Automotive Communication - From Buses to Switched Networks

Rolf Ernst
Institut für Datentechnik und Kommunikationsnetze
SIES, Porto 2013

Overview

- introduction - automotive embedded system architectures
- automotive network design
- trends and requirements to future automotive networks
- Switched Ethernet as an automotive backbone
- related developments
- AVB as top candidate? – challenges and possible directions
- conclusions
Overview

- introduction - automotive embedded system architectures
- automotive network design
- trends and requirements to future automotive networks
- Switched Ethernet as an automotive backbone
- related developments
- AVB as top candidate? – challenges and possible directions
- conclusions

Motivation – automotive networks

- today's automotive networks use bus based complex networks
 - hundreds of functions
 - thousands of tasks
 - 50+ ECUs
 - networked control
 - many suppliers
 - heterogeneous

- networks are an efficient platform for systems integration

source: Daimler
Automotive function networks

Example: Brake system (simplified)

- brake pedal sensor
- monitor position
- calculate rotation speed
- wheel rotation sensors
- calculate rotation speed
- brake control
- brake force control
- brake actuators

Functional architecture

- periodic, sporadic or mixed task and communication activation
- main communication semantics
 - publish-subscribe
 - send-receive
 - client-server
- register and FIFO communication
- defined e.g. in automotive software standard AUTOSAR
Register communication effects

- only part of the messages utilized – „last is best“
- type of communication (register or FIFO) depends on application model – have to support both

Networks used for systems integration
Application and Session Layers in AUTOSAR

Use case ‘Front-Light Management’ in AUTOSAR

Source: Simon Fürst, BMW, et al., www.autosar.org
Function integration - Mixed criticality

- safety standards require "sufficient independence" (IEC 61508) or "freedom from interference" (ISO26262) between safety critical and non critical functions
- end-to-end requirements include function and timing
- network and RTE have to guarantee independence
 - guarantee must be provided at highest level of criticality on network

Overview

- introduction - automotive embedded system architectures
- automotive network design
- trends and requirements to future automotive networks
- Switched Ethernet as an automotive backbone
- related developments
- AVB as top candidate? – challenges and possible directions
- conclusions
SoA: Bus-based communication

- straightforward support of publisher-subscriber mechanism
- several application specific standards, CAN, FlexRay, LIN, ...
 - < 100kbit ... 10Mbit (FlexRay, CAN FD) data rate
- predictable scheduling: fixed priority or TDMA or slotted ring (MOST)
- routing by dedicated gateway
 - low speed allows SW implementation

Data Link Layer – signal packaging

- smaller „signals“ packed in larger frames to reduce com. overhead
- frame activation pattern periodic or sporadic (i.e. immediate)
- sent to all potential receivers (no bus overhead)
- tradeoff: activation frequency vs. overhead per signal

CAN frame

<table>
<thead>
<tr>
<th>Start+Msg. ID</th>
<th>Ctrl</th>
<th>Payload 0..8 Byte</th>
<th>CRC</th>
<th>ACK&EOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>19 or 39bit</td>
<td></td>
<td>25bit</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Current automotive network – protection

- Application of safety standard affects large part of the system
 - „freedom from interference!“
 - Single criticality on safety critical ECUs
 - Mixed criticality on other parts

- All ECUs on mixed critical buses must be trusted!
 - No secure sender identification
 - No „babbling idiot“ (or denial-of-service-attack) on mixed critical bused allowed
 - Hard requirement on classical buses

„Sufficient isolation“ on CAN

- Msg. IDs used for arbitration - Static Priority Non Preemptive (SPNP)
- Asymmetric separation using „criticality as a priority“
 - High priority critical messages are „sufficiently independent“
- Separation leads to non-optimal priority assignment
- Allow „occasional“ loss of non (time) critical frames due to overload
 - Requires end-to-end protection on higher protocol level for event driven comm.
 - „Less than worst case design“ using soft deadlines
Overview

- introduction - automotive embedded system architectures
- automotive network design
- trends and requirements to future automotive networks
- Switched Ethernet as an automotive backbone
- related developments
- AVB as top candidate? – challenges and possible directions
- conclusions
Future automotive network requirements

- current trends
 - Trend 1: growing network complexity due to highly interactive functions
 - latency critical and safety critical traffic
 - some best effort traffic (e.g. diagnosis)
 - Trend 2: steep increase of network bandwidth requirements with new traffic patterns from infotainment and driver assistance systems – streaming patterns
 - primarily throughput critical traffic, moderate latency critical
 - some traffic safety critical
 - Trend 3: networks with IP traffic via car-to-X communication
 - primarily best effort

Trend 1: Growing network complexity

Example: Mercedes-Benz E-Class

Network communication grows faster than the number of E/E-components.

source: T. Bone, Daimler
advanced driver assistance systems
- collision avoidance, lane keeping assist, blind spot assist, ...
- fastest growing automotive segment
- Combines radar, several cameras
- Need for high data rate real-time communications...
- new requirement: **safety + high performance + real-time**!

Future automotive network requirements

- **trends will trigger transition from communication over buses & gateways to switched networks**
- automotive networks – strongest candidate: **switched Ethernet**
 - 2-wire physical medium (OPEN alliance)
From buses w. gateways to switched networks 1/2

- expectations
 - keep heterogeneous networks
 - cost efficiency and experience in CAN, LIN networks
 - transmit existing network traffic over switched network
 - replace MOST – infotainment streams
 - include new traffic – camera streams
 - compressed or raw, different frame sizes and rates
 - keep design process with many variants, annual „facelifts“, modular product lines
 - cost sensitive solution - avoid high component and qualification cost

From buses w. gateways to switched networks 2/2

- constraints
 - time critical functions
 - control end-to-end timing
 - safety critical functions
 - provide sufficient independence („freedom from interference“) from non critical parts with lower quality
 - provide sufficient reliability of the affected components
 - security
 - avoid illegal access and denial-of service attacks
 - ensure managing access rights and secure sender identification (buses?)
Overview

- introduction - automotive embedded system architectures
- automotive network design
- trends and requirements to future automotive networks
- Switched Ethernet as an automotive backbone
- related developments
- AVB as top candidate? – challenges and possible directions
- conclusions

Ethernet as a Backbone Network

- current generation introduces Ethernet as infotainment network
- future use as backbone
 - inherits requirements and constraints of existing buses
Exploiting Ethernet

- data link level: what frame sizes, packeting, error handling
- network level: what network protocol (higher levels?) switch scheduling and arbitration, ...
- handling of very different traffic requirements (bandwidth, latency, QoS, message sizes, ...)
- network topologies
- lossy or lossless?
 - publisher subscriber/register semantics – typically single message may be lost
 - send-receive, client-server: no loss, must be protected

Ethernet as a backbone network – Switch

- scheduling
- flow ctrl. at switch
- isolation (mixed critical)
- buffers, routing table admin.
Ethernet Frame

Layer 4, Optional
- **TCP/UDP header**

Layer 3, Optional
- **IP header**
- **IP payload**

![Ethernet Frame Diagram]

- **22 bit **MAC header** generally sufficient for routing in local network**
- **IP protocol** e.g. for external communication or use of TCP/UDP
- **Layer 4 protocol** for end-to-end control incl. sequence and port addr.
 - **TCP** builds up connection - handles packet losses (additional overhead)
 - **UDP** is connectionless – no error handling (best for loss free connections)

Switched Ethernet - Consequences

- **Many more options and parameters** than in current networks
- **Heterogeneous protocol combinations** possible and useful, e.g.
 - „plain“ Ethernet or UDP/IP for fast transmission with worst case design along packet route (no losses)
 - TCP/IP for secured communication over (potentially) lossy routes
- **No synchronization needed**
- **Point-to-point communication** allows secure sender identification in switch supporting safety firewalls
 - Improvement for mixed critical designs
Ethernet – Economic issues

- low cost – try to use established high volume standard
- avoid cost of ownership in automotive industry
- exploit competitive market
- many switch functions implemented in HW (performance)
 - less flexibility when using standard switch ICs
 - bus side of domain gateway ctrl. can be SW

Ethernet – overheads

- Overheads
 - Ethernet: 42 B incl. IF gap
 - IP: 20 Bytes
 - UDP: 8 Bytes
 - TCP: 20 Bytes
- Min. transmission times per hop:
 - 100Mbit/s
 - Min: 6.72 μs
 - Max: 122 μs
 - 1Gbit/s
 - Min: 0.672 μs
 - Max: 12.2 μs

Diagram:
- Min. Ethernet frame size: 84 Bytes
- 2 Bytes
- 14 Bytes
- 22 Bytes
- 42 Bytes
Ethernet as a Backbone Network for CAN Traffic

- Worst-case CAN frame size (incl. stuffing bits): 77 + 10 * payload_in_bytes [bit]
- Evaluation
 - max speed CAN: 1 Mbit/s
 - Send traffic from 100% utilized CAN bus (peak load) over Ethernet

<table>
<thead>
<tr>
<th></th>
<th>100 Mbit/s Ethernet</th>
<th>1Gbit/s Ethernet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>"Raw", IP, UDP/IP</td>
<td>"Raw, IP, UDP/IP"</td>
</tr>
<tr>
<td>8 Bytes CAN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>payload (max.)</td>
<td>4.1 Mbit/s</td>
<td>4.1 Mbit/s</td>
</tr>
<tr>
<td></td>
<td>6.72 μs/fr</td>
<td>0.672 μs/fr</td>
</tr>
<tr>
<td></td>
<td>4.4 Mbit/s</td>
<td>4.4 Mbit/s</td>
</tr>
<tr>
<td></td>
<td>7.2 μs/fr</td>
<td>0.72 μs/fr</td>
</tr>
<tr>
<td>1 Byte CAN</td>
<td>7.4 Mbit/s</td>
<td>7.4 Mbit/s</td>
</tr>
<tr>
<td>payload</td>
<td>6.72 μs/fr</td>
<td>0.672 μs/fr</td>
</tr>
</tbody>
</table>

Camera data transmission via Ethernet

- Example setup: stereo camera system
 - 2 cameras for front view applications and depth extraction
 - Image data rate e.g. 1000x1000: 28.6 MBytes/s * 2 cameras
 (long Ethernet packets: 1500Bytes/fr)

- Significant data rate challenges
 - System requirements:
 - 100 BaseT: 12.5 MBytes/s, utilization: 462 %, 120μs/fr
 - 1000 BaseT: 125 MBytes/s, utilization: 46.2%, 12μs/fr
 - Camera-based systems require Gigabit Ethernet or compression
Frame sizes and packaging - consequences

- several complete CAN traffics can be transmitted over 100Mbit/s and 1Gbit/s Ethernet, in different packeting schemes
 - delay times are < 10 μs/hop for CAN traffic
 - switched Ethernet suitable, optimization only required to decrease cost
- camera traffic
 - mainly useful for 1Gb/s, otherwise compression needed
 - for 1Gbit/s: delay < 12μs/hop

Overview

- introduction - automotive embedded system architectures
- automotive network design
- trends and requirements to future automotive networks
- Switched Ethernet as an automotive backbone
- related developments
- AVB as top candidate? – challenges and possible directions
- conclusions
AFDX - network

- 100Mbit/s, UDP/IP
- switches: fixed forwarding table, FIFO buffering
- „virtual links“ (VL) provide multicast communication to implement „virtual“ legacy bus communication - uses IP protocol
- sender traffic shaping to control network load and VL timing interference
 - Lmax: maximum length of Ethernet Frames on this VL
 - BAG: Bandwidth Allocation Gap: Min. dist. between VL frames
- no shaping in switches
 - timing dependencies through FIFO scheduling
 - requires performance analysis based on BAG data
 - timing analysis e.g. group of Christian Fraboul, Toulouse
- all network certified on highest level (DAL A)

AFDX VL and BAG - Example

- VL₂ and VL₃ implement multicasting
TTEthernet (SAE AS6802)

- multiple IEEE 802.3 speeds (100Mbit, 1Gbit)
 - introduces precise time service for network synchronization
- introduces 3 traffic classes in priority scheduled Ethernet
 - **time triggered (TT) frames** sent periodically at highest priority
 - non TT frames are held back if transmission can interfere with TT frame transmission - reaches high precision
 - feature can be turned off to optimize throughput
 - **rate constraint (RC) frames** have rate limitations like AFDX BAG
 - **best effort (BE) frames** carry other traffic at lowest priority
- achieves sufficient independence
 - **but for TT frames only**

PROFINET

- time triggered (TDMA) communication with segments as in FlexRay
 - uses precise time base IEEE 1588 (PTP)
- 3 segments for 3 communication classes
 - **Non Real-Time class NRT** – TCP/IP
 - **Real-time class RT**
 - synchronous and asynchronous transmission
 - uses priorities
 - **Isochronous Real-time IRT**
 - unbuffered globally time synchronous frames
 - no higher level protocols (level 2: MAC addresses only)
PROFINET frames

clock synchronous transmission

<table>
<thead>
<tr>
<th>IRT</th>
<th>RT</th>
<th>aRT</th>
<th>NRT</th>
<th>IRT</th>
<th>RT</th>
<th>aRT</th>
<th>NRT</th>
</tr>
</thead>
</table>

time based communication address based communication

Source: Profinet System Description, Profibus International (retrieved 2011)

IRT segment – Slot assignment

Ethernet AVB

- Based on strict priority Ethernet (IEEE 802.1Q)
- “Real-time” streams register bandwidth via reservation protocol
- AVB Classes A + B prioritized: A > B > non-Real-Time
- FIFO queuing in each class
- **Traffic Shaping** at Class A+B queues

Traffic Shaper:
- Throttles high-priority streams
- Allows bursts after blocking
AFDX target is closest to needs, but design process requirements and costs are high, high determinism does not match automotive mixed criticality and flexibility requirements.

AVB will be widely used as real-time Ethernet standard:
- highest expected volume for shared cost across industries
- flow control mechanisms and no. priorities very limited
- access control and packaging must be handled at boundary gateways
- „time sensitive network“ (TSN) extensions with time synchronization under standardization when needed

AVB most likely candidate
- flow control and scheduling to be revisited?

Overview
- introduction - automotive embedded system architectures
- automotive network design
- trends and requirements to future automotive networks
- Switched Ethernet as an automotive backbone
- related developments
- AVB as top candidate? – challenges and possible directions
- conclusions
Ethernet as a backbone network – AVB

- traffic mapping and packeting
- access ctrl.

- scheduling, flow ctrl. at switch
- isolation (mixed critical)
- buffers, routing tables

CAN-Ethernet Gateway – mapping to few priorities

- many CAN IDs must be mapped to few Ethernet priorities
 - CAN supports up to 2^{11} or 2^{29} IDs and as many priorities
 - Ethernet supports max. 8 priorities
- Head of line blocking at FIFOs in gateway output port
 - FIFOs can be reordered by fast domain gateway processor - not in switch
Mixed critical traffic mapping in AVB

- asymmetric isolation on CAN can be preserved
 - but limited by few priority levels
 - all messages mapped to one queue must have same criticality level
 - avoids uncontrolled line blocking in switch

Ethernet AVB - traffic shaping

- AVB Classes A + B prioritized: A > B > non-Real-Time
- non real-time can use further classes
- FIFO queuing in each class
- Traffic Shaping at Class A+B queues

Traffic Shaper:
- Throttles high-priority streams
- Allows bursts after blocking
Star topology results for varying over-reservation

- experiment: constant number of 12 I/O nodes
- same priority blocking in class FIFOs dominates timing
 - direct shaping result
 - latency increase for both A and B classes
 - shaped class B latency cannot profit from class A shaping
- similar observations for other topologies and traffic
- details SIES 2012 and IECON 2012

Large network delays possible

- larger industrial example as AVB benchmark ("Deggendorf") (IECON 12)
Replace Strict Priority (SP) by WRR scheduling?

- Very complex traffic scenario – SP less suitable?
- Weighted Round Robin (WRR) strategy
 - Approximation of Weighted Fair Queuing
 - Serves a predefined maximum number (weight) of packets from each queue in every scheduling round
 - Empty queues are skipped
 - Weights do no accumulate (unused slots expire)
- WRR rationale
 - Available in many commercial switches
 - Minimum guarantees on all levels
 - Can be used for isolation
 - Scheduling can be adapted to predictable traffic volume

Weighted Round Robin – principle

- Improved worst-case response time analysis algorithm allows direct comparison with static priority scheduling
- Will be published with experiments at CODES 2013
Weighted Round Robin – Experiment

- star topology (CODES paper also line)
 - one controller node, multiple I/O nodes

- traffic description
 - two classes, HP has more share than LP (prioritization)
 - bidirectional communication using the same traffic characterization
 - higher jitter reflects queuing in switch

<table>
<thead>
<tr>
<th>Class</th>
<th>HP</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
<td>250 us</td>
<td>250 ms</td>
</tr>
<tr>
<td>Jitter (low and high)</td>
<td>250 us and 2250 us</td>
<td>250 ms and 2250 ms</td>
</tr>
<tr>
<td>Payload</td>
<td>10 Bytes</td>
<td>10 Bytes</td>
</tr>
<tr>
<td>WRR Weight</td>
<td>300</td>
<td>120</td>
</tr>
</tbody>
</table>

Weighted Round Robin – result for star topology

- number of I/O nodes are increased from 1 to 23
- Y-axis shows worst-case end-to-end latencies for each scenario
- schedulers
 - SP
 - WRR
 - TDMA

In high-load scenarios WRR (and TDMA) give tighter latency guarantees for LP traffic than SP
Weighted Round Robin – Results and Challenges

- prioritization of traffic streams by weight ratios
 - higher priority -> larger weight
- **WRR does not help to reduce latency**
 - improves low priority only in high load situations at the cost of high priority traffic
- **complex dependencies** between latency and weight ratios
 - If weights are too small, a frame might be blocked for multiple rounds
 - Best-effort frames (if available) contribute to every scheduling round
- WRR would be **challenging in design process**
 - weights must likely be adapted in case of changes
- WRR appears **less useful** than SP to serve latency critical traffic

AVB switch scheduling - consequences

- **switch queuing + shaping is main reason for delays and traffic dependencies**
- AVB is **optimized for streaming, not for latency guarantees**
 - SP provides better results for latency critical traffic
- **possible solution**
 - selectively turn shapers off for high priority latency critical traffic – class A
 - use access ctrl. for this traffic
 - keep shapers for high and guaranteed throughput traffic – class B
 - use non real-time queues for other classes
 - must avoid starvation as consequence of **non worst case design**
 - **lossy design with end-to-end protection (TCP)?**
 - include sufficient independence where needed (WRR?)
Suggestions from automotive industry 1/2

Shaping latency vs. arbitration latency

Assumptions:
- Single Switch (1 Hop)
- Gbit Ethernet
- No Jumbo Frames
- Communication to 1 sink
- Sending of 2 minimum sized frames
- Shaper Overreservation: 2x

~130us for 100MBit
~432us for 100MBit

Suggestions from automotive industry 1/2

Putting it all together – QoS Concept

Switch buffering and tables

- **implementation less restricted**
- **buffers**
 - overflow can break isolation if back pressure applied to whole switch
 - dynamic buffer assignment can break isolation and defy predictable response times
- **routing tables**
 - dynamic table management can break isolation and response times
 - table management must be static or at least predictable
- **switch back plane**
 - switch back plane must have predictable upper bound timing

Ethernet as a backbone network – terminal gateway

- traffic mapping and packeting
- access ctrl.
- scheduling, flow ctrl. at switch
- isolation (mixed critical)
- buffers, routing tables
- Priority inversion by head of line blocking
Head of Line Blocking at Ethernet-CAN Gateway

- low priority frame waits for CAN arbitration
- high priority frame is stuck in FIFO and inherits priority of low priority frame
- order can be changed by fast Domain Gateway processor
 - not possible if inversion queues back into backbone network
 - queuing into network must be avoided

Many more interesting issues – e.g. frame packing

- publisher-subscriber communication corresponds to broadcast or multicast on Switched Ethernet
- many frame packing alternatives
 - packaging for one or for multiple target domains
 - packaging for equal deadlines
 - ...
- optimization problem
Future: End-to-end switched networks

- The future automotive network is part of an overall end-to-end system of switched networks
- System level switched networks
- ECU level networks such as PCIe where used
- NoCs on multicore and manycore ICs

Overview

- Introduction - automotive embedded system architectures
- Automotive network design
- Trends and requirements to future automotive networks
- Switched Ethernet as an automotive backbone
- Related developments
- AVB as top candidate? – challenges and possible directions
- Conclusions
Conclusion

- future generation automotive networks will use **Switched Ethernet**
 - must be tailored to automotive function and traffic trends
 - high bandwidth promises seemingly simple solution - **fallacy**
- different real-time requirements and efficient „freedom from interference“ under mixed criticality are major challenges
- Switched Ethernet requires **global network view**
 - network security, safety and timing are tightly interrelated
 - solutions possible, even incremental development of network functionality
- **formal analysis** will be a cornerstone for safe and efficient design

Thank you!

Acknowledgement and references

- **Acknowledgements**
 - Thanks go to Daniel Thiele, Henning Sahlbach, Philip Axer, and Jonas Diemer for contributions to the slides

- **References (selected)**
 - for AVB timing analysis
 - for WRR analysis
Related major projects

- **CERTAINTY (FP7, start Nov. 1, 2011)**
 "CErtification of Real Time Applications desigNed for mixed criticaliTY"
 - formal composition and integration of networked mixed-critical systems

- **ARAMIS (BmBF, start Dec. 2011)**
 "Automotive, Railway and Avionic Multicore Systems"
 - mixed criticality in the context of other non-functional requirements (security, …)