A Multicore Processor Platform for energy and throughput aware application

<u>Ishfaq Hussain</u>, Yasir Qadri, Ayaz Ahmed, Nadia N. Qadri (CISTER Periodic Seminar Series) 03-May-2018

Research Center in Real-Time & Embedded Computing Systems

Sequence Of Presentation

- Introduction
- Need For Energy Optimization
- Problem Statement
- Proposed Solution
- Simulation Setup
- Results
- Conclusion
- Research Contribution
- Question & Answer

Introduction

□ The project "A Multicore Reconfigurable Processor Platform for Energy and Throughput Aware Applications".

CISTER Research Centre, Porto, PORTUGAL

03/05/2018

Project Team Overview

- Members were divided into two groups
 - Hardware Development
 - Algorithms Development.
- Each group worked on their team specific issues.

Ishfaq Hussain

Need For Energy Efficient

Energy Efficient system design is important due to following reasons

Portable Devices

 Examples: Mobile Phones, PDA, Laptop

High-end Desktop/Server Computing

Green Computing

Technique to reduce Energy consumption

- Logic level
 - Clock Gating
 - Power Gating
- Micro-architectural level
 - Cache memories
 - Pipelining
 - Buses
- System level
 - Dynamic Voltage-Frequency Scaling (DVFS)
 - Adding Parallelism
 - Reconfiguration

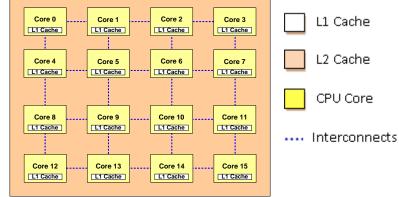
Reconfigurable Architecture

Contemporary Processor Architectures

- Designed for overall average performance
- Do not leverage much flexibility for reconfiguration
- ✓ Limited application of Energy aware throughput management

Reconfigurable Processors

- ✓ A recent contender for energy/performance
- Need to go beyond traditional DFS and Core switching approach



The System Architecture

- A multicore architecture with an Artificial Intelligence algorithm based reconfiguration engine
- Input Parameters
 - Energy Consumption
 - Throughput
 - Miss Rate

Ishfaq Hussain

- Reconfigurable Parameters
 - Number of Cores
 - Operating Frequency/Voltage
 - ✓ L1/L2 Cache Size
 - L1/L2 Cache Associativity

Parameter	Value		
Processor Type	Intel x86		
Number of Cores	16		
Operating Frequencies	[16, 20, 25, 33] MHz		
Operating Voltages	[2, 2.2, 2.4, 2.7]V		
Energy Consumption per cycle	[13.1,15.4,18.7,22.9]nJ		

Optimization Algorithm

- Fuzzy Logic Type 1
 - Mamdani
 - Sugeno
- Fuzzy Logic Type 2
- Ant Colony Optimization
- Genetic Algorithm
- Estimation of Distribution Algorithm

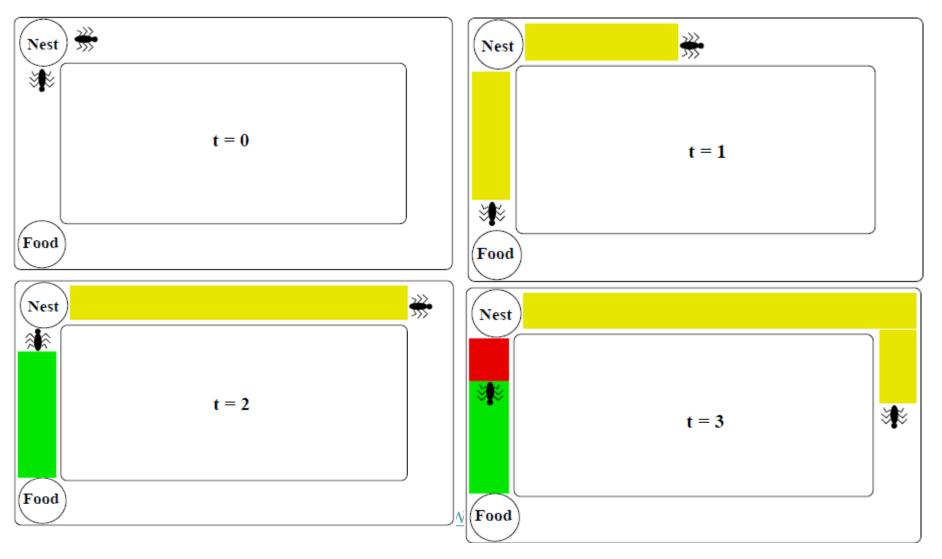
Comparison with state of the art

Parameter/ Architecture	Intel IA-7	NVIDIA	RENT Cache1	RHC 2	RAMPSoC3	ACODSEE
DFS	Y	N	Ν	Ν	Y	Y
Core Switching	Y	Ν	Ν	Ν	Y	Y
Cache Associativity	Ν	N	Y	Y	Ν	Y
Cache Resizing	Ν	Y	Y	Y	Ν	Y
Energy Efficiency Scheme	Proprietary	None	None	None	None	ACO

RENT: Reconfigurable Energy Efficient Near Threshold Cache Architectures RHC: Dynamically Reconfigurable Hybrid Cache RAMPSoC: Runtime adaptive multi-processor system-on-chip ACODSEE: Ant colony optimization based design space exploration engine

CISTER Research Centre, Porto, PORTUGAL

Reconfiguration Engine



CISTER Research Centre, Porto, PORTUGAL

03/05/2018

What is ACO ?

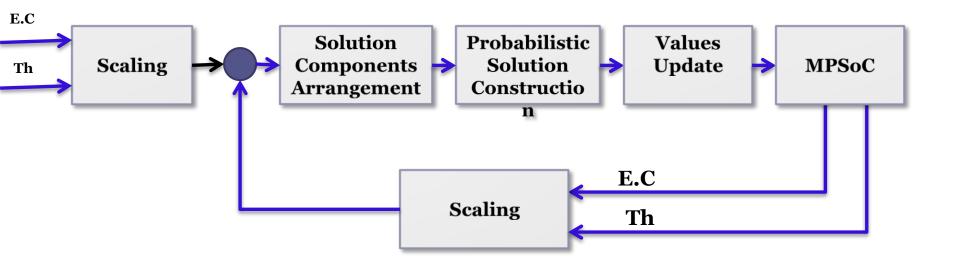
Continue..Probabilistic Selection

$$p_{c}(u/q) = \begin{cases} \frac{\left[\tau_{qu}(t)\right]^{\alpha} \left[\eta_{qu}\right]^{\beta}}{\sum_{\substack{k \in allowed \\ k}} \left[\tau_{qu}(t)\right]^{\alpha} \left[\eta_{qu}\right]^{\beta}} & \text{if } j \in allowed \\ k \in allowed \\ 0 & \text{otherwise} \end{cases}$$

GlobaphBernmanuppalate

$$\Delta \tau_{qu}^{\text{glockall}} = \begin{cases} & \underline{\mathscr{Q}} \\ & \underline{\mathscr{Q}} \end{aligned} \\ & \underline{\mathscr{Q}} \\ & \underline{\mathscr{Q}} \end{aligned}$$

• Pheromone Update


$$\tau_{qu}(k+1) = (1-\rho)\tau_{qu} + \Delta\tau_{qu}^{Local} + \Delta\tau_{qu}^{Global}$$

Exploration Engine

input Space

Ishfaq Hussain

Solution space

E.C \rightarrow Energy Consumption Th \rightarrow Throughput

CISTER Research Centre, Porto, PORTUGAL

03/05/2018

Experimental Platform

CISTER Research Centre, Porto, PORTUGAL

03/05/2018

Simulation setup

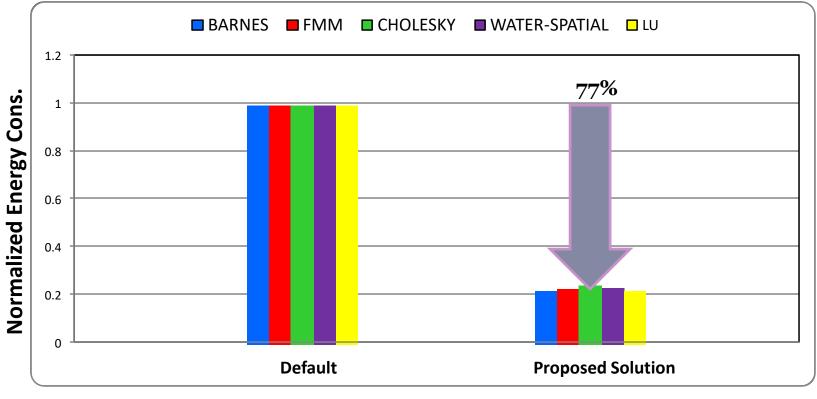
Basic modules of the simulation scheme are

- **Exploration Tools**
 - ✓ MATLAB
 - ✓ M3 Explorer
- Simulation Setup
 - ✓ MARSSx86
 - SESC Simulator
 - ✓ Ubuntu 12.04
 - ✓ SPLASH-2
 - ✓ CACTI

Ishfaq Hussain

Mathematical Model [7]

Results and Analysis


CISTER Research Centre, Porto, PORTUGAL

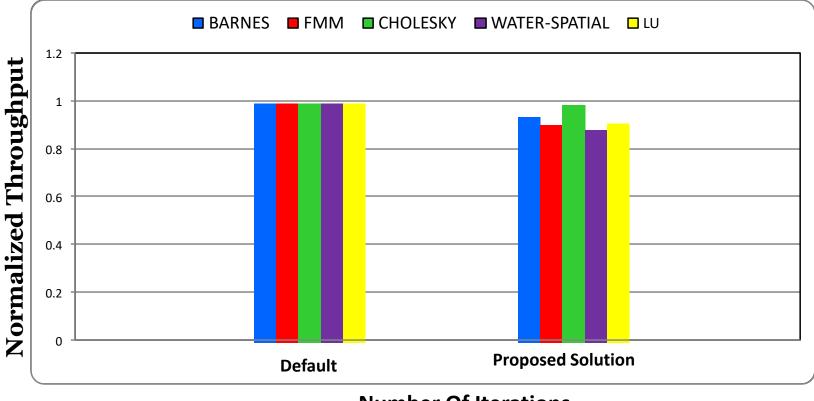
03/05/2018

Iterations	Cores	Operating Frequency(MHz)	Lı Cache Size (Kbytes)	Normalized Energy Consumption	Normalized Throughput
Default	16	33	256	1.00	1.00
1	4	25	128	0.31	0.7172
3	9	25	8	0.51	0.64727
5	11	25	16	0.55	0.72618
7	3	33	64	0.23	0.93173
Ishfaq Hussain	C	CISTER Research Centre	e, Porto, PORTU	GAL	03/05/2018

CISTER Research Centre in teal-Time & Embedde Computing Systems

Impact of ACO based DSE engine on normalized energy consumption

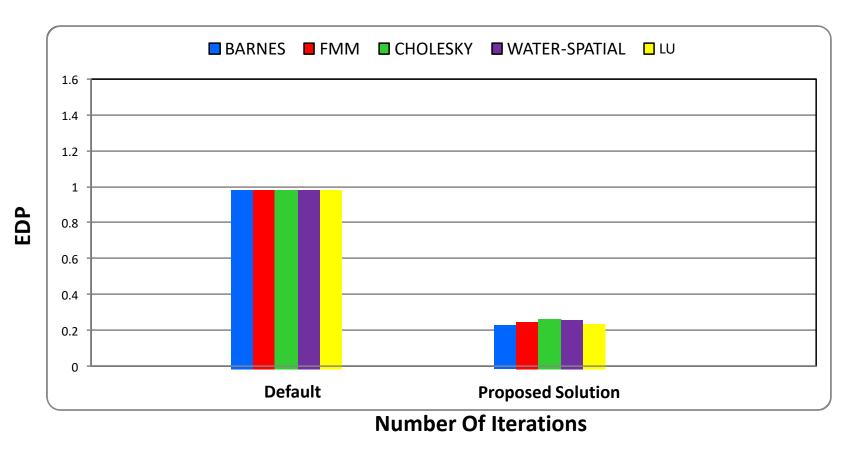
Number Of Iterations


Ishfaq Hussain

CISTER Research Centre, Porto, PORTUGAL

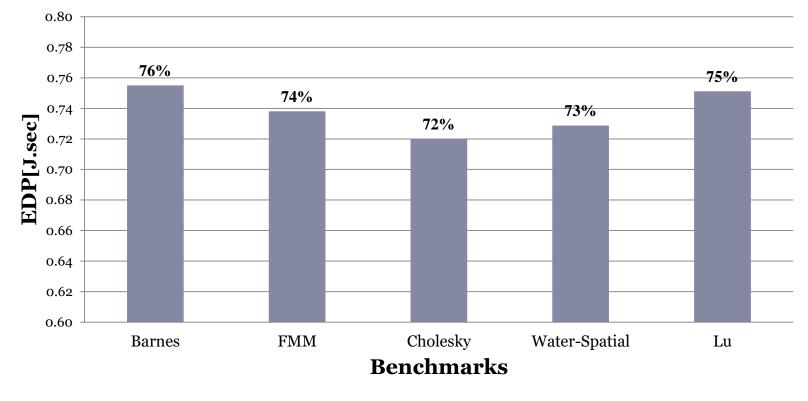
03/05/2018

Impact of ACO based DSE engine on normalized throughput



Number Of Iterations

Impact of ACO based DSE engine on EDP


Ishfaq Hussain

CISTER Research Centre, Porto, PORTUGAL

03/05/2018

Average reduction in energy delay product (EDP) of all Benchmarks

Reduction in EDP

Ishfaq Hussain

CISTER Research Centre, Porto, PORTUGAL

03/05/2018

Conclusion

- The design space explored by ACO is validated using various SPLASH-2 benchmarks, and simulation results reveal that an average, 77% energy consumption is reduced at the cost of only 7% reduction in throughput
- Therefore it can be concluded that the proposed ACODSEE successfully propose energy and throughput efficient solution for a Multicore architecture

CISTER Research Centre, Porto, PORTUGAL

Research Contribution

- Hussain, Ishfaq, et al. "Ant Colony Optimization for multicore re-configurable architecture." *AI Communications* 29.5 (2016): 595-606.
 - Hussain, Ishfaq, et al. "NSGA-II-Based Design Space Exploration for Energy and Throughput Aware Multicore Architectures." *Cybernetics and Systems* 48.6-7 (2017): 536-550.

CISTER Research Centre, Porto, PORTUGAL

Thank you

CISTER Research Centre, Porto, PORTUGAL

8/17/2017

Questions?

CISTER Research Centre, Porto, PORTUGAL

8/17/2017