A Holistic Approach to WCRT Analysis for Multicore Systems

Jatin Arora, Syed Aftab Rashid, Cláudio Maia, Geoffrey Nelissen, Eduardo Tovar {jatin;syara;crrm;emt}@isep.ipp.pt, g.r.r.j.p.nelissen@tue.nl

1. Motivation

Shared resource contention in multicore system may lead to nondeterministic variations in WCET (Worst-Case Execution Time)/ **WCRT** (Worst-Case Response Time).

- Most existing works analyze each shared resource independently.
- Independent analysis of inter-core contention due to each shared resource, e.g., last-level cache (LLC), memory bus, main memory, etc., may lead to pessimistic results.
- Holistic analysis considering interdependence between shared resources may lead to tighter bounds on inter-core shared resource contention.

2. Contributions

• Holistic approach towards shared resource contention-aware WCRT analysis for multicore systems.

- Cache Persistence, i.e., cache reuse, aware cache analysis to bound LLC misses of tasks.
- Cache-aware bus contention analysis leading to tighter bounds on memory bus contention.
- Use of more predictable execution model, i.e., 3-phase model[1].

• Cache analysis can tightly bound number of LLC misses.

3.1 Bounding LLC Misses

• The maximum number of memory requests made by the A**phases** of τ_i during any time window Δ is given by:

4. Bus Contention Analysis

- State-of-the-art bus contention analysis for 3-phase tasks [2,3] does not account for cache persistence, leading to overestimation in the number of bus requests of tasks.
- Overestimation in the number of bus requests leads to pessimistic bounds on the bus contention.

5. Memory Contention

- Existing memory contention analysis [4] does not account for cache reuse.
- This leads to overestimation in the number of memory requests and eventually the memory contention suffered by the tasks.
- Memory contention analysis that considers the interdependence between caches, bus and main memory may lead to tighter WCRT bounds.

6. Ongoing Works

The following are the ongoing/future works:

- Cache-aware bus contention analysis for the 3-phase task model.
- Cache and bus-aware memory contention analysis.
- Memory contention analysis for 3-phase tasks considering different configurations.

References

[1] G. Durrieu et al., "Predictable Flight Management System Implementation on a Multicore Processor", ERTS'14, 2014.

[2] C. Maia et al., "Schedulability analysis for global fixed-priority scheduling of the 3-phase task model", 2017 IEEE RTCSA, 2017.

[3] J. Arora et al., "Schedulability analysis for 3-phase tasks with partitioned fixed-priority scheduling" Journal of Systems Architecture, 2022

[4] D. Casini et al., "A Holistic Memory Contention Analysis for Parallel Real-Time Tasks under Partitioned Scheduling" IEEE RTAS, 2020

Co-financed by: UIDP/04234/2020

