
José Fonseca, Geoffrey Nelissen

and Vincent Nélis

10/4/2017

Parallel task models

Exploit powerful multicore architectures
 Through task parallelism

Target modern applications
 Real-time and high-performance requirements

1. Fork-join 2. Synchronous parallel

3. DAG 4. Conditional DAG

Most analysis overlook such rich internal structures

System Model

 Set of DAG tasks

 Sporadic arrivals

 Constrained deadlines

 Task-level fixed priorities

 Global scheduling

 Platform composed of m identifical cores

Overall Problem

Schedulability analysis for DAG tasks on a multiprocessor

system under G-FP scheduling

State-of-the-art Analysis

Performance in terms of schedulable task sets

Utilization, m = 8 Cores, U = 70%

[Melani’15] A. Melanie, M. Bertogna, V. Bonifaci, A. Marchetti-Spaccamela and G. C. Buttazzo,

“Response Time Analysis of Conditional DAG Tasksin Multiprocessor Systems”, ECRTS’15

Not scaling!

~30% schedulability ratio

~70% U

Understanding
State-of-the-art

Analysis
[Melani’15]

[Melani’15] - RTA

ki

kikk I
m

LR ,

1

Response time computation of a DAG task

k

Interfering workload

Work-conserving property

Interference is spread

over all m cores Length of the

interfered path

Two types of interference

 Self interference

 Inter-task interference

[Melani’15] - Self Interference

It is the delay exerted on the RT of interfered path by the own DAG

 Who interferes?

 Every node that does not belong to

the selected critical path

Who is interfered?

 Any critical path

2

1

1

3

2

1

1

2

1v

2v

3v

4v 7v

6v

5v

8v

2

1

1

3

2

1

1

2

1v

2v

3v

4v 7v

6v

5v

8v

kL
m

kkkk LWI ,

m

[Melani’15]: Inter-Task Interference

Accounts for the maximum interfering workload generated by the

jobs of the HP tasks

mWi /

iR

ir

m

iT iT

kr kr

mWi /

problem window

mWi /

mWi /
 Inter-task interference

depends on the length of the

interval

 Based on the concept of

problem window

carry-in body jobs carry-out

HP Task i

Lost all information

about the DAG’s

internal structure!

iW

m CI Body CO Body

What Can
We Do?

Problem Definition

Proposed worst-case scenario

 Explores the internal structure of each DAG to derive more accurate

carry-in and carry-out contributions

iR

ir

m

iT
iT

kr kr

CI

i
CO

i
problem window

Challenges

 Upper-bound the carry-in workload

 Upper-bound the carry-out workload

 Position the window such that interference is maximized

A New Notion

Workload Distribution (WD)

 A workload distribution describes a

schedule S of a DAG task as a

sequence of blocks (w,h)

The height denotes the number of

executing nodes

The width determines the duration of

such execution batch

 Total workload in function of a

certain length is given by the areas

 It is not required for S to be valid

1

3
2 2

1

1 2 1 3 1

iL

WD of a typical schedule

m

mWi /

WD according to

[Melani’15]

Carry-in Workload

How to model the carry-in job

such that the interfering workload

is maximized?

2

1

1

3

2

1

1

2

1v

2v

3v

4v 7v

6v

5v

8v

1 1 1

3 3

2 2 1 1 1

14iR

1

2

Intuitive approach

 Nodes execute as late as possible

Our approach

 Nodes execute as soon as possible

m

5)(CI

iW

1 1 1

3 3

2 1 2 1 1

14iR

1

2

3)(CI

iW

Interference

Carry-in Workload
What happens to the actual WCRT when we check the inter-task

interference?

1 1 1

3 3

2 2 1 1 1

12/ mHPRi

1

2

m

1)(CI

iW

1 1 1

3 3

2 1 2 1 1

14iR

1

2

3)(CI

iW

1 1 1

3 3

2 2 1 1 1

14iR

1

2

m

5)(CI

iW

1 1 1

3 3

2 1 2 1 1

14iR

1

2

3)(CI

iW

Carry-in Workload

And now also the self interference…

2 2 1 1 1

11/)(mSIHPRi

2

m

0)(CI

iW

1 1 1

3 3

2 1 2 1 1

14iR

1

2

3)(CI

iW

The makespan WD upper-bounds the interfering workload

generated by the carry-in job when
 The WD is aligned with the WCRT

 The WCRT is computed according to the pessimistic method described

 Any other WD generates less workload due to the discrepancy between its

actual RT and the WCRT

Carry-out Workload

How to model the carry-out job such

that the interfering workload is

maximized?
 Execute as much workload as possible, as

soon as possible

 Maximum cumulative parallelism

Can we construct such schedule for any value of the CO length?

2

1

1

3

2

1

1

2

1v

2v

3v

4v 7v

6v

5v

8v

node

exec time 0 1 1 0 1 1

1v 2v
3v 4v 6v

7v node

exec time 0 1 1 1 1 1 1

1v 2v
3v 4v 6v

7v

if

5v

4

1

3 3

1 1

4)(CO

iW 6)(CO

iW
4

2

1 1

Our

Goal

1CO

i
if 2CO

i

Carry-out Workload

We solve the problem by transforming

the DAG into a nested fork-join DAG
 Well-structured parallelism

 More general than SP model

 More concurrency

 Transformation
Identify conflicting edges

 Remove minimum number of

such edges to resolve the issue

NFJ-DAG construction

2

1

1

3

2

1

1

2
1v

2v

3v

4v 7v

6v

5v

8v

2

1

1

3

2

1

1

2
1v

2v

3v

4v 7v

6v

5v

8v

remove

edge (v4, v5)

DAG

NFJ-DAG a)

series composition
parallel composition

NFJ-DAG b)

NFJ-DAG

Carry-out Workload

Constructing WD
 Find the set yielding maximum parallelism in

the NFJ-DAG (uses a binary tree)

The height is the number of elements in the set

The width is the minimum (remaining) WCET

among the elements

 Subtract this value from the selected nodes;

remove exhausted nodes

Repeat until NFJ-DAG is empty

1
2

4

1

2 1 1

WD

2

1

2

2

1

1

3

2

1

1

2

1v 3v

4v 7v

6v 8v
2

3

2

2

1v

4v

8v

2v
5v 5v

2 3 2

1v
4v

8v

max cumulative becomes

max at each step

Response Time Analysis

The problem can be formulated as

max

s.t.

)2()1(xCOxCI ii

C

ixx 21

The solution to this optimization problem is

the desired upper-bound

 The values of x1 and x2 correspond to the

length of the carry-in and carry-out windows

We proposed an algorithm to solve this sliding window problem

with complexity linear to the number of blocks in the WDs

iR

m

iL iL

 iii TTL /)(

How to align the problem window

in order to upper-bound the

interfering workload of both carry-

in and carry-out jobs?

Experimental Results
Comparison with the state-of-the-art G-FP analysis [Melani’15]

We assessed the schedulability of 500 task sets per configuration

as a function of:

 System utilization U

 Number of tasks n

 Number of cores m

m = 8

~35% gap

Experimental Results

m = 8, U = 70%

Substantial schedulability improvements

~4 times better

Experimental Results

U = 70%, n = 1.5m

Robust to systems with increased number of cores

huge

improvement

Summary

Addressed DAG tasks under G-FP scheduling

Introduced the notion of workload distribution
 Models the shapes of different schedules

Proposed two techniques to more accurately characterize the

worst-case carry-in and carry-out workload
 DAG’s internal structure is explored

Experimental results reported significant gains in terms of

schedulabity and effectiveness for large multiprocessor systems

Future work

 Address the pessimism in the self interference

Thank you!

jcnfo@isep.ipp.pt

mailto:nelis@isep.ipp.pt

