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Abstract—Consider the problem of scheduling a set of
implicit-deadline sporadic tasks to meet all deadlines on a
heterogeneous multiprocessor platform. We use an algorithm
proposed in [1] (we refer to it as LP-EE) from state-of-the-art
for assigning tasks to heterogeneous multiprocessor platform
and (re-)prove its performance guarantee but for a stronger
adversary. We conjecture that if a task set can be scheduled to
meet deadlines on a heterogeneous multiprocessor platform
by an optimal task assignment scheme that allows task
migrations then LP-EE meets deadlines as well with no
migrations if given processors twice as fast. We illustrate
this with an example.

Keywords-heterogeneous multiprocessor, task migrations,
real-time scheduling.

I. INTRODUCTION

A heterogeneous multiprocessor platform is a computer
system where (i) not all processors are of the same type
and (ii) the execution time of a task depends on the
processor on which it executes. Many chip makers offer or
plan to offer products for computers with different types
of processors. The Cell processor is a single chip com-
prising one main processor (Power4) and eight so-called
synergistic processors (optimized for executing SIMD
instructions) [2]. NVIDIA (and also AMD) offers general
purpose graphics processor units which together with a
normal processor are found in most personal computers
today [3]. The Intel Sandy Bridge processor [4] is a single
chip comprising an x86 multicore processor and a graphics
processor. The AMD Fusion processor is a planned single
chip comprising an x86 multicore processor and a set of
accelerator processors for both embedded platforms [5]
and desktops [6]. In a joint effort, ARM and NVIDIA are
planning to offer chips comprising one general-purpose
and one graphics processor [7]. It is clear that the above
mentioned chips are key components in heterogeneous
multiprocessor systems and such systems are increasingly
used in practice.
An algorithm for deciding whether or not an implicit-

deadline task set can be scheduled on a heterogeneous
platform exists [8] but it assumes that tasks can migrate.
This assumption is often unrealistic in practice, since pro-
cessors with different functionalities typically have differ-
ent instruction sets. Thus, the problem of assigning tasks to
processors and then scheduling them with a uniprocessor
scheduling algorithm (i.e., without migration) is of much
greater practical significance. It requires solving two sub-
problems: (i) assigning tasks to processors and (ii) once

tasks are assigned to processors, performing a uniproces-
sor scheduling on each processor. The latter problem is
well-understood (e.g., one may use Earliest Deadline First
scheduling [9]) – the difficult part is the task assignment.
The task assignment on a heterogeneous multiprocessor

platform is modeled as Zero-One Integer Linear Pro-
gramming (ILP) in [1][10]. Such a formulation can be
solved directly but has high computational complexity. In
particular, the decision problem ILP is NP-complete and
even with knowledge of the structure of the constraints in
the modeling of heterogeneous multiprocessor scheduling,
no polynomial-time algorithm is known ([11], p. 245).
Via relaxation of ILP formulation to Linear Program (LP)
and certain tricks [12], better time-complexity can be
attained [1][10]. (Polynomial time-complexity for the al-
gorithm in [10] and for the special case of fixed number
of processors, the algorithm in [10] has polynomial time-
complexity as well). Both approaches [1][10] offer a per-
formance guarantee that if a task set can be scheduled to
meet deadlines on a heterogeneous platform by an optimal
task assignment scheme that does not allow task migra-
tions then these approaches meet deadlines as well without
allowing task migrations if given processors twice as fast.
In this paper, we use the approach proposed in [1]

(for convenience, we refer to it as Linear Programming
with Exhaustive Enumeration, abbreviated as LP-EE, de-
scribed in Section III-A), and (re-)prove its performance
guarantee but for a stronger adversary (i.e., the set of
algorithms against which we evaluate the performance of
our algorithm) that allows task migrations. We conjecture
that, if a task set can be scheduled to meet deadlines on
a heterogeneous platform by an optimal task assignment
scheme that allows task migrations then LP-EE meets
deadlines as well without allowing task migrations if given
processors twice as fast. We would like to reiterate that,
the claim in this paper is stronger than the previous state-
of-the-art approaches [1][10], as the adversary is more
powerful since it allows task migrations.

II. SYSTEM MODEL AND ASSUMPTIONS
A. System Model
We consider the problem of scheduling implicit-

deadline sporadic tasks on a heterogeneous multiprocessor
platform. The system is specified as follows:

• Computing Platform (denoted as Π): The comput-
ing platform consists of m processors. A processor
is denoted as πj ∈ Π, where j ∈ {1, · · · ,m}.
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Figure 1. ILP formulation – ILP-Feas(τ,Π)

• Task Set (denoted as τ ): The task set comprises n
implicit-deadline sporadic tasks (i.e., for each task, its
deadline is equal to its minimum inter-arrival time).
A task is denoted as τi ∈ τ , where i ∈ {1, · · · , n}.

• Utilization (denoted as U ): The utilization of a task
τi on a processor πj is given by uj

i , a non-negative
real number.

B. Assumptions
We make the following assumptions:
• Independent tasks: The executions of jobs are inde-
pendent, i.e., they do not share any resources and do
not have any data dependency.

• Migrations: In our approach, we constrain the sys-
tem by assuming that the tasks are not allowed to mi-
grate between processors. However, in our adversary,
we relax this constraint on the system by allowing
jobs to migrate between processors thereby making
the adversary more powerful.

• No job parallelism: A job can be executing on at
most one processor at any time instant.

III. THE METHODOLOGY: LINEAR PROGRAMMING
WITH EXHAUSTIVE ENUMERATION (LP-EE)

A. Background and Previous Result
We briefly describe the approach proposed in [1] be-

fore proceeding to discuss how we intend to use it and
(re-)prove its performance guarantee for a stronger adver-
sary.
In [1], the problem of assigning tasks to processors has

been formulated as Zero-One ILP as shown in Figure 1.
Here U denotes the maximum capacity of any processor
that is used and is set as the objective function (to be
minimized). U ≤ 1 implies that the sum of utilization of
tasks assigned to any processor is less than or equal to
the available capacity on that processor. The variable xj

i

(referred to as indicator variable) indicate the assignment
of task τi to processor πj , i.e., xj

i = 1 implies that τi is
entirely assigned to processor πj (such tasks are referred
to as integrally assigned tasks), xj

i = 0 implies that τi
is not assigned to processor πj . The first constraint (C1)
indicates that every task must be assigned to processors.
The second constraint (C2) indicates that no processor
capacity should be used more than U. The third constraint
(C3) indicates that the indicator variables must be non-
negative integers.
Since, ILP is NP-complete, the formulation is relaxed to

LP by allowing the indicator variables to be non-negative
real numbers (instead of just 0 or 1). The relaxed LP
formulation is shown in Figure 2. As we can see, the
only change in LP-Feas(τ,Π) formulation compared to
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Figure 2. LP formulation – LP-Feas(τ,Π)

ILP-Feas(τ,Π) formulation is that, the C3 constraint now
allows xj

i variables to take real numbers instead of just 0
or 1. The semantics of the xj

i variable remain the same,
in addition, 0 < xj

i < 1 indicates that fraction xj
i of τi

is assigned to processor πj (such tasks are referred to as
fractionally assigned tasks).
Then a two-step algorithm (referred to as LP-EE) is

proposed to assign tasks on a heterogeneous platform. The
algorithm is as follows:
1) The LP formulation is solved using an LP solver.
If xj

i = 1 then task τi is (integrally) assigned to
processor πj . Using certain tricks [12], it is shown
that there exists a solution to LP-Feas(τ,Π) in which
all but at most (m− 1) tasks are integrally assigned
to processors.

2) The remaining at most (m − 1) tasks are integrally
assigned on the remaining capacity of the processors
using exhaustive enumeration.

Finally, the performance guarantee of this algorithm is
proven which is stated as Lemma 1 below.

Lemma 1. (from Theorem 3 in [1])
If there is a feasible mapping of a task set τ on a hetero-
geneous platform Π in which at most half the capacity of
every processor is used, then it is guaranteed that LP-EE
generates a feasible mapping (as well) of τ on Π.

B. New Result
Now, with the knowledge of the algorithm proposed

in [1] and its performance guarantee, let us proceed to
discuss the approach in which the adversary is migrative.
It is tempting to believe that the problem of scheduling

a task set τ of n tasks on a heterogeneous multiprocessor
platform Π of m processors allowing task migrations can
be formulated as a Linear Programming problem using
the LP-Feas(τ,Π) formulation shown in Figure 2. Though
LP-Feas(τ,Π) formulation may seem correct at first sight,
it is not, as shown by Example 1.

Example 1. Consider a heterogeneous multiprocessor
platform with four processors and a task set with three
tasks whose utilizations are shown in Table I.
We can see that the task set is infeasible since the

utilization of τ3 exceeds one on all the processors – it
is impossible to schedule τ3 to meet its deadline (unless it
executes on multiple processors simultaneously, which our
system model forbids). Yet, if we formulate this problem
using LP-Feas(τ,Π) shown in Figure 2 and input it to an
LP solver (such as IBM ILOG CPLEX [13]), the LP solver
yields a solution with the values of variables shown in
Table II and with U = 1. Hence, the task set is erroneously
deemed feasible on the given platform. The entries in



(τi ↓)(u
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τ1 1 1 1 + ε 1 + ε

τ2 1 + ε 1 + ε 1 1
τ3 2 2 2 2

Table I
A TASK SET TO ILLUSTRATE THE DRAWBACK OF LP-FEAS(τ,Π)

FORMULATION.

(τi ↓)(πi →) π1 π2 π3 π4

τ1 1 0 0 0
τ2 0 0 1 0
τ3 0 0.5 0 0.5

Table II
A SOLUTION (I.E., THE VALUES OF xj

i VARIABLES) BY LP SOLVER TO
THE TASK SET SHOWN IN TABLE I.

Table II are the values of indicator variables (i.e., xj
i

variables) and indicate the task assignment to processors
– e.g., task τ1 is assigned to processor π1.

As illustrated in Example 1, the problem with the
LP-Feas(τ,Π) formulation shown in Figure 2 is that it
outputs a solution in which a task (whose utilization is
more than one, τ3 in this example) is assigned such that
it is required to execute on more than one processor
simultaneously.
Hence, to address this issue, we introduce one more

constraint that prohibits job parallelism, i.e., a con-
straint that forces the assignment of tasks such that
they are not allowed to execute on more than one pro-
cessor simultaneously. The revised formulation namely,
LP-Feas-Rev(τ,Π), is shown in Figure 3. The three con-
straints, i.e., C1, C2 and C3 are same as the ones
discussed earlier (for LP-Feas(τ,Π) formulation) and the
fourth constraint (C4) indicates that no task should be
executed simultaneously on more than one processor.
Upon formulating our example using the revised

LP-Feas-Rev() formulation and inputting it to an LP
solver, we get an output indicating that the task set is
infeasible on the given platform.

Conjecture 1. A task set τ is feasible on a heterogeneous
platform Π with task migrations permitted if and only if
LP-Feas-Rev(τ,Π) gives a solution with U ≤ 1.

Throughout this paper, we illustrate our claims with a
(randomly generated) running example. Consider a task
set τ with seven tasks to be scheduled on a heterogeneous
computing platform Π with three processors. The utiliza-
tion of tasks on each processor is shown in Table III.
Formulating this system as a linear program using

LP-Feas-Rev(τ,Π) shown in Figure 3 and inputting it to
an LP solver, we obtain the solution shown in Table IV
and U = 0.999999. It indicates that τ is feasible on Π.
The values in Table IV indicate the task assignment to
processors. For example, τ1 is integrally assigned to π2,
τ2 is fractionally assigned to π2 and π3, and so on.
Now, if we “divide the result in Conjecture 1 by 2”, i.e.,

divide the utilization of every task on every processor by

Minimize U subject to the following constraints :
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Figure 3. Revised LP formulation – LP-Feas-Rev(τ,Π)

(τi ↓)(u
j
i →) u

1
i

u
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i

u
3
i

τ1 0.087002 0.066455 1.952548
τ2 1.294308 0.528062 0.906763
τ3 0.802204 0.488072 1.240208
τ4 0.448277 1.076216 1.825816
τ5 0.573124 1.287740 0.982321
τ6 0.148060 1.933626 0.654599
τ7 0.331234 1.284164 0.814624

Table III
AN EXAMPLE TASK SET TO ILLUSTRATE CONCEPTS.

(τi ↓)(πi →) π1 π2 π3

τ1 0.000000 1.000000 0.000000
τ2 0.000000 0.843599 0.156401
τ3 0.000000 1.000000 0.000000
τ4 1.000000 0.000000 0.000000
τ5 0.126375 0.000000 0.873625
τ6 1.0000 0.0000 0.0000
τ7 1.0000 0.0000 0.0000

Table IV
A SOLUTION (I.E., THE VALUES OF xj

i VARIABLES) BY LP SOLVER TO
THE TASK SET SHOWN IN TABLE III.

a factor of 2 (we refer this new task set as τ ′), and divide
the speed of every processor by 2 (we refer this new task
set as Π′), we get the following result.

Conjecture 2. A task set τ ′ is feasible on a heterogeneous
platform Π′ with task migrations permitted if and only if
LP-Feas-Rev(τ ′,Π) gives a solution with U ≤ 0.5.

Our example task set (shown in Table III), after dividing
by 2, is shown in Table V. Formulating this system as a
linear program using LP-Feas-Rev(τ ′,Π) and inputting it
to an LP solver, we obtain the solution that is same as the
one shown in Table IV but with U = 0.499999.

(τi ↓)(u
j
i →) u

1
i

u
2
i

u
3
i

τ1 0.043501 0.033227 0.976274
τ2 0.647153 0.264030 0.453381
τ3 0.401102 0.244036 0.620103
τ4 0.224138 0.538108 0.912908
τ5 0.286561 0.643870 0.491160
τ6 0.074030 0.966813 0.327299
τ7 0.165616 0.642082 0.407311

Table V
TRANSFORMED TASK SET OBTAINED AFTER DIVIDING THE ORIGINAL

TASK SET (SHOWN IN TABLE III) BY 2.

From here on, we will use the algorithm proposed in [1]
(and eventually illustrate its performance guarantee for the
migrative adversary). Since, LP-Feas-Rev(τ ′,Π) gives a
solution with U ≤ 0.5 for a task set τ ′ that is feasible



on a heterogeneous platform Π′, it is easy to see that
LP-Feas(τ ′,Π) also gives a solution with U ≤ 0.5. This
is due to the fact that the LP-Feas() formulation is more
relaxed than the LP-Feas-Rev() formulation (due to the
absence of non-parallelism constraint C4 in it).

Conjecture 3. If a task set τ ′ is feasible on a hetero-
geneous platform Π′ with task migrations permitted then
LP-Feas(τ ′,Π) gives a solution with U ≤ 0.5.

Formulating the scheduling problem of the transformed
task set τ ′ (shown in Table V) as a linear program
using LP-Feas(τ ′,Π) (that allows job parallelism) shown
in Figure 2 and inputting it to an LP solver, we obtain the
solution which is the same as the one shown in Table IV
and with U = 0.499999.
We know the upper bound on the number of fractionally

assigned tasks in the assignment corresponding to the
solution given by an LP solver for the LP-Feas(τ ′,Π′)
formulation [1]:

Fact 1. If there are tasks that were fractionally assigned,
in accordance with the solution returned by LP solver after
solving LP-Feas(τ ′,Π) formulation, then there can be at
most m− 1 such tasks.

We also know from [1] that, the remaining at most
m− 1 tasks in τ ′ can be successfully assigned to proces-
sors using exhaustive enumeration without violating the
schedulability test on any of the processors in Π – see
Lemma 1 in Section III. This is possible because we know
from Conjecture 3 that LP-Feas(τ ′,Π) has a solution with
U ≤ 0.5 (which indicates that no processor has been used
more than half its capacity). We can then use EDF [9]
to schedule the tasks assigned on each processor. By
combining all these observations, we get the next result.

Conjecture 4. If a task set τ ′ is feasible on a hetero-
geneous platform Π′ with task migrations permitted then
LP-EE succeeds in assigning τ ′ on Π as well (with no
task migrations), where each processor in Π is at most
twice faster than the corresponding processor in Π′.

Coming back to our example task set τ ′, the solu-
tion provided by the LP solver (see Table IV) has two
fractionally assigned tasks, i.e., τ2 and τ5. We can see
from the solution (ignoring the fractional assignment of
τ2 and τ5) that π1, π2 and π3 have remaining utiliza-
tions of 0.536216, 0.722737 and 1.000000 respectively on
computing platform Π (where a processor speed is twice
the corresponding processor speed in Π′). Hence, we can
assign τ2 to π2 and τ5 to π1 without violating the EDF
schedulability test on any processor.

IV. SUMMARY

We used an existing approach [1] from state-of-the-
art for assigning tasks on a heterogeneous multiprocessor
platform and illustrated its performance guarantee for a
stronger adversary. We conjectured that if a task set can be
scheduled to meet deadlines on a heterogeneous platform
by an optimal task assignment scheme that allows task

migrations then LP-EE meets deadlines as well with no
migrations if given processors twice as fast. We have
left open the problem of mathematically proving the
correctness of our claim.
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