

Cláudio Maia, Patrick Meumeu Yomsi, Luís Nogueira, and Luis Miguel Pinho

EUC 2015

10/13/2015
Semi-Partitioned Scheduling of Fork-Join Tasks

using Work-Stealing

• Evolution from uni to multi/manycores

• Scheduling in multiprocessors
– When and where

• Scheduling Approaches
– Global, partitioned, semi-partitioned

10/13/2015
Semi-Partitioned Scheduling of Fork-Join Tasks

using Work-Stealing

...

Set of tasks

• What about parallel tasks?

• Parallel frameworks used to exploit parallelism
– Implicit parallelism

– Explicit parallelism

– Many use work-stealing

• Work-stealing
– Reduces task contention

– Load balances the workloads

– Preserves data locality

– Not ready for real-time systems

10/13/2015
Semi-Partitioned Scheduling of Fork-Join Tasks

using Work-Stealing

• Scheduling Fork/Join tasks using semi-
partitioned scheduling

• Work-stealing may reduce average response-
time

– Execute other tasks or save energy consumption

• Controlled stealing allows the policy to be
used in RT systems

10/13/2015
Semi-Partitioned Scheduling of Fork-Join Tasks

using Work-Stealing

• Fork/join tasks

• Constrained-deadline model

• Homogeneous processors

• Fully preemptive EDF scheduler on each core

• Assumptions

– Task density is not greater than 1

– Decomposition approaches can be used for conversion

• Task structure must be preserved

10/13/2015
Semi-Partitioned Scheduling of Fork-Join Tasks

using Work-Stealing

• Phase 1 - Task assignment

– Select migrating and non-migrating tasks

• Task density

• Demand of each core after task assignment

– Sequential tasks are evaluated first

• Increasing the probability of having parallel tasks as

migrating tasks

– First-Fit Decreasing (FFD) to partition tasks into

cores

10/13/2015
Semi-Partitioned Scheduling of Fork-Join Tasks

using Work-Stealing

• Output

– Set of non-migrating tasks

– Set of candidate migrating tasks

10/13/2015
Semi-Partitioned Scheduling of Fork-Join Tasks

using Work-Stealing

0.4

Set of Tasks
Set of Processors

0.7

0.3 0.5

X
Does not fit

• Determine the execution pattern of each migrating
task

• Each migrating task is treated as a multiframe task
• i.e. 11= ((3, 0,0,0),5,6), 12= ((0, 3,3,3),5,6),

• For each core we check the largest number of jobs
that can be executed without violating schedulability
– Starts at ki = H/Ti jobs and it decrements a unit at a

time

– For each ki jobs we check the valid execution patterns
for that core

– Stops when an execution pattern is found with ki jobs or
no pattern exists

10/13/2015
Semi-Partitioned Scheduling of Fork-Join Tasks

using Work-Stealing

• Apply work-stealing among cores that share a copy of
the task
– Reduce the average response-time of the tasks in the

system

– Controlled number of migrations due to the task to core
mapping

• Rules for stealing work:
– A core must be idle in order to steal

– Workload is stolen from the deque of another core

– Highest priority sub-task must be chosen (#MT > 1)

– Admission control is performed before stealing

10/13/2015
Semi-Partitioned Scheduling of Fork-Join Tasks

using Work-Stealing

10/13/2015
Semi-Partitioned Scheduling of Fork-Join Tasks

using Work-Stealing

• λ1= 0.6

• λ2= 0.6

• λ3= 0.66

• λ4= 0.125

• Offline phases

– Based on demand bound function (DBF)

– Both types of tasks are considered

• Non-migrating: standard DBF

• Migrating: modified DBF that considers the execution

patterns

• Online Phase

– Admission control

• Slack and stealing windows

10/13/2015
Semi-Partitioned Scheduling of Fork-Join Tasks

using Work-Stealing

• Random task generation
– Tasks can be sequential or parallel

– Number of segments k is chosen from (1,3,5,7)

– Number of sub-tasks varies in the interval [k,10]

– Each sub-task has a max_Ci_subtsk = 2

– Period is generated in the interval:
• [Ci, nsubtsk * max_Ci_subtsk * 2]

– 1000 task sets are generated for 2 and 4 cores

• We measure the gain obtained for each task set in
terms of average worst-case response time
– Using a WS approach versus a non-WS approach

10/13/2015
Semi-Partitioned Scheduling of Fork-Join Tasks

using Work-Stealing

10/13/2015
Semi-Partitioned Scheduling of Fork-Join Tasks

using Work-Stealing

• Improvement in terms of average worst-case

response time per task

10/13/2015
Semi-Partitioned Scheduling of Fork-Join Tasks

using Work-Stealing

Two Cores Four Cores

• Cores that share a task have a local copy of the task
– Platform dependent due to memory constraints

– Local copies prevent having to fetch code + data

• Stealing may cause interference on the shared bus

• Stealing costs are supported by the idle core

• The number of data transfers can be bounded
– Worst-case depends on the number of sub-tasks and the

number of cores that share a task

• Online admission test
– Time instant and available slack

10/13/2015
Semi-Partitioned Scheduling of Fork-Join Tasks

using Work-Stealing

• Framework for scheduling parallel tasks on

multicore platforms

• Combining semi-partitioning and work-stealing

– Decrease the average worst-case RT of tasks

– Bound the number of migrations

• Future work

– Scalability of the approach

– Different allocations heuristics

– Better mechanism for pattern detection

10/13/2015

Semi-Partitioned Scheduling of Fork-Join Tasks

using Work-Stealing

10/13/2015
Response-Time Analysis of Synchronous Parallel

Tasks in Multiprocessor Systems

