Processing Units. http://www.amd.com/fusion. (2013).
James Anderson and Anand Srinivasan. 2000. Early-release fair scheduling. In Proceedings of the 12th

Euromicro conference on Real-time systems.
Apple Inc. 2013. Apple A5X: Dual-core CPU and Quad-core GPU. http://www.apple.com/ipad/specs/. (2013).
Sanjoy Baruah. 2004a. Partitioning Real-Time Tasks Among Heterogeneous Multiprocessors. In 33rd Inter-

national Conference on Parallel Processing.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Task assignment algorithms for heterogeneous multiprocessors A:25

Sanjoy Baruah. 2004b. Task partitioning upon heterogeneous multiprocessor platforms. In Proceedings of
the 10th IEEE International Real-Time and Embedded Technology and Applications Symposium. 536–
543.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2001. Introduction to Algo-
rithms, 2nd Ed. McGraw-Hill.

José Correa, Martin Skutella, and José Verschae. 2012. The Power of Preemption on Unrelated Machines
and Applications to Scheduling Orders. Math. Oper. Res. 37, 2 (May 2012), 379–398.

Michael Dertouzos. 1974. Control Robotics: The Procedural Control of Physical Processes. In Proceedings of
IFIP Congress (IFIP’74).

Michael Garey and David Johnson. 1979. Computers and Intractability: A guide to the theory of NP-
Completeness. W. H. Freeman & Co.

W. Horn. 1974. Some simple scheduling algorithms. Naval Research Logistics Quarterly 21, 1 (1974), 177–
185.

Ellis Horowitz and Sartaj Sahni. 1976. Exact and Approximate Algorithms for Scheduling Nonidentical
Processors. Journal of the ACM 23 (April 1976), 317–327. Issue 2.

IBM. 2013. CPLEX Optimizer. http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/.
(2013).

Intel Corp. 2013a. Bay Trail: Multicore SoC Family for Mobile Devices. http://www.intel.com/newsroom/kits/
idf/2013 fall/pdfs/bay trail fact sheet.pdf. (2013).

Intel Corp. 2013b. Intel Atom Processor. http://www.intel.com/atom. (2013).
Intel Corp. 2013c. The 4th Generation Core i7 Processors. http://ark.intel.com/products/family/75023. (2013).
Klaus Jansen and Lorant Porkolab. 1999. Improved approximation schemes for scheduling unrelated paral-

lel machines. In Proceedings of the 31st annual ACM symposium on Theory of computing. 408–417.
David Johnson. 1973. Near-optimal Bin Packing Algorithm. Ph.D. Dissertation. Department of Mathematics,

MIT, USA.
Narendra Karmakar. 1984. A new polynomial-time algorithm for linear programming. Combinatorica 4, 4

(1984), 373–395.
Jan Lenstra, David Shmoys, and Eva Tardos. 1990. Approximation algorithms for scheduling unrelated

parallel machines. Math. Program. 46 (1990), 259–271. Issue 3.
Greg Levin, Shelby Funk, Caitlin Sadowskin, Ian Pye, and Scott Brandt. 2010. DP-FAIR: A simple model

for understanding optimal multiprocessor scheduling. In Proceedings of the 22nd Euromicro Conference
on Real-Time Systems. 3–13.

Chang L. Liu and James W. Layland. 1973. Scheduling Algorithms for Multiprogramming in a Hard Real-
Time Environment. Journal of the ACM 20 (1973), 46–61.

David Luenberger and Yinyu Ye. 2008. Linear and Nonlinear Programming (3rd ed.). International Series
in Operations Research Management Science.

Geoffrey Nelissen, Vandy Berten, Vincent Nélis, Joël Goossens, and Milojevic Milojevic. 2012. U-EDF: An
Unfair But Optimal Multiprocessor Scheduling Algorithm for Sporadic Tasks. In 24th Euromicro Con-
ference on Real-Time Systems. 13–23.

Nvidia Inc. 2013. Tegra 4: Mobility at the speed of life. http://www.nvidia.com/object/tegra.html. (2013).
Cynthia A. Phillips, Cliff Stein, Eric Torng, and Joel Wein. 1997. Optimal time-critical scheduling via re-

source augmentation. In Proceedings of the 29th ACM Symposium on Theory of Computing. 140–149.
Qualcomm Inc. 2013. Snapdragon Processors: All-in-one Mobile Processor.

http://www.qualcomm.com/snapdragon. (2013).
Gurulingesh Raravi, Björn Andersson, and Konstantinos Bletsas. 2013. Assigning real-time tasks on het-

erogeneous multiprocessors with two unrelated types of processors. Real-Time Systems 49, 1 (2013),
29–72.

Gurulingesh Raravi, Björn Andersson, Konstantinos Bletsas, and Vincent Nélis. 2012. Task Assignment
Algorithms for Two-Type Heterogeneous Multiprocessors. In 24th Euromicro Conference on Real-Time
Systems. 34–43.

Gurulingesh Raravi and Vincent Nélis. 2012. A PTAS for assigning sporadic tasks on two-type heteroge-
neous multiprocessors. In Proceedings of the 33rd IEEE Real-Time Systems Symposium. 117–126.

Samsung Inc. 2013. Exynos 5 OCTA Processor. www.samsung.com/exynos/. (2013).
Texas Instruments. 2013. OMAP Applications Processors. http://www.ti.com/omap. (2013).
Douglas B. West. 2000. Introduction to Graph Theory (2nd ed.). Prentice Hall.
Andreas Wiese, Vincenzo Bonifaci, and Sanjoy Baruah. 2013. Partitioned EDF scheduling on a few types of

unrelated multiprocessors. Real-Time Systems 49, 2 (2013), 219–238.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

