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Abstract: 
Modern real-time systems, with a more flexible and adaptive nature, demand approaches for 
timeliness evaluation based on probabilistic measures of meeting deadlines. In this context, 
simulation can emerge as an adequate solution to understand and analyze the timing 
behaviour of actual systems. However, care must be taken with the obtained outputs under 
the penalty of obtaining results with lack of credibility. Particularly important is to consider that 
we are more interested in values from the tail of a probability distribution (near worst-case 
probabilities), instead of deriving confidence on mean values. We approach this subject by 
considering the random nature of simulation output data. We will start by discussing well 
known approaches for estimating distributions out of simulation output, and the confidence 
which can be applied to its mean values. This is the basis for a discussion on the applicability 
of such approaches to derive confidence on the tail of distributions, where the worst-case is 
expected to be. 
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Abstract

Modern real-time systems, with a more flexible and adap-
tive nature, demand approaches for timeliness evaluation
based on probabilistic measures of meeting deadlines. In
this context, simulation can emerge as an adequate solu-
tion to understand and analyze the timing behaviour of ac-
tual systems. However, care must be taken with the obtained
outputs under the penalty of obtaining results with lack of
credibility. Particularly important is to consider that we are
more interested in values from the tail of a probability dis-
tribution (near worst-case probabilities), instead of deriv-
ing confidence on mean values. We approach this subject by
considering the random nature of simulation output data.
We will start by discussing well known approaches for esti-
mating distributions out of simulation output, and the con-
fidence which can be applied to its mean values. This is
the basis for a discussion on the applicability of such ap-
proaches to derive confidence on the tail of distributions,
where the worst-case is expected to be.

1. Motivation
Timeliness analysis of real-time systems is dominated by

the notion of absolute temporal guarantees. In such frame-
works, computational and communication loads are pre-
sumed to be bounded and known, and the worst-case (at
least believed to be) conditions are assumed.

However, guaranteed approaches pose problems when
applied to many complex systems, including modern dis-
tributed control systems. Worst case analysis-based formu-
lations tend to be overwhelmed with simplifications that of-
ten lead to results which, when the results are compared
to real system behaviour, are either pessimistic (where the
worst case scenario considered for analysis cannot occur) or
inadequate (e.g. where the probability of the bad case sce-
narios is low and we wish to trade performance for accept-
able levels of deadline failures).

To deal with the more flexible and adaptive nature of
such systems, we consider approaching the timeliness eval-
uation problem in a different way: instead of using a guar-
anteed approach, we explore the use of probabilistic mea-
sure of meeting deadlines?

It is in this context that simulation can emerge as an ad-
equate solution to tackle the problem of engineering com-
plex distributed systems. The recent advent of fast and inex-
pensive computational power makes accurate modelling of
the system feasible; simulation may be used to observe be-
haviour that is almost identical to the real system.

A simulation is the imitation of a real-world process or
system over time [1]. It is based on the construction of a

simulation model that will allow the expression and investi-
gation of a wide variety of ”what-if” questions, and in that
way be used to obtain some temporal inferences about the
real world system.

Although a powerful tool, simulation hides many traps.
Special care must be taken under the penalty of obtaining re-
sults with lack of credibility [2]. In this paper, we focus our
attention on appropriateanalysisof simulation output data;
that is, a valid model of the system is assumed to be al-
ready constructed and appropriate source(s) of randomness
have been applied.

It is important to note that, for real-time systems, we are
particularly interested in near-worst case values, which are
infrequently observed (i.e. in the tail of the distribution).
This is unlike the main body of statistical analysis which
considers mainly mean values. In order to be able to rea-
son about probabilistic measures of meeting deadlines, we
need to be able to understand the results of simulation for
maximum values and the significance of rare events.

In the following, we discuss well known approaches for
estimatingdistributions from simulation output, and the
confidence which can be applied to itsmeanvalues. This
will serve the basis to discuss the applicability of these ap-
proaches to derive understanding of the tail of the distribu-
tion for consideration ofworst casevalues.

2. Simulation Output Data
By their nature, stochastic simulation models will pro-

duce random outputs. Thus, simulation has to be regarded as
a computer-based statistical experiment. To have any mean-
ing, appropriate statistical techniques must be employed to
analyse the simulation experiments. Moreover, the data re-
sulting from a simulation cannot be directly analysed using
traditional statistical methods, since most of these only ap-
ply to Independent and Identically Distributed (IID) data.
This is an important topic of concern for the remainder of
this text.

Let us consider a simple example of a queue, with a ran-
dom service time. The waiting time of the first user will al-
ways be zero. On the other hand, the waiting time of the sec-
ond user will depend on the departure of the first one, and
so on. If we are interested in studying the waiting time in
the queue, it is easy to observe that the distribution of these
times is neither identically distributed nor independent.

One method commonly used to overcome this problem is
to make observations from the results of multiple, and inde-
pendent, simulation runs (or simulationreplicas). Typically
this is performed by making multiple simulation runs with
the same initial conditions and parameters, but yet different
seeds for the random numbers used to drive the simulation.
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In this way, it is possible to obtain independent and identi-
cally distributed variables. Hence, it is possible to make es-
timates of variables of interest, such as the mean delay ob-
served, the number of messages dropped, or the maximum
response time.

2.1. Statistical Ground for the Analysis of Simula-
tions Output Data

Suppose we would like to obtain an estimate for the mean
of an output variable, for example, the mean delay over a
communication medium. Consider that we would like to ob-
serve this delay during a defined period, because the system
is shutdown or restarted after that period (e.g., a system that
is disconnected at the end of a working day). This is called
a terminating simulation.

One run of the simulation will produce one estimate for
the mean message delay. The value of just one sample of
a random process has little significance by itself. However,
executing multiple runs of the simulation (simulation repli-
cas) will provide a set of values, characterized by some dis-
tribution. It will also be IID, as we have seen. The mean
of the samples is a natural estimator of the (unknown) true
mean message delay.

But, how reliable is this estimate? If we make another set
of simulation replicas, the result would, almost certainly, be
different. Indeed, an estimate without an indication of its
precision is of little value.

To derive a useful conclusion, one would have to know
something about the distribution of the sample. Thecentral
limit theoremis a basic, but very useful and important con-
cept which basically states that the sum and the average of
many random values present a distribution close to normal
distribution. Typically, a normal approximation is sufficient
if about 30 or more values are used [3]. Then, well-known
methods can be used to draw confidence intervals from nor-
mal distributions. However, the standard procedures for in-
ference are intended for situations where the standard devi-
ation for the entire population is known. As there is not usu-
ally knowledge of the entire population, it is necessary to
also estimate the standard deviation from the available data,
in which case, the statistic will not have a normal distribu-
tion, but at-distribution.

For the sake of completeness, let us now lay down some
basic statistics, applied to the estimation of the true char-
acteristics. The validity of this estimation, and of its confi-
dence interval, is well known for the mean value of a distri-
bution. The applicability to the tail of the distribution (the
worst- or near to worst-case) will be then discussed in Sec-
tion 3.

Suppose thatX1,X2, · · ·Xn are IID random variables with
a meanµ (in our example, the mean message delay in queue
to access a communication medium) and a varianceσ2. Our
primary objective is to estimateµ. The sample mean (̄X(n)),
is an unbiased (point) estimator ofµ, and is:

X̄(n) =
∑n

i=1Xi

n
(1)

That is, the expected value of̄X(n) is µ: Ei [X̄(n)] = µ. If we
perform a great number of independent experiments, each
resulting in aX̄(n), their average will beµ. While X̄(n) is

the estimator ofµ, in a similar way, the sample variance
(S2(n)) is an unbiased estimator ofσ2:

S2(n) =
∑n

i=1[Xi − X̄(n)]2

n−1
(2)

As we have discussed, it is important to have an as-
sessment of the estimation precision. The usual way to do
this is to construct a confidence interval. An approximate
100(1−α)% confidence interval forµ is given by:

X̄(n)± tn−1,1− α
2

√
S2(n)

n
(3)

The estimate (̄X(n), in our case) represents the guess for
the value of interest. The margin of error (terms after the
± sign) gives a measure on how accurate the estimation is,
based on the variability of the estimation. It can be shown
that to cut the length of the confidence interval in half, four
times more samples are required.

2.2. Non-terminating Simulations
So far, we have been concerned with a finite set of sam-

ples extracted from a terminating simulation. Nevertheless,
we note that the systems of interest will not always have
a terminating event, and we are interested in analysing the
system’s behaviour over a long time. There are several sub-
types of non-terminating simulations. We will consider a
subtype where the outputs of the simulation model tend
to stabilize; that is, the system reaches asteady-state. A
measure of performance for such simulation is said to be
asteady-state parameter.

The analysis of steady-state parameters raises a very im-
portant problem, which is how to choose the simulation data
that actually represents the steady-state. Mostly due to the
choice of starting conditions, the initial output data of the
simulation is usually not very representative of the steady-
state behaviour. This period, affected by the initialisation
bias, is usually referred to as thewarm-upperiod. Using
data from this period for the estimation of system’s steady-
state parameters may yield deceptive results.

To circumvent the warm-up period problem, one may
simply resort to very long runs, such that the data from the
initial phase has a negligible impact, or to start the simu-
lation in a state supposed to be close to the steady-state.
These methods have practical impairments, thus more for-
mal methods are commonly used.

The replication approach may be used in the context
of non-terminating simulations. To extract the steady-state
means from each simulation replica is simply a case of
deleting the warm-up data (samples 1 tol ) from each replica
of lengthm samples. Equation (4) generates IID variables
which can be used to generate steady-state mean, variance
and confidence values in the same way as for the terminat-
ing simulations. In the context of non-terminating simula-
tions, this method is usually calledreplication/deletion.

Xi =

∑m
j=l+1Yi, j

m− l
∀i ∈ {1· · ·n} (4)

In order to know when the steady-state is reached, tech-
niques based on the assumption that the variance of the sam-
ples is substantially lower in the steady-state than in the



warm-up period, are used todetectwhen a steady-state is
reached.

Another method for achieving independent samples from
non-terminating simulations is to perform one long simula-
tion run and obtain independent observations from subsets
of the data. The method ofbatch means[4], is similar to the
replication/deletion, except that one single simulation run
is divided intobatches, where a batch takes the role of a
single replica. It can be shown that, for a sufficiently large
number of batches, the mean of the batches will be approx-
imately IID normal. One of the most relevant advantages of
this method is that it only has to go through one warm-up
phase. On other hand, a significant problem is choosing the
batch sizem, or equivalently, the number of batchesk. A
number of guidelines extracted from research literature, and
a general recommended strategy may be found in [4].

Other methods based on one long simulation are en-
countered [5], such as theautoregressivemethod orspec-
tral analysis, which try to use estimates of the autocorrela-
tion structure of the underlying stochastic process to obtain
an estimate of the variance of the sample and then to con-
struct a confidence interval. We refer the reader to the liter-
ature [4, 5] for further information on other methods.

All the procedures described to this point are, usually,
classified as fixed-sample procedures, where the sample
sizes taken (the whole simulation, in the case of replica-
tion/deletion or the batch, in batch means) are of a fixed size.
We note that [5]: if the total sample size is chosen too small,
the actual coverage may be lower than the desired; the ap-
propriate choice of the total sample size is extremely model
dependent and impossible to choose arbitrarily.

It can be argued [5] that no procedure that fixes the run
length before the simulation begins will always produce
a satisfactory confidence interval. Asequentialprocedure
where the simulation’s end is determined by a relative sta-
tistical error that is verified in consecutive checkpoints is
a more viable approach. Sequential procedures are recog-
nised as a practical approach allowing control on the error
of the final results of stochastic simulations [2].

Sequential procedures are not without problems. They
are more complex, requiring computing the estimates at sev-
eral points of the simulation to check if the stopping rule
has been satisfied. The approach may not be easily applica-
ble when multiple measures of performance are needed. Fi-
nally, because of random nature of simulation, the relative
stopping rule can be accidentally satisfied, resulting in pre-
mature termination of the simulation, and wrong results.

Currently, sequential procedures are not well supported
by existing software packages. A simulation package sup-
porting sequential procedures is Akaroa2, designed at the
University of Canterbury, New Zealand [2, 6]. One interest-
ing feature is that it is possible to integrate Akaroa2 with
other open simulation packages, such is the case of OM-
NeT++ [7].

3. What about Worst-Case Assessment?
All the previous methods seek to obtain a mean value

for the output point estimator. We noted that other mea-
sures about worst-case values are required for analysis of
real-time systems. For example: the probability that a queue
length is greater than k messages. In this section, we briefly

discuss how to extract measures of performance such as pro-
portions, probabilities and quantiles. Then, we will address
some ideas about extracting worst-case measurements from
stochastic simulations.

3.1. Probabilities and Quantiles
Suppose we need to estimate the steady-state probabil-

ity (p) of the mean message delay being less than a valuex.
The variable under analysis may be represented by 1 if the
queue delay exceeds the valuex, and 0 otherwise.

If Y is the original steady-state random variable obtained
from simulation andB is a set of real numbers smaller than
x then this is special case of estimating the mean, by letting
the random variableZ be:

Z =
{

1 ifY ∈ B
0 otherwise (5)

It can be shown that estimatingp is equivalent to estimat-
ing the steady-state mean for the expected value ofZ(E(Z)).

However, a performance measure that does not fit in the
same reasoning is a quantile. For instance, if the variable
represents the delay then the 0.90-quantile is the valuex
such that 90% of all messages experienced a delay shorter
thanx.

Estimating quantiles is both conceptually and compu-
tationally (in terms of number of observations required)
a more difficult problem than estimating the steady-state
mean. Additionally, most of the procedures for estimating
these performance measures are based on order statistics
and require storage and sorting of the observations. Nev-
ertheless, the general reasoning is similar to the one for ob-
taining the interval estimator for a steady-state mean.

An example taken from [8] points-out one major problem
with quantile estimation. For the steady-state estimation of
a 0.99 quantile of waiting times, an estimate with relative a
precision of 10% required about 500,000 observations, and
a 0.999 quantile needed a samples size of approximately
2,300,000. Because quantile estimation requires storage and
sorting of observed values, obtaining small quantile estima-
tions, with a good accuracy is often impractical. However,
this is a problem under investigation, and several techniques
that do not require storage have been proposed. In [9], a
number of such approaches are presented and evaluated.

3.2. Extreme value theory
Goodness-of-fit tests may be used to evaluate the like-

ness between the sample data distribution and a theoretical
distribution. If it is possible to obtain a good approximation
from the theoretical distribution, then it is usually feasible to
obtain good estimates of the output variables. However, for
the purpose of drawing worst-case estimates from these dis-
tributions we are considering the tails of the probabilistic
distributions and it is known that these are the areas where
less accuracy exists. Considering that we capture a suffi-
cient number of values close to the worst-case value during
the simulation runs, we will probably end up with a heavy-
tailed distribution. A distribution function or random vari-
able is said to be heavy-tailed it presents a high coefficient
of variance. For example, in [10], the authors found that the
distribution of execution times was better represented by a



Gumbel distribution (a heavy tail-distribution). Other exam-
ples of heavy tail distributions include the other extreme val-
ues distributions (Gumbel, Fréchet and Weibull),t-student
and Paretto distributions.

An important property of heavy-tailed distributions is
that they are (essentially) invariant under maximisation,
tending to a (Fŕechet) distribution. This may suggest a gen-
eralisation for extreme values, similar to the central limit
theorem for means.

Heavy-tail distributions have been object of several (re-
cent) studies in the fields of load balancing (CPU, network),
job scheduling (Web servers) and complex system studies.
Particularly, there are proposals for modelling and analysing
heavy-tail distributions for estimation of rare event proba-
bilities with computable tractable techniques [11, 12].

3.3. Average maximums
Derived from the previously referred methods for sim-

ulation output analysis, an intuitive approach, for trying to
obtain an estimator for the worst-case value of the output
variable is to pick the maximum value in the set of data
from each simulation replica, instead of calculating a mean
value. The problem of this approach is the assumption of
a normally distributed variable, needed for the applicability
of the previously mentioned methods for estimating means.
A possible solution could be to group the values obtained in
batches and apply the assumption of a normally distributed
average over the means of each batch, in a similar way to
the batch means procedure. Doing this could result in an
additional statistical error introduced by this second group-
ing. Additionally, the results obtained, would not be exactly
worst-case values, but average maximums, which can be a
rather different thing and, to achieve the conditions of the
central limit theorem, much more data would be necessary,
most likely making this an impractical approach.

3.4. Rare event simulation
It is possible to view the occurrences or near worst-case

scenarios asrare event(the average system behaviour tends
to be far apart from the worst-case). Obtaining precise esti-
mates of such rare event probabilities using classical simu-
lation can require prohibitively long run lengths.

A popular technique applied for the simulation of rare
events is calledimportance sampling. Basically, importance
sampling comprises of two different approaches. One, that
attempts to modify the probability dynamics, in such a way
that rare events will occur more frequently. An alternative
important sampling technique is trajectory splitting, based
on the assumption that there exist some well identifiable in-
termediate system states that occur much more often than
the rare events of interest. The idea is to detect these inter-
mediate states during simulation execution and split the sim-
ulation execution into several independent sub-trajectories,
simulated from that state. Naturally, to obtain the final esti-
mator, the results must be adjusted accordingly to the mod-
ification introduced. See [13] and references within for fur-
ther information about importance sampling techniques.

Importance sampling may indeed obtain a significant re-
duction in the amount of observations required to obtain the
same estimator precision as would be obtained in a simu-
lation that does not use importance sampling, however, this

requires a considerable amount of problem-specific knowl-
edge from the simulation designer and how the modified
distributions introduced will affect the distribution of the
target events of interest. Reducing the simulation length,
while simultaneously retaining the ease and flexibility of
simulation is an important issue, receiving increasing atten-
tion. But, will the application of all these techniques still
make simulation an appealing tool, compared to analytical
approaches?

4. Conclusion
This paper has promoted the idea that simulation is a use-

ful tool for analysing and understanding complex systems.
As the complexity of systems increases (perhaps to the point
where analysis techniques will fail to be useful), simulation
or a combination of simulation with other techniques may
be essential. We note that simulation can be very good at
modelling the middle of distributions, but there are numer-
ous problems when trying to modelling the tails of distri-
butions. Yet it is the tails which are the most relevant part
of the distribution from the perspective of providing predic-
tions of future correct behaviour.

We must recognize that both simulation and analysis ap-
proaches have weaknesses. This paper, therefore, poses the
following research questions. What are the essential roles
of simulation? How can simulation be used, in a statisti-
cally valid way? How can simulation be combined with
other analysis approaches to produce accurate analysis of
systems?
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