
This project and the research leading to these results

has received funding from the European

Community’s Seventh Framework Programme [FP7 /

2007-2013] under grant agreement 611085

www.proxima-project.eu

Experimental evaluation of optimal schedulers

based on partitioned proportionate fairness

Davide Compagnin

University of Padua - Italy

CISTER Periodic Seminar Series
Porto, May 24th, 2016

Outline

 Motivation of our work

 Brief recall of RUN and QPS algorithms

 Implementation and evaluation

 Conclusions and future work

2 CISTER, Porto, 24 May 2016 D Compagnin et al.

Introduction

RUN
Reduction to UNiprocessor

(RTSS-11)

QPS
Quasi-Partitioning Scheduling

(ECRTS-14)

On periodic task-sets

Optimal multiprocessor scheduling

Not based on proportionate-fairness

Designed to reduce # of preemptions and migrations

Also on sporadic task-sets

3 CISTER, Porto, 24 May 2016 D Compagnin et al.

Motivation

RUN QPS

Implemented1

on top of LITMUS^RT

Confirming

moderate run-time overhead
in between that of P-EDF and G-EDF

1 Compagnin, D.; Mezzetti, E.; Vardanega, T., "Putting RUN into Practice: Implementation and Evaluation,“ (ECRTS-14)

4 CISTER, Porto, 24 May 2016 D Compagnin et al.

Recall of the algorithms /1

RUN QPS
Off-line phase

On-line phase
The multiprocessor schedule is “derived” from

the corresponding uniprocessor schedule

Multiprocessor

scheduling

problem

decomposition

Uniprocessor

scheduling

problems

5 CISTER, Porto, 24 May 2016 D Compagnin et al.

Recall of the algorithms /1

RUN QPS
Reduction tree

Off-line phase
Processor hierarchy

Unitary processor capacity

can be exceeded

External servers

reserve capacity for exceeding

parts on a different processor

6 CISTER, Porto, 24 May 2016 D Compagnin et al.

Recall of the algorithms /2

RUN QPS
Reduction tree

Off-line phase
Processor hierarchy

Unitary processor capacity

can be exceeded

External servers

reserve capacity for exceeding

parts on a different processor

7 CISTER, Porto, 24 May 2016 D Compagnin et al.

Recall of the algorithms /3

RUN QPS
Reduction tree

Off-line phase
Processor hierarchy

Unitary processor capacity

can be exceeded

External servers

reserve capacity for exceeding

parts on a different processor

8 CISTER, Porto, 24 May 2016 D Compagnin et al.

Recall of the algorithms /4

RUN QPS
Reduction tree

Off-line phase
Processor hierarchy

Unitary processor capacity

can be exceeded

External servers

reserve capacity for exceeding

parts on a different processor

9 CISTER, Porto, 24 May 2016 D Compagnin et al.

Recall of the algorithms /5

On-line phase
RUN QPS

10 CISTER, Porto, 24 May 2016 D Compagnin et al.

Recall of the algorithms /5

On-line phase
RUN QPS

11 CISTER, Porto, 24 May 2016 D Compagnin et al.

Implementation /1

Data Structures
RUN QPS

12 CISTER, Porto, 24 May 2016 D Compagnin et al.

Implementation /2

RUN QPS

Global scheduling

• Virtual scheduling

• Compact tree representation

• CPUs are assigned to level-0
servers

• Timers trigger budget
consumption events

• Node selection is performed

• Release queue and lock

Local scheduling

• With EDF

Local scheduling +
Processor synchronization

• Uniform representation of tasks
and servers

• Budgets consistently updated

• Timer triggers budget
consumption events

• Per-hierarchy release queue and
lock

Notable differences

13 CISTER, Porto, 24 May 2016 D Compagnin et al.

Implementation /3

Global scheduling

• Virtual scheduling

• Compact tree representation

• CPUs are assigned to level-0
servers

• Timers trigger budget
consumption events

• Node selection is performed

• Release queue and lock

Local scheduling

• With EDF P3 notifies P1 of the S1’s execution

Local scheduling +
Processor synchronization

RUN QPS
Notable differences

14 CISTER, Porto, 24 May 2016 D Compagnin et al.

Implementation /4

RUN QPS
Main issues

15 CISTER, Porto, 24 May 2016 D Compagnin et al.

Overlapping events

Global events may occur

simultaneously

Unnecessary tree updates

Short scheduling intervals

The scheduling primitives might take more time than the

budget available for a server

Unnecessary processor

synchronizations

Evaluation

 Empirical evaluation instead of simulation

 Focus on scheduling interference

 Cost of scheduling primitives

 Incurred preemptions and migrations

 Evaluation limited to periodic task

 External servers are always “active”

 Sporadic activations would normally have lower utilization

 Thus reducing the number of preemptions/migrations

16 CISTER, Porto, 24 May 2016 D Compagnin et al.

Experimental setup

 LITMUSRT on a 16-cores AMD Opteron 6370P

 Exhaustive measurements over the two algorithms

 Thousand of automatically generated task sets

 Harmonic and non-harmonic, with global utilization in 50%-100%

 Stressing both the off-line and the on-line phases

 Two-step experimental process

 Preliminary empirical determination of system overheads

collect
measurements
on overheads

determine
per-job

upper bound

perform
actual

evaluation

17 CISTER, Porto, 24 May 2016 D Compagnin et al.

Primitive overheads and empirical bound

 Expectation was confirmed

 QPS has lighter-weight scheduling primitives

 And does not need Tree Update Operations (TUP)

 Empirical upper bound on the scheduling overhead

 Based on theoretical bounds on the scheduling structures

(RUN tree and QPS hierarchy)

maximum observed overheads

18 CISTER, Porto, 24 May 2016 D Compagnin et al.

Per-job scheduling interference

 Determined by preemptions and

migrations

 In relation to reduction-tree and

processor hierarchy depth

19 CISTER, Porto, 24 May 2016 D Compagnin et al.

Scheduling primitives

max schedulemax release

 Maximum observed cost of core scheduling primitives

 Release and Schedule

 Variation under increasing system utilization

20 CISTER, Porto, 24 May 2016 D Compagnin et al.

Overall per-job overhead

medium tasks (utilization [0.1;0.5])heavy tasks (utilization [0.5;0.9])

 QPS is more susceptible to packing

than RUN

 Lighter-weight tasks ease the

partitioning problem

 And lead to less complex scheduling

structures

21 CISTER, Porto, 24 May 2016 D Compagnin et al.

Conclusions and future work

 QPS benefits from partitioned scheduling

 Hence improves over RUN for cost of scheduling primitives

 … but is more susceptible to the off-line phase

 QPS’s need for processor synchronization hits performance badly

with higher processor hierarchies

 RUN exhibits an almost constant overhead

 Induced by its global scheduling nature

 Which in turn may penalize it at lower system utilization

 Future work

 Mainly interested in evaluating how this class of algorithms may

behave when the number of processing units increases

 Considering also how different implementation may affect the

algorithm scalability

22 CISTER, Porto, 24 May 2016 D Compagnin et al.

This project and the research leading to these results

has received funding from the European

Community’s Seventh Framework Programme [FP7 /

2007-2013] under grant agreement 611085

www.proxima-project.eu

Experimental evaluation of optimal schedulers

based on partitioned proportionate fairness

Davide Compagnin

University of Padua - Italy

CISTER Periodic Seminar Series
Porto, May 24th, 2016

