-
IPP HURRAY!

www.hurray.isep.ipp.pt /

Technical Report

The Utilization Bound of Static-Priority
Preemptive Partitioned Multiprocessor
Scheduling is 50%

Bjorn Andersson

TR-060812
Version: 1.0
Date: August 2006

The Ultilization Bound of Static-Priority Preemptive Partitioned Multiprocessor
Scheduling is 50%

Bjorn ANDERSSON

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. Anténio Bernardino de Almeida, 431
4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509
E-mail: bandersson@dei.isep.ipp.pt
http://www.hurray.isep.ipp.pt

Abstract

This paper studies static-priority preemptive scheduling on a multiprocessor using partitioned scheduling. We propose a
new scheduling algorithm and prove that if the proposed algorithm is used and if less than 50% of the capacity is
requested then all deadlines are met. It is known that for every static-priority multiprocessor scheduling algorithm, there
is a task set that misses a deadline although the requested capacity is arbitrary close to 50%.

The Utilization Bound of Static-Priority Preemptive
Partitioned Multiprocessor Scheduling is 50%

Bjorn AnderssonMember, IEEE

Abstract—This paper studies static-priority preemptive Partitioned static-priority scheduling is well-studied [1], [3]-
scheduling on a multiprocessor using partitioned scheduling. [12] but they all have a utilization bound of at most 41% [1],
We propose a new scheduling algorithm and prove that if the [13], leaving room for improvements.

proposed algorithm is used and if less than 50% of the capacity is In thi itioni lqorith led R

requested then all deadlines are met. It is known that for every n this paper, we propose a partitioning algorithm, called R-

static-priority multiprocessor scheduling algorithm, there is a BOUND-MP-NFR, and prove that it has a utilization bound

task set that misses a deadline although the requested capacityof 50%. We hence close the problem for partitioning.

is arbitrary close to 50%. We assume that (i) tasks do not use any other resource than
Index Terms—real-time scheduling, partitioning, bin-packing @ processor and (ii) a task can always be preempted and there

algorithms, static-priority scheduling, preemptive scheduling, is no overhead associated with a preemption.

multiprocessors. The remainder of this paper is organized as follows. Sec-

tion Il gives a background on partitioned scheduling and

. INTRODUCTION in particular it shows the necessary ingredient to achieve a

ONSIDER the problem of scheduling a set ofspo- gtilization bour_ld greater thgn 41%. Sect_ion [l stgdies p_ar_ti-
radically arriving tasks using preemptive static-priorit)}'OHEd sched_ullng when periods are restncte(_j._ This restriction
scheduling onn processors. A task; can arrive many times. 'S fémoved in Section IV. Section V quantifies how many
These arrival times cannot be controlled by the schedulifigP"e t@sk sets that can be guaranteed by the new utilization
algorithm and the scheduling algorithm learns about the ex&Qund. Finally, Section VI closes with a discussion, presents
arrival time at the arrival time — no earlier. The arrivafonclusions and future work.
times from the same task are separated b¥; time units
or more. Every time task; arrives, it needs to execute for [l. PARTITIONED SCHEDULING

C; time units no later tharf; time units after its arrival; The partitioned method divides tasks into partitions, each
otherwise it misses a deadlin€; is called the execution having its own dedicated processor. Unfortunately, the problem
time of ; and for historical reasong); is called the period of deciding whether a schedulable partition exist is NP-
of 7;. The utilization boundUB,4 of a scheduling algorithm complete [12]. Therefore many heuristics for partitioning have
A is a number such that if- - Y7 | % < UB,4 then all peen proposed, a majority of which are versions of the bin-
tasks meet their deadlines when scheduled by algorithm packing algorithrh. These bin-packing algorithms rely on a
The design space of preemptive static-priority multiprocességhedulability test in order to know whether a task can be
scheduling algorithms can be categorized as partitioned assigned to a processor or not. This reduces our problem from
global scheduling. Global scheduling algorithms store taskartitioning a set of tasks to meet deadlines into the problem
that have arrived but not finished its execution in one quege partitioning a set of tasks such that, on every processor, the
which is shared among all processors. At every moment tehedulability test can guarantee that all tasks on that processor

m highest priority tasks among the tasks that have arrivegeet their deadlines. As a schedulability test, a natural choice
but not finished its execution are selected for execution @ito use the knowledge that;E’,‘:vl u; < np.(Ql/np —1) and

3

the m processors using preemption and migration if necegate-monotonic is used to schedule tasks on procgssoen
sary. Partitioned scheduling algorithms partition the set @fl deadlines are met [14]. (Let;=C;/T; and n, denote the
tasks such that all tasks in a partition are assigned to th@mber of tasks assigned to procesg9rThis schedulability
same processor. Tasks are not allowed to migrate, hence i is often used, but as shown in Example 1 below, this bound
multiprocessor scheduling problem is transformed to mamy not tight enough to allow us to design a multiprocessor
uniprocessor scheduling problems. Common for all statischeduling algorithm with a utilization bound of 50%.
priority multiprocessor scheduling algorithms is that they Example 1:Considerm + 1 tasks withT; = 1 and C; =
cannot have a utilization bound greater than 50% [1], [2]/2 — 1 + ¢ to be scheduled om processors. For this system,

This article is based on a conference paper presented at the 15th Euromﬁpr%re must be a proc_:?ssp“’vh'cg is assigned two tasks. On
Conference on Real-Time Systems. that processor the utilization |5;%, Ci/T; = 2-(vV2—1+¢)

Manuscript received March 29, 2006.

The author’s affiliation for this work was Department of Computer En- 1The bin-packing algorithm works as follows: (1) sort the tasks according
gineering, Chalmers University of Technology, SE-412 9&teBorg, Swe- to some criterion; (2) select the first task and an arbitrary processor; (3)
den. ba@ce.chalmers.séde is now with the IPP-Hurray! Research Group.attempt to assign the selected task to the selected processor by applying a

Polytechnic Institute of Porto, Rua Dr. Antonio Bernardino de Almeida 43kchedulability test for the processor; (4) if the schedulability test fails, select
4200-072 Porto, Portugahandersson@dei.isep.ipp.pt the next available processor; if it succeeds, select the next task; (5) goto step 3.

which is greater thar - (v2 — 1). Hence, there is no way Algorithm 1 R-BOUND-NP-NFRNS, a task-to-processor as-
to partition tasks so that all tasks can be guaranteed by thignment algorithm.
schedulability test to meet deadlines. We can do this reasoningpput: A task setr.
for everym and every. By lettinge — 0 andm — co we can ~ Output: An assignment of a task to a processor.
see that UB for algorithms that are based on this schedulability Sort tasks such thalfy < T < ... < Thn.
test cannot be greater thapi2 — 1, which is approximately 3 J' — i
41%. L 4: while (i < n) loop
Note that the task set in Example 1 could actually be: If no task has been assigned to processor j then
guaranteed by a necessary and sufficient schedulability test@ assign task~ to processor j.
meet deadlines (provided thatis not too large). It is known 7 P=i+l

. . i . else

that if a.II tasks are harmorfichen the uniprocessor utilization . Let 7,1 denote the first task that

bound is 100%, and then the task set in Example 1 couldp. was assigned to processfr

be assigned with two tasks on one processor. A uniprocessor Let «; denoteT; /Tp;1. .

schedulability test that could exploit this information could2: Let n; denote the number of tasks assigned to procegsor

Let UPROCESSOR; denote the sum of the

allow a multiprocessor scheduling algorithm to achieve =4 el . .
14: utilization of all tasks assigned to procesgor

utilization bound of 50%. This is what we will do.

. — (. I/(nj+1) ,

R-BOUND [10] is a uniprocessor schedulability test whicrﬁ; i?%%[}]zjg%ﬁ%é%t%;/%jg UBO?H{[)DJ; ?r{:ri -1
exploits harmonicity. Let, denote the fraction between the;7. assign taskr; to processor |.
maximum and the minimum period among the tasks assigngsi =i+l
to processomp. If we restrict our attention to the case wheri®: else
Vp:1<r, <2 (we will relax this restriction later), we have 2% if j=m then .

- X 21: Let ny/ denote the number of tasks assigned to

the following theorem (from [10]). 20 processor 1.

Theorem 1:Let B(r,,n,) = np(rll,/"" -1 +2/r, —1. 23 Let UPROCESSOR; denote the sum of the
If Yrr, Ci/T; < B(rp,n,) and rate-monotonic is used to24: utilization of all tasks assigned to procesdor
schedule tasks on procesgothen all deadlines are met. 25 Let UBOUND1/ = (na/ + 1) - (2V/(""+D) 1)

R-BOUND-MP is a previously known multiprocessoésj i gé;?gfgsﬁotfl'r:cg;g;f UBOUND:/ then
scheduling algorithm that exploits R-BOUND [10]. R-og. = ig+ 1 P '
BOUND-MP combined R-BOUND with a first-fit bin-packing 29: else
algorithm. However, its utilization bound is not known ando: declare failure.
it is difficult to analyze. For this reason, in order to show: end if
which utilization bound a partitioned scheduling algorithm cagé' els_e_: i1
achieve, we will design two derivatives of R-BOUND-MP.g,. enjd' ifJ

First, we will consider an algorithm R-BOUND-MP-NFRNS3s: end if

(R-BOUND-MP with next-fit-ring noscaling) and prove its36: end if

utilization bound whenl < Z3mer?i o 9 (r denotes 37 end loop
minr, er L4 . . 38: declare success.

the set of alln tasks.) Then we will consider the algorithm

R-BOUND-MP-NFR (R-BOUND-MP with next-fit-ring) and

prove its utilization bound when periods are not restricted.

then the algorithm declares SUCCESS. Example 2 illustrates
the workings of our algorithm R-BOUND-MP-NFRNS.
I1l. RESTRICTED PERIODS Example 2:Consider 4 tasks with {(Im = 1,01 =
In this section, we assume that < =2nuerli o o 0.1),(Tr = 1.1,05 = 0.935), (T3 = 1.2,C3 = 0.084), (T}
e]3,Ca = 0.26) to be scheduled o2 processors using R-

holds. Clearly it means that no matter how we assign tas he algorith h ks i
to processors, it holds thatp : 1 < r, < 2 and hence BOUND-MP-NFRNS. The algorithm sorts the tasks in as-

Theorem 1 can be used. We will use the algorithm R-BOUN[FENdINg order of periods. In this example, sorting does not
MP-NFRNS, illustrated in Algorithm 1. It works as fo”ows.change the indices. We can compute the utilizations of tasks:
(i) sort tasks in ascending order of periods, that is, the ta¥k_— 0.1uz = 0.85u3 = 0.07 andus = 0.2. o

with the shortest period is considered first, (ii) use Theorem 1 'N€ current processor is processo(The variable j, initial-

as a schedulability test on each uniprocessor, (iii) assilfi#d On line 3 in Algorithm 1 keeps track of this.) Tasks are
tasks with the next-fit bin-packing algorithm and (iv) whefioW assigned in order; is assigned to processor 1. Then

a task cannot be assigned to processortry to assign it on 'S attempted to be assigned to processor 1, but it fails because
processor 1, if this does not work then declare FAILURE. '€ T2/T1 = 1.1, andn, +1 = 2 gives a utilization bound

the algorithm terminates and has partitioned the whole task 2¢tL5 for these two tasks, and the sum of utilization of these
two tasks is 0.95. Hence; is assigned to processor 2.

2In a harmonic task set, the perio@ and T; of any two tasksr; and Now, processor 2 is the current processgiis attempted to
7; are related as follows: eithéf; is an integer multiple off;, or 7 is an pya assigned to processor 2, and it succeeds bedayds =
integer multiple ofT;. ! . N

3This is easy to see by dropping the ceiling in the equations/inequalities]m2/1'1 = 1.09, andny +1 = 2 gives a utilization bound
exact schedulability tests [15], [16]. 0.922 for these two tasks, and the sum of utilization of these

two tasks is0.92. And so on, until processan, where it holds that:
Processor 2 is still the current processot, is at-

tempted to be assigned to processor 2, but it fails because w1+ S u T+ Upniteq >
max(Ty, T3, Ty)/ min(Ty, T3, Ty) = 1.3/1.1 = 1.18 and pmd (; prk) - tfited

ns+1 = 3 gives a utilization boun@.86 for these three tasks, e)

and the sum of utilization of these three taskd.i&2. Since (nm + (e —1)+ — -1 3)

(8%
processor 2 is the last processor andfailed, we make an "

attempt to assigm; to the first processor, that is, processor 1. Our algorithm R-BOUND-MP-NFRS attempts to assign

This succeeds becausg + 1 = 2 gives a utilization bound T/ailed 10 processor 1. It fails so the schedulability test

0.828 for these two tasks, and the sum of utilization of theg@Ust have failed. Here we do not know anything about the

two tasks is0.3. Hencer, is assigned to processor 1. [relationships between the periods (other than ~f5= < 2).
Now that we have stated the algorithm R-BOUND-MPEence we have:

NFRNS and seen its operation in an example, we are ready

to prove its performance. Theorem 2 does that.

ny ny/
Theorem 2 (Utilization bound of R-BOUND-MP-NFRNS): uptr + (O tpe) + (Y Uptk) + Ugaited >
If R-BOUND-MP-NFRNS is used and} < Ty, < ...< T, k=2 k=ni+1
and7, /T <2 and 1 Y% u; <1/2, then R-BOUND-MP- (a7 +1) - (2ﬁ 1) @

NFRNS will find a partitioning (declare SUCCESS).
Proof: We will derive a lower bound on the utilization of Since we want to derive a utilization bound we have the

task sets that declared failure. We will do so by first phrasirigllowing problem:

necessary conditions on a task set that declared failure. We will

then formulate a minimization problem which offers a lower

bound on the utilization of a task set that declared failure. And

o 1 %
minimize Ug = e (up11 + (];2 Upik) +
then, we will state a sequence of other minimization problems 2

nz
where the objective function to each of them is a lower bound Up21 + (Z Upok) +
on the objective function to a previous minimization problem k=2
in the sequence. et

Let us consider any arbitrary task set that caused R- - nat
BOUND-MP-NFRS to declare failure. If it was not the last Upmm1 + (Z Upmi) + (Z Upik) + Ufailed)
task (the one with the longest period) that failed, then we can b2 kemy 1
always remove the task that had a higher index than the failed . .)
task, and then the utilization would be lower. Hence, we canSUPIECt 1o Inequalities 1-4 and subject to
assume that it was the task with the greatest index that failed. 0 <up; <1,Vi,5 (5)
Let Tfaitea denote that task. pa =
We will now consider the situation when R-BOUND-MP-

NFRS failed and use the following notation. Lef;; be ay -0y am = Tfaitea/Tp11 < 2 (6)
the task that is thekt" task assigned to processgr Let
ay denoteTy; /Tp11. Let ag denoteTysy /Tpo1. ... Let oy 1< a;,Vi @)

denoteTyiiea/Tpm1- Let n; denote the number of tasks that

are assigned to processgrn; requires further explanation Note that the constraints Inequality 6 and Inequality 7

because we assign tasks to processor 1 in two states: fieliow immediately fromT; < T, < ... < T, andT,/T; <

when no processor has been assigned a task, and later whewnhich we assumed in the theorem.

all processors have been assigned a task. Weletlenote ~ We make a relaxation on Inequalities 1-4 by replacing

the number of tasks assigned to procedsahen R-BOUND- by >, relax Inequality 5 td) < up;; and relax Inequality 6 by

MP-NFRS declared failuren; denotes the number of tasksreplacing< by <.

assigned to processbwhent,»; was assigned to processtr ~ One can see thafn; + 1)(a/ ™™ — 1) monotonically
Taskp2; could not be assigned to processor 1 because iiécreases with increasimg. We can computéim,,, ., (n; +

schedulability test in Theorem 1 failed. Hence, on processor §(q/("+Y) _ 1) = In ;. Hence we have:

it holds that:

ny L 5 (n; + 1) (/™" —1) > Inay ®)
upt1 + (O pik) + upzr > (1 + 1)(a T — 1) + — — 1
b2 a1 In the same way, we have:
@ 1/(ni+1)
In the same way, on processor 2, it holds that: (nit +1)(2 —1)zIn2 ©)
na e 9 Using Inequality 8 and Inequality 9, we can relax Inequali-
Up21 + (Z Up2k) + ups1 > (2 + 1)(ag?™ — 1) + o 1 ties 1-4. All these relaxations change the constraints such that

k=2 a point which satisfied all constraints will also satisfy the new

(2 constraints. We now have the problem:

subject to:

1 e
minimize Us = — - (up11 + (Z Upik) + Up11 + up21 > Inon +2/0n — 1 (19)
m
k=2
12 Up21 + Up31 > Inag + 2/0[2 -1 (20)
Up21 + (Z up2k:) +
k=2
-
Nom nyl upml + ufailed Z ln Qm + 2/am -1 (21)
Upm1 + (Z Upmk) + (Z Upik) + Ufailed) s
k=2 k=ni+1
Upi1 + (Z uplk:) + ufailedz In2 (22)
k=n;+1
subject to:
ny 0 S upij,Vi,j (23)
Upi1 + (Z uplk) + Up21 Z 1110(1 + 2/&1 -1 (10)
k=2 Q10 Oy = 2 (24)
no
upor + (O Upak) + upsy > Inap +2/ap =1 (11) 1< a;,Vi (25)
k= We can add_;", ., up1k) to the Ihs of Equality 21; every
" feasible point will remain feasible in this way. Then, we can
— always move to a new point (with variables having “new”
m m aile Z 1 m 2 m 1 12 P : . . e .
tpm1 + (];2 Upmk) + Usaited = In am +2/a (12) in its superscript) which satisfies all constraints and does not
B increase the objective function in the following way:
ny nil nil
upr + (O tptk) + (Y Upk) + Ugaitea 22 (13) W = Wpaitea ¥ > Upth (26)
k=2 k=ny+1 k=ny+1
0% tpij, Vi j (14) wiE = 0,Vk > g + 1 27)
o1 Qg ... Oy <2 (15) Note thatu,;; andus,.cq iS permitted to be greater than
Now the term(}>_:Y', . up1x) has disappeared from Equal-
1< a;,Vi (16) ity 22. Note that in Inequalities 19-22, each variabjg, and

Note that we are not interested in finding every glob&ifaitea SNOW Up in exactly two constraints. Summing the left-
minimizer. We simply want to find a global minimizer. Hencef'@nd side of Inequalities 19-22 and dividing by two gives us

at a minimizer, we could always move to a new point (witf lower bound on the objective function. We can also relax

primed variables) which satisfies all constraints and does rig¢ Problem by dropp.ing Equality 23 and Equality 25. Hence
increase the objective function in the following way: we have the problem:

e N o 1
Upit! = Upi1 + Z“mk (17) minimize Us = o (In24+na; +2/a; —1
k=2 m
+lnas+2/as—14+...+Inay, + 2/ay, — 1)
Upik! = 0,Vk > 2 (18)
Note thatu,;; is permitted to be greater than subject to:
If a1 -as ... a, < 2 then we can increase any;
so thata; - as - ... - a,, = 2. This clearly does not affect Q1 Qg .. Q=2 (28)

the objective function. Neither does it violate any constraints

becaus Q(lnai;-;/ai—l) can be computed tg%-(ai—2) and rAdin(rancesfst:;\]ry I_conrd|rt]|oin nfc])cr natilor?ail r;1|r;|m|zer ;‘Srthit rtnheI
this is non-positive because; < 2. o; < 2 follows from gradient of the Lagrangian function is zero (see for example

Q1-Gs-... oo = 2 and1 < a;. Hence we have the probIem:Theorem 14.1 in [17]). LeP_\ den(_)te 'Fhe Lagrange multiplier
fora; - as ... a, = 2. Using this gives us that a necessary

1 condition for a local minimizer is:
minimize Ug = o (up11 + up21 + ... + Upm1 +

nyl

1
(Z Upik) + Ufailed) m
k=ni1+1

(1o —2/a2)) =X ag-az-ag-... -y =0

- (

—
|

1
2-(l/a2—2/a§))—)\-al-ag-a4-...-am:0

S|~

Algorithm 2 Scale Task Set. Algorithm 2 does not change the utilization of tasks. In

Input: A task setr. Output: Another task set. addition we know that (from [10]):
L g = max(Ty, Ty, ... ,Tn) Theorem 3:Given a task setr, let 7/ be the task set
gf for eaTd,li ?T 9lo82(4/T1) resulting from the application of the algorithm Scale Task
4 C’Zﬂ; éi_zlogz(q/Ti) Set tor. If 7/ is schedulable on one processor using rate-
5: end for monotonic scheduling, thenis schedulable on one processor
6: sort tasks inr/ in increasing period with rate-monotonic scheduling.
7: returnT/ Now let R-BOUND-MP-NFR (R-BOUND-MP with next-
fit-ring) be an algorithm which works as follows. First, each
11 task int is transformed according to Algorithm 2 intg and
—(z-(1/az—2/a3)) = A-ai-ag-qg ... 0y =0 then the tasks in/ are assigned according to R-BOUND-MP-
m 2 NFRNS. We can see that every taskrirhas a corresponding
task in7/, sor; is assigned to the processor wheteis. We
1 1) are now ready to state our utilization bound of R-BOUND-
P (5 “(Vam —2/as,)) —A-ar-az-a3-a4-...=0 MP-NFR when tasks are not restricted.

Theorem 4:1f R-BOUND-MP-NFR is used and_" , u;
Since a global minimizer is a local minimizer, the cond|t|0n§ m/2, then R-BOUND-MP-NFR will find a partitToning

are also necessary for a global minimizer. (declare SUCCESS).
_Rewriting each of them and using; - et Qg =2 Proof: The proof is by contradiction. Suppose that the
yields: theorem was false. Then there would exist a taskrsefth
Z?:l u; < m/2 which failed. The first thing that R-BOUND-
1 C(1—2/ay) = 4\ MP-NFR does is to scale the task set, so a scaled tasks set
m will also declare failure when scheduled by R-BOUND-MP-
NFRNS. Sinceu; of a task does not change when it is scaled,
1. (1 —2/ay) = 4X we have thatr/ (which failed) has)_"_; u; < m/2. But this
m is impossible according to Theorem 2. [|
V. QUANTIFYING THE NUMBER OF TASK SETS THAT CAN
1 (1—2/am) = 4\ BE GUARANTEED
m Previous sections, showed that the new algorithm increases
This implies that: the utilization bound of partitioning, from 41% to 50%. We
o= = —a will now see how many extra task sets that can be guaranteed
! 2T m to meet deadlines thanks to the increase in utilization bound.
We now have the following problem: We do so using an approach from previous work on analysis of
1 uniprocessor scheduling [21]. Let be defined as; = C;/T;
minimize U, = . (In2+m-(lna; +2/0q — 1)) and letu=< uy,us,. - ., u, >T. Then, the measure of the region
of all task sets that is guaranteed by a utilization bound UB
is defined as:
subject toaj* = 2.
Rewriting yields: "
Lo(UB-m)={u€R":u; >0, u; <UB-m} (29)
In2 1 2 =t
minimize Uy = - —+ o - (In (24/™) 4+ S — V) From [21] we obtain:
We compute Us <0 and lim,, 0 Us = 1/2. Hence we A"
have thatU, > 1/2 Ln(4)] = n! (30)
This states the theorem.] Combining Equality 30 and Equality 29 vyields, (UB -
m) = M Analogous to [21], let the gain of the new
IV. NOT RESTRICTED PERIODS test be defmed agi, = —=2(05m _ This gives us:

Ln((vV2-1)-m)

In this section, we will see that if task periods are not n
restri_cted as they Were_in the previous_ seption then it is pn = < 0.5 > ~ 1.207106783" (31)
possible to scale the periods and execution times of all tasks V2 -1
such that the restriction holds. This is meaningful because weWe can see that the gain approaches infinity approaches
will use a theorem which claims that if the scaled task satfinity. This is in contrast with work on uniprocessor schedu-
meets all deadlines then the task set which is not scaled addulity analysis [21], which offered a finite gaif2. Hence,
meets its deadlines. we conclude that the new bound offers a significant increase

Consider two task sets and /. 7 is not restricted.r/ in the number of task sets that can be guaranteed as compared
is computed fromr according to Algorithm 2. Note that to the previously known best bound.

VI. DISCUSSIONS ANDFUTURE WORK [7] A. Burchard, J. Liebeherr, Y. Oh, and S.H. Son. New strategies for

. - . . . assigning real-time tasks to multiprocessor systetBEE Transactions
We have proven a tight utilization bound for static-priority cgompg)uters44(12):1429—1442 pDecember {995_

preemptive partitioned static-priority scheduling. Our bound ¢d] v. Oh and S. H. Son. Allocating fixed-priority periodic tasks on
50% for partitioned static-priority scheduling is no worse than Multiprocessor systemsReal-Time System®(3):207-239, November
he best bound of partiioned scheduling using EDF o

t e est bound o paitltione_ scheauling using -on .eaﬁli' Y. Oh and S. H. Son. Fixed-priority scheduling of periodic tasks
uniprocessor [18]. This implies that although dynamic priori- on multiprocessor systems. Technical Report 95-16, Department of

ties are beneficial in scheduling algorithms with migration (see_Computer Science, University of Virginia, March 1995. .
f | | ithm PE [197). th ffer no benefit in n n10] S. Lauzac, R. Melhem, and D. Mdass An efficient RMS admission
or example algorithm [])1 €y ofrer no bene ON- “control and its application to multiprocessor scheduling. Pioc. of

migrative scheduling if utilization bound is the performance the IEEE Int'l Parallel Processing Symposiupages 511-518, Orlando,
metric of choice. We left open two important questions ii11 Florida, March 1998.

.. S L 1] S. Sez, J. Vila, and A. Crespo. Using exact feasibility tests for allocating
partitioned scheduling: (i) Can R-BOUND-MP (the origina real-time tasks in multiprocessor systems.1th Euromicro Workshop

algorithm, not our R-BOUND-MP-NFR) achieve a utilization on Real Time Systemgsages 53-60, Berlin, Germany, June 17-19, 1998.

bound of 50%? and (ii) Can other bin-packing schemes, whiggl J- Y.-T. Leung and J. Whitehead. On the complexity of fixed-

. .. . N priority scheduling of periodic, real-time taskBerformance Evaluatign
do not exploit harmonicity, achieve a utilization bound of 54).537 550, December 1982.

50%7? [13] J. M. Lopez, J. L. Daz, and D. F. Gaia. Minimum and maximum

We assumed the restriction that a task has a deadline whichtilization bounds for multiprocessor RM scheduling. Pnoc. of the
EuroMicro Conference on Real-Time Systemages 67-75, Delft, The

is equal to its period. It would be interesting to create an petheriands. June 13—15 2001
algorithm for task set where this restriction does not hol¢i4] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-

Unfortunately for such a case. the notion of utilization bound Ming in a hard-real-time environmentJournal of the Association for

o ' Computing Machinery20(1):46—61, January 1973.
does not apply, we have to resort to another performanﬁgi M. Joseph and P. Pandya. Finding response times in a real-time system.
metric. One such metric is tlmpetitive factarWe say that a Computer Journal29(5):390-395, October 1986.

partitioning algorithm A has a Competitive factd, if it can [16] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling
algorithm: Exact characterization and average behavior. Pioc. of

schedule every task set that any other scheduling algorithm .o \EEE Real-Time Systems Symposipages 166-171, Santa Monica,
A’ can schedule if the processors provided to algoritAm California, December 5-7, 1989.

is X 4 times faster than the processors provided to the otHéf! S G. Nash and A. Sofetinear and Nonlinear optimizationMcGraw-
lgorithm. We can see that an algorithm with a Utilization g iy weo., o 070460655
algorithm. gor wi utilizati [18] J.M. Lopez, M. Garta, J.L. Daz, and D.F. Gaia. Worst-case utilization

boundUB4 has a competitive factoK 4 = 1/UB4. Using bound for EDF scheduling on real-time multiprocessor systemBrdno.

this relationship gives our new algorithm a competitive factor ©f the 12th EuroMicro Conference on Real-Time Systerages 25-33,
Stockholm, Sweden, June 19-21, 2000.

of 2. Recently, the scheduling of tasks with static-priority;g) s Baruan, N. Cohen, G. Plaxton, and D. Varvel. Proportionate progress:
preemptive scheduling using deadline monotonic [12] without A notion of fairness in resource allocatioAlgorithmica 15(6):600-625,

the restriction on the deadline was considered [20, page June 199. _ . _ _
0] S. Baruah and N. Fisher. The partitioned multiprocessor scheduling

328]. Un_fortunately’ evgp allowing pseudo-polynomial t'_m " of sporadic task systems. IRroceedings of the Real-Time Systems

complexity, the competitive factor of the proposed algorithm Symposium,pages 321-329, Miami, Florida, December 5-8, 2005.

was 3. [21] E. Bini, G. C. Buttazzo, and G. M. Buttazzo. A hyperbolic bound for
the rate monotonic algorithm. IRroc. of the EuroMicro Conference
on Real-Time Systemgages 59-66, Delft, The Netherlands, June 13-15

ACKNOWLEDGMENT 2001.

The author is grateful to the reviewers for suggested im-
provements of the paper. This work was supported by the
Swedish Foundation for Strategic Research via the national
Swedish Real-Time Systems research initiative ARTES and by
the Portuguese Science Foundation, Fyadgeara GBncia e
Tecnologia (FCT).

REFERENCES

Bjorn Andersson received his M.Sc. degree at
Chalmers University of Technology in Sweden in
1999 and received the SNART best master of science
thesis award that year. He extended (together with
others) static-priority scheduling from uniprocessors
to multiprocessors and earned his Ph.D. degree at
Chalmers University of Technology. He is now a
research fellow in the IPP-Hurray! research group
at Institute Polytechnic Porto.

[1] D. Oh and T. P. Baker. Utilization bounds fesr-processor rate mono-
tone scheduling with static processor assignmeReal-Time Systems
15(2):183-192, September 1998.

[2] B. Andersson, S. Baruah, and J. Jonsson. Static-priority scheduling «
multiprocessors. IrProc. of the IEEE Real-Time Systems Symposiurr
pages 193-202, London, UK, December 5-7, 2001.

[3] S. K. Dhall. Scheduling Periodic-Time-Critical Jobs on Single Processot
and Multiprocessor Computing System$PhD thesis, Department of
Computer Science, University of lllinois at Urbana-Champain, 1977.

[4] S. K. Dhall and C. L. Liu. On a real-time scheduling proble@perations
Research26(1):127-140, January/February 1978.

[5] S. Davari and S.K. Dhall. On a real-time task allocation problem. In
19th Annual Hawaii International Conference on System Sciempegges
8-10, Honolulu, Hawaii, 1985.

[6] S. Davari and S.K. Dhall. An on-line algorithm for real-time task
allocation. InProc. of the IEEE Real-Time Systems Symposuatame 7,
pages 194-200, New Orleans, LA, December 1986.

	hurray-tr-060812-cover.pdf
	

