
Faculdade de Engenharia da Universidade do Porto
Departamento de Engenharia Electrotécnica e de Computadores

A Framework for the Transparent Replication
of Real-Time Applications

By

Luís Miguel Rosário da Silva Pinho

A dissertation submitted in partial fulfilment of the requirements for the degree of
Doctor in Electrical and Computer Engineering

September 2001

Doctoral Committee:

Prof. Joaquim Silva GOMES Chairman

Prof. Andy WELLINGS
Prof. Paulo VERÍSSIMO External Examiners
Prof. Eduardo TOVAR

Prof. Adriano Silva CARVALHO
Prof. Pedro SOUTO Internal Examiners
Prof. José Magalhães CRUZ

Prof. Francisco VASQUES Supervisor

A Framework for the Transparent Replication
of Real-Time Applications

Abstract

Computer control systems are used in a wide range of application domains, such as
factory automation, process control, robotics, automotive systems, etc. The development
of such applications is a complex task, often requiring the integration of fault tolerance
and real-time properties. The use of Commercial-Off-The-Shelf (COTS) components
presents a significant new challenge, since these components do not usually support fault
tolerance mechanisms. Moreover, the use of the pre-emptive fixed priority
computational model in these applications presents significant problems, due to the
increased difficulty in managing the determinism of replicated application components.
Therefore, current computer control applications are becoming more complex to develop
and maintain, since they are required to implement the mechanisms needed to support
replication and distribution.

The main research objective of this thesis is to develop a transparent and generic
framework to support the replication of multitasking applications, considering the use of
COTS components. The target of such framework is to allow the development of
applications focusing on the requirements of the controlled system, and abstracting from
the low-level details of replication and distribution mechanisms.

In this thesis, a framework for the development of fault-tolerant real-time applications
is proposed, based on the transparent replication of application components. The main
focus is given to the support of Ada 95 applications conforming to the Ravenscar profile.
The proposed framework provides a set of generic task interaction objects, which are
used as the basic building blocks of the application. These objects provide the usual task
interaction mechanisms used in hard real-time applications, and allow applications to be
developed without considering replication and distribution issues.

The communication support for the replication of software components is provided by
a set of atomic multicast and consolidation protocols, guaranteeing fault-tolerant
real-time communication in CAN networks. These protocols maintain the predictability
of CAN message transfers in spite of the CAN inconsistent message transfer,
considering the possible occurrence of either bus or nodes’ network interface errors.

A prototype was also developed to assess the expressiveness of the Ravenscar profile
for the development of fault-tolerant real-time systems, considering the proposed generic
and transparent approach.

Keywords: Real-Time Systems, Fault-Tolerant Systems, COTS, Ada 95, CAN Networks.

Uma Infra-Estrutura para a Replicação Transparente
de Aplicações de Tempo-Real

Resumo

Os sistemas de controlo por computador são utilizados num largo espectro de
aplicações, tais como automação industrial, controlo de processos, robótica, sistemas
automóveis, etc. O desenvolvimento destas aplicações é uma tarefa complexa, devido à
necessidade de integrar os requisitos de tempo-real e tolerância a falhas. A utilização de
componentes de uso genérico apresenta um novo desafio, pela ausência de suporte a
mecanismos de tolerância a falhas. Também a utilização do modelo computacional
preemptivo por prioridades fixas, introduz problemas adicionais, devido à dificuldade
acrescida de gerir o determinismo dos componentes replicados das aplicações. É assim
que as aplicações de controlo por computador são cada vez mais complexas para
desenvolver e manter, porque é necessário que implementem directamente os
mecanismos necessários ao suporte de replicação e distribuição.

O principal objectivo desta tese é o de desenvolver uma infra-estrutura transparente e
genérica para suportar a replicação de aplicações multitarefa, considerando a utilização
de componentes de uso genérico. O objectivo desta infra-estrutura é permitir que o
desenvolvimento das aplicações seja focalizado nos requisitos apresentados pelo sistema
controlado, abstraindo-se dos mecanismos de baixo nível de suporte à replicação e
distribuição.

Neste tese, é proposta uma infra-estrutura para o desenvolvimento de aplicações de
tempo-real e tolerantes a falhas, baseado na replicação transparente de componentes da
aplicação. O foco principal é dado ao suporte a aplicações Ada 95, em conformidade
com o perfil Ravenscar. A infra-estrutura proposta disponibiliza um conjunto de objectos
para interacção entre tarefas, que são usados como blocos básicos para o
desenvolvimento das aplicações. Estes objectos implementam os mecanismos de
interacção entre tarefas normalmente utilizados em aplicações de tempo-real crítico, e
permitem um desenvolvimento das aplicações sem a necessidade de serem considerados
os detalhes de replicação e distribuição.

O suporte de comunicações para a replicação dos componentes da aplicação é
disponibilizado por um conjunto de protocolos para difusão atómica e para consolidação
de réplicas, garantindo comunicação de tempo-real e tolerante a falhas em redes CAN.
Estes protocolos mantêm a previsibilidade das comunicações em CAN, apesar das
inconsistências na transmissão de mensagens, considerando a possível ocorrência de
erros tanto no barramento como nas interfaces de rede dos nós.

Um protótipo foi também desenvolvido para avaliar a expressividade do perfil
Ravenscar para o desenvolvimento de sistemas de tempo-real e tolerantes a falhas,
considerando a abordagem genérica e transparente proposta.

Palavras-chave: Sistemas de Tempo-Real, Sistemas Tolerantes a Falhas, Componentes
de uso Genérico, Ada 95, Redes CAN.

Une Infrastructure Logicielle pour la Réplication
Transparente d’Applications Temps-Réel

Résumé

Les systèmes de contrôle-commande sont utilisés dans une grande plage de domaines
d’application, tels que l’Automatique Industrielle, le Contrôle de Processus, la
Robotique, etc. Le développement de ce type d’applications est une tâche complexe,
conséquence du besoin d’intégration des propriétés à la fois de tolérance aux fautes et de
temps-réel. L’utilisation de matériel sur étagère, c’est-à-dire du matériel à large diffusion
non conçu pour un domaine d’applications particulier, présente un défi supplémentaire,
car ce type de matériel ne possède pas de mécanismes particuliers pour la tolérance aux
fautes. En plus, l’utilisation du modèle préemptif à priorités fixes pose des problèmes
supplémentaires, dus aux difficultés de gestion de la réplication de ses composants et de
son déterminisme. En conséquence, le développement de ce type d’applications devient
de plus en plus complexe, car des mécanismes de distribution et de réplication doivent
être intégrés dans le logiciel applicatif.

Le principal objectif de cette thèse est celui de développer une infrastructure logicielle
générique pour la réplication transparente d’applications multitâche, en considérant
l’utilisation du matériel sur étagère. La cible majeure de cette infrastructure est de
permettre la focalisation du développement sur les besoins du système contrôlé, en
créant une abstraction sur les détails concernant la réplication et la distribution.

Dans cette thèse, une infrastructure logicielle, basée sur la réplication transparente des
composants applicatifs, est proposée pour le développement d’applications temps-réel
tolérantes aux fautes. La cible principale de cette infrastructure est le développement
d’applications Ada 95, en accord avec le profil Ravenscar. L’infrastructure proposée
fournie un ensemble d’objets génériques utilisés pour la construction d’applications. Ces
objets fournissent les mécanismes traditionnels pour l’interaction de tâches dans des
systèmes temps-réel strict, permettant le développement d’applications, sans que les
questions de réplication et de distribution soient prises en compte.

La réplication de composants est supportée par un ensemble de protocoles de
diffusion atomique et de consolidation de données, qui garantissent la communication
temps-réel et tolérante aux fautes. Ces protocoles garantissent la prévisibilité du transfert
de messages, malgré les inconsistances du réseau CAN.

Un prototype a été développé pour évaluer l’aptitude du profil Ravenscar pour le
développement des systèmes temps-réel tolérants aux fautes, en considérant l’approche
transparente et générique proposée.

Mots-clés: Systèmes Temps-Réel, Systèmes Tolérants aux Fautes, Matériel sur Etagère,
Ada 95, Réseaux CAN.

para a Ana
e

para os meus Pais

Acknowledgements

First, I would like to thank my supervisor, Francisco Vasques, for his permanent
support. From the very beginning his dedication was invaluable and without his
suggestions and reviews the thesis would never come to a worthwhile end.

I would also like to thank the jury elements for accepting to be members of the
examination committee, and for the time invested in the evaluation of the thesis.

I benefited greatly from fruitful discussions with many other people. I want to thank
them for their comments and suggestions that significantly increased the quality of this
work. Particularly, I would like to thank Ian Broster, Alan Burns, António Casimiro,
Luis Rodrigues, José Rufino, Paulo Veríssimo and Andy Wellings.

My colleagues and friends in the IPP-HURRAY! research group. Eduardo, Mário,
Luis, Berta, Filipe, Ana, Bertil, Sandra e Veríssimo: thanks for the valuable discussions
and for accepting extra work. Without your support and friendship I would come across
much more difficulties.

I also acknowledge the support provided by my numerous colleagues in the Computer
Engineering Department. Special thanks go to Dulce, Helena and Miguel for their
continuous encouragement.

Thanks also to the Polytechnic Institute of Porto (IPP) and to its School of
Engineering (ISEP) for the support provided, which was essential to the conclusion of
this work.

I would also like to acknowledge the financial support provided by the Ministério da
Educação, through the PRODEP program, by the FCT (Fundação para a Ciência e
Tecnologia), through the PRAXIS program, by FLAD (Fundação Luso-Americana para
o Desenvolvimento) and by DEMEGI-FEUP.

Special thanks go to my family for always being present. Particularly, I would like to
thank my parents, for giving me all their support (sometimes difficult I imagine) during
all the different periods of my life.

Finally, I want to emphasise the support provided by my wife, Ana. Without her
permanent encouragement and her will to sacrifice our weekends (often forcing me to
work more than I was willing to), I am sure that I would have not finished this thesis.
Her presence has made everything possible.

Porto, 21 September 2001

Luís Miguel Pinho

i

Table of Contents

Chapter 1 – Overview.. 1
1.1. Introduction ... 1
1.2. Research Context .. 2
1.3. Research Objective.. 5
1.4. Research Contributions ... 6
1.5. Thesis Organisation... 6

Chapter 2 – Definition of the System Architecture.. 9
2.1. Introduction ... 9
2.2. Definitions... 10

2.2.1. Real-Time Definitions .. 10
2.2.2. Fault Tolerance Definitions .. 10

2.3. Requirements... 11
2.3.1. Real-Time Requirements .. 11
2.3.2. Fault Tolerance Requirements .. 13
2.3.3. Genericity and Transparency Requirements ... 14
2.3.4. Interconnectivity Requirements .. 15

2.4. The DEAR-COTS Architecture .. 15
2.5. Fault-Tolerant Real-Time Applications in DEAR-COTS 17

2.5.1. The Timely Computing Base in the HRTS... 18
2.5.2. Error Detection and Recovery .. 18
2.5.3. Relationship with the Research Objectives... 20

2.6. Summary ... 20

Chapter 3 – Analysis of Previous Relevant Work ... 21
3.1. Introduction ... 21
3.2. Fault-Tolerant Real-Time Systems ... 22

3.2.1. Software-Based Fault Tolerance... 23
3.2.2. The Timed Messages Concept .. 24
3.2.3. Replication Support .. 26

3.3. Schedulability Analysis of Real-Time Applications 27
3.3.1. Single Node Scheduling.. 29
3.3.2. Distributed Scheduling ... 32

3.4. The Controller Area Network.. 33
3.4.1. Error Detection and Recovery Mechanisms ... 34
3.4.2. Response Time Analysis of CAN Networks... 35
3.4.3. Network Load ... 36
3.4.4. Inaccessibility Analysis of CAN Networks .. 36
3.4.5. Inconsistencies in Messages’ Transfer.. 37

3.5. The Ada 95 Language ... 40
3.5.1. Ada Support for Real-Time .. 40
3.5.2. Ada Support for Fault Tolerance .. 41

ii

3.5.3. The Ravenscar Profile... 42
3.6. Summary ... 44

Chapter 4 – Replication Management Framework .. 47
4.1. Introduction ... 47
4.2. Replication Model ... 48

4.2.1. Replication Unit.. 49
4.2.2. Component Failure Assumptions.. 50
4.2.3. Component Flexibility .. 51

4.3. Framework Structure... 52
4.3.1. Guaranteeing Replica Determinism.. 53

4.4. Object Repository.. 54
4.4.1. Simple Program Example ... 55
4.4.2. Interaction Internal to a Component ... 57
4.4.3. Interaction Between Groups ... 61
4.4.4. Interaction with the Soft Real-Time Subsystem 62
4.4.5. Interaction with the Controlled System .. 63
4.4.6. Configured Application Example ... 64

4.5. HRTS Replica Manager .. 66
4.5.1. Property Recorder Module.. 67
4.5.2. Replication Support Module... 69
4.5.3. Application Support Module .. 74
4.5.4. Error Manager Module ... 75

4.6. Summary ... 76

Chapter 5 – Fault-Tolerant Real-Time Communication .. 77
5.1. Introduction ... 77
5.2. Communication Requirements .. 78

5.2.1. Failure Assumptions ... 79
5.3. Communication Manager .. 80

5.3.1. Communication Manager Interface .. 81
5.3.2. Configuration Module... 83
5.3.3. Atomic Multicasts... 84

5.3.3.1. IMD Protocol... 85
5.3.3.2. 2M Protocol... 87
5.3.3.3. 2M-GD Protocol.. 89

5.3.4. Message Fragmentation .. 91
5.3.5. Replica Consolidation... 92
5.3.6. Guaranteeing Communication Properties ... 94

5.4. Response Time Analysis ... 94
5.4.1. Integrating Network Inaccessibility in the Response Time Analysis.... 95
5.4.2. Response Time Analysis of the IMD Protocol 96
5.4.3. Response Time Analysis of the 2M Protocol.. 97
5.4.4. Response Time Analysis of the 2M-GD Protocol 98
5.4.5. Response time Analysis of the Concatenate protocol 100
5.4.6. Response Time Analysis of the Consolidate Protocol 101

iii

5.4.7. Integrating Communication Overheads in the
Response Time Analysis... 103

5.5. Numerical Example... 104
5.6. Comparison with Similar Approaches .. 108
5.7. Summary ... 109

Chapter 6 – Lessons Learnt from the Framework Implementation.......................... 111
6.1. Introduction ... 111
6.2. Prototype Implementation ... 111

6.2.1. Object Repository ... 113
6.2.2. Replica Manager ... 118
6.2.3. Communication Manager ... 121
6.2.4. Prototype Limitations ... 124

6.3. Application Configuration... 126
6.3.1. Object Replacement.. 127
6.3.2. Framework Configuration... 130

6.4. Lessons Learnt .. 130
6.4.1. Protected Entries ... 130
6.4.2. Dynamic Allocation of Tasks and Protected Objects 131
6.4.3. Dynamic Priorities .. 131
6.4.4. Timed Entry Calls... 131
6.4.5. Final Considerations ... 132

6.5. Summary ... 132

Chapter 7 – Conclusions .. 135
7.1. Introduction ... 135
7.2. Research Contributions ... 136

7.2.1. DEAR-COTS Hard Real-Time Subsystem... 136
7.2.2. Transparent Framework for Application Replication 137
7.2.3. Fault-Tolerant Real-Time Communication... 138
7.2.4. Evaluation of the Ravenscar Restrictions ... 138

7.3. Future Work .. 139

Annex – CAN Behaviour in the Presence of Errors.. 141
A.1. Introduction ... 141
A.2. SAE Benchmark.. 141
A.3. Pessimism Analysis... 145
A.4. Summary ... 147

References .. 149

Chapter 1

Overview

1.1. Introduction

Computer control systems are used in a wide range of application domains. They can be
found in areas such as factory automation, process control, robotics, automotive systems,
avionics and space applications. In all of these applications, computers are used to
control the surrounding environment, and they are expected to react to external stimuli
according to the requirements of the controlled environment. As the majority of the
targeted application domains present timing requirements, their correct behaviour is
expected both in the value and timing domains. Therefore, these systems are also
considered as being real-time systems, where the correctness of the system depends not
only on the logical result of computation, but also on the time at which the results are
produced (Stankovic, 1988).

Furthermore, computer systems are increasingly expected to perform correctly even in
the presence of malfunctioning components. They are required to provide a service in
accordance with the specified behaviour in spite of faults, in order to provide fault
tolerance to the supported applications (Laprie, 1992). It is thus essential the integration
of both the fault tolerance and the real-time requirements of the supported applications in
the development of computer control systems.

Currently, Commercial Off-The-Shelf (COTS) components are progressively being
considered for the development of computer control systems. Using COTS components
as the systems’ building blocks provides a cost-effective solution, and at the same time
allows for an easy upgrade and maintenance of the system. However, the use of COTS
components implies that specialised hardware will not be used to guarantee fault-tolerant
and real-time behaviour. As COTS hardware and software do not usually provide the
confidence level required by fault-tolerant real-time applications, these requirements
must be guaranteed by a software-based fault tolerance approach. This implies that the
application of COTS technology to computer control problems is not a simple
engineering task.

The recent trend for incorporating pre-emptive multitasking applications in
application areas with the above mentioned requirements, increases the complexity of
application development. Traditionally, fault-tolerant real-time applications were
supported by cyclic executives, providing determinism guarantees (concerning real-time
and fault tolerance properties). Nevertheless, using a pre-emptive model increases the
system flexibility and decreases development costs (Locke, 1992). Therefore, it is

Overview

2

essential to provide applications with the necessary support for the development of
pre-emptive multitasking computer control applications, whilst guaranteeing the required
fault tolerance and real-time properties of the controlled system.

These requirements can be guaranteed by providing application redundancy through
the replication of application software in a distributed context. Consequently, this
requires replication management mechanisms, supported by appropriate communication
protocols providing the consistent multicast of information and consolidation of
replicated components. However, these mechanisms usually increase the complexity of
the application development, since they are directly implemented within the application.
A transparent and generic programming model must be devised, allowing applications to
be developed without simultaneously considering both the system requirements and the
distribution and replication issues.

1.2. Research Context

A computer control system (Figure 1.1) is usually constituted by three subsystems
(Kopetz, 1997): the computer system, the controlled system, and a supervision and
management system (a human operator or some higher-level computer system). The
computer system interacts with the controlled system through input/output devices,
which allow the computer system to acquire the state of the controlled environment
(sensors) and to change its state (actuators). It interacts with the supervision and
management system either through a local console, or through some network interface.

Computer
System

Control
Application

Sensors/
ActuatorsControlled

System

Supervision and
Management

System

Figure 1.1. Computer control system

The computer system can be constituted by several applications, which control the
required behaviour of the controlled system. These applications must also provide the
fault tolerance and the real-time properties required by the controlled system.

Often the computer system is required to perform multiple concurrent actions, since
the controlled system is inherently concurrent. Therefore, applications are constituted by
several tasks (processing units), which may communicate with each other using some
form of inter-task interaction mechanisms.

Figure 1.2 presents the example of a simple computer control application, constituted
by four tasks, implementing a simple control loop between a sensor and an actuator. The
Sensor task is responsible for reading the value of the sensor and passing it to the
Controller task, which in turn performs the control algorithm. An Actuator task is then

Overview

3

responsible for the actual writing of the output. The Alarm task is responsible for some
type of notification in case the Controller task signals an abnormal condition.

ControllerSensor Actuator

Alarm
Tasks Task interaction

mechanisms

Figure 1.2. Computer control application

A common characteristic among computer control applications is their real-time
behaviour. This behaviour is specified in compliance with the system timing
requirements. The computer system must process the inputs from the environment and
provide the adequate output within an upper-bounded time interval, which is dictated by
the requirements of the controlled system. For instance, in Figure 1.2, it is expected that
the Actuator task outputs the result of the control algorithm, within a time interval
related to the arrival of the Sensor input. This time interval is imposed by the controlled
system.

The simplest architecture that can be considered for a computer control system is
represented in Figure 1.3. In this type of architecture (centralised), there is only one
single computer unit, which has all the necessary capabilities to interact with the
environment (the controlled system), thus all input/output capabilities. It also supports
all the applications required for the correct behaviour of the system.

Computer
SystemApplication A

Application B

Sensors/
ActuatorsControlled

System

Figure 1.3. Centralised computer system

However, there are many advantages in using a distributed system instead of a
centralised one. In such distributed architecture (Figure 1.4), a broadcast communication
network is used as a replacement for the point-to-point links (between the
sensors/actuators and the computer system). Additionally, application processing is no
longer performed by a single computer unit, but by several units (nodes), interconnected
via the same network.

By providing a distributed architecture to the development of computer systems, the
overall throughput of the system can be increased, as more processing power is available
for the applications. Furthermore, specialised hardware (e.g. specific sensor/actuator
interfaces, human-machine interfaces, etc) can be used to interface the real-time
computer system with the environment, while general-purpose nodes can be used for the
processing activities.

Overview

4

Application A

Application B

Broadcast
Network Sensors/

Actuators

Computer System
Node

Figure 1.4. Distributed computer system

By using a distributed environment, it is also possible to provide redundancy to the
computer control application, increasing the reliability of the system, since application
components can be replicated and thus single points of failure can be avoided in the
system (Figure 1.5). Using this approach, the broadcast network is also responsible for
supporting the communication mechanisms related to the redundancy management.

Centralised computer control systems can also benefit from distributed architectures,
since redundancy can be provided to the computer control application. One or more
nodes can execute replicas of all (or some) of the tasks of the original node. Either all or
some of the nodes are responsible for the interaction with the controlled system.

Application A

Network

Application A Replica

Application B

Application B Replica

Figure 1.5. Redundancy in a distributed system

Whichever the means to achieve redundancy, a real-time communication network
must be used to provide communication between the nodes, in order that consensus
between them can be achieved within an upper-bounded time interval. The Controller
Area Network (CAN) (ISO, 1993) is a field-level broadcast network, suitable for
computer control systems. Studies are available on how to guarantee real-time
requirements of CAN messages, thus providing pre-run-time schedulability conditions to
guarantee the real-time requirements of the system. However, temporary network
inaccessibility (Rufino and Veríssimo, 1995) and inconsistent message delivery (Rufino
et al., 1998) present impairments to guarantee fault-tolerant communication. Therefore,
communication services providing fault tolerance properties must be developed, to
guarantee that replicated components of the application observe the same consistent state
of the controlled system, whilst guaranteeing predictability of message transfers.

Concerning the development of computer control applications, it is necessary to
consider both the real-time and fault tolerance requirements of the controlled system,
and, at the same time, the complexity of the mechanisms required to support replication
and distribution. Such applications would become easier to develop and maintain if a

Overview

5

transparent and generic development approach were provided, hiding from the
application the details of replication and distribution.

The use of the pre-emptive fixed priority computational model increases the
complexity associated to the development of computer control applications.
Traditionally, a scheduling table comprising the sequence of task executions is
determined off-line (cyclic-executive model). Therefore, the programming model for the
development of these applications is simpler, not requiring complex task interaction
mechanisms, because it fixes the sequence of tasks’ executions. By using the
pre-emptive fixed priority model of computation, the system flexibility is increased, and
the design effort is decreased. However, mechanisms for task interaction become more
complex, since there is no fixed pattern for the sequence of tasks’ executions.

The Ada 95 (ISO/IEC, 1995) language allows the development of applications using
the pre-emptive fixed priority model, and is widely used in the domain of fault-tolerant
real-time systems. Nevertheless, its multitasking mechanisms are rarely used, since they
are considered to be too complex to be analysable and introduce inefficiencies and
non-determinism in the supported applications. The Ada 95 Ravenscar profile (Burns,
1997) defines a subset of the language’s multitasking mechanisms, considered suitable
for the development of efficient and deterministic real-time applications. It allows
multitasking pre-emptive applications to be considered for the development of
fault-tolerant real-time systems, whilst providing efficient and deterministic applications.
Nevertheless, it is considered that further studies are necessary for its use in replicated
and distributed systems (Wellings, 2000). The interaction between multitasking
pre-emptive software and replication introduces new problems that must be considered,
particularly for the case of a transparent and generic approach.

1.3. Research Objective

Considering the presented context, it is important to provide a generic and transparent
programming model for the development of computer control applications. The goal is
to decrease the complexity of application development, by precluding the need for the
simultaneous consideration of system requirements and interaction between multitasking
and replication/distribution. This programming model must be supported by the
appropriate communication mechanisms, guaranteeing that messages are consistently
delivered to the application replicas, and also that replicated outputs are consolidated
according to pre-defined rules.

Therefore, the main objective of this thesis is to propose such a programming model
for the development of pre-emptive multitasking applications on top of Commercial
Off-The-Shelf components. The central proposition of this thesis is that pre-emptive
fixed priority applications can be built using a generic and transparent programming
model, without having to simultaneously consider the system requirements and the
interaction between multitasking and replication/distribution issues.

This can be accomplished by means of providing a transparent support for the
replication of software components, allowing Ravenscar applications with different
structures and configurations to be developed, and considering a close integration
between the programming mechanisms and the underlying communication
infrastructure.

Overview

6

1.4. Research Contributions

Considering the above mentioned research objective, the main contributions of this
thesis are:

- A transparent framework for the development of replicated Ravenscar
applications.
This thesis proposes a generic and transparent framework for the development
of replicated software components (Pinho and Vasques, 2000), based on the use
of generic inter-task interaction objects (Pinho et al., 2001a; Pinho et al.,
2001b). The use of these objects allows applications to be developed without
considering replication and distribution issues in the programming phase.
Afterwards, these generic objects can be instantiated with application-specific
configuration issues, only introducing the replication and distribution
mechanisms in a later configuration phase.

- Fault-tolerant real-time communication mechanisms in CAN networks.
In this thesis the communication support for the replication of the software
components is also considered. Therefore, this thesis proposes a set of atomic
multicast and consolidation protocols for CAN networks (Pinho et al., 2000b;
Pinho and Vasques, 2001b; Pinho and Vasques, 2001d). In order to guarantee
the real-time behaviour of the supported applications, a set of pre-run-time
schedulability conditions is devised (Pinho and Vasques, 2001a; Pinho and
Vasques, 2001c), enabling the off-line timing analysis of the network, even in
the presence of errors (either caused by the bus or the nodes’ network interface)
(Pinho et al., 2000a).

The prototype implementation of the proposed framework is also described. This
prototype was used to assess the expressiveness of the Ravenscar profile for the
development of fault-tolerant real-time systems, considering the proposed generic and
transparent approach.

1.5. Thesis Organisation

This thesis is structured as follows. Chapter 2 provides an overview of the system
architecture used as the support for the development of the replication management and
communication mechanisms. Some basic definitions are presented, together with the
fault tolerance and real-time requirements imposed by the targeted application domains.

Chapter 3 presents a survey of relevant related work in the field of fault-tolerant
real-time systems. It presents an overview of relevant system architectures developed to
support these systems, and also some previous relevant work in the areas of
software-based fault tolerance and real-time schedulability analysis. This chapter also
provides a survey of the technologies addressed in this thesis, namely the Ravenscar
profile of the Ada 95 language and the Controller Area Network.

Chapters 4 and 5 present the main research contributions of this thesis. Chapter 4
proposes a framework supporting the replication of software components. It explains
how replication is achieved in applications, and how these applications can be
configured to address their real-time and fault tolerance requirements. Afterwards, the

Overview

7

repository of generic objects for task interaction available to applications is presented,
together with the underlying software layer, intended to support these objects.

Chapter 5 presents how fault-tolerant real-time communication in CAN networks is
achieved. The problem of inconsistency in CAN message deliveries is addressed through
a set of atomic multicast and consolidate protocols for fault-tolerant real-time
communication in CAN. A set of pre-run-time schedulability conditions is also
presented, enabling the timing analysis of the supported real-time communication
streams.

Finally, Chapter 6 presents the prototype implementation of the proposed framework,
based on the mechanisms and protocols proposed in Chapters 4 and 5. The goal of this
implementation was the assessment of the expressiveness of the Ravenscar profile for
the implementation of the proposed approach.

This thesis concludes with Chapter 7, which summarises the presented contributions
and identifies topics for further research. An Annex is also provided, presenting a study
addressing the behaviour of CAN networks in the presence of either bus or nodes’
network interface errors.

Chapter 2

Definition of the System Architecture

2.1. Introduction

The main purpose of the DEAR-COTS (Distributed Embedded ARchitecture using
Commercial Off-The-Shelf components) project1 is the specification of an architecture
based on the use of COTS components, intended for the development of computer
control systems. The project addresses several issues, at the communication and
programming levels, such as: the impact of real-time and fault tolerance requirements on
the communication architecture, distributed fault-tolerant concurrent applications and the
real-time support environment.

The generic DEAR-COTS architecture (Veríssimo et al., 2000b), allows the
integration in the same system of applications with different real-time and fault tolerance
requirements, whilst guaranteeing the requirements imposed by the more stringent
applications.

The research presented in this thesis was performed within the DEAR-COTS Hard
Real-Time Subsystem (Pinho and Vasques, 2000). The goal was to provide
DEAR-COTS with a generic and transparent framework, intended for the development
of fault-tolerant real-time applications.

This chapter presents the DEAR-COTS architecture, and how it can be used to
develop fault-tolerant real-time applications. The remainder of the chapter is structured
as follows. Section 2.2 provides the basic concepts and definitions in the areas of
real-time and fault tolerance, which are of relevance for the definition of the system
architecture.

Section 2.3 presents some of the requirements commonly found in computer control
systems, which were considered in the development of the DEAR-COTS architecture.
The architecture itself is presented in Section 2.4. Finally, Section 2.5 presents the main
guidelines for the development of fault-tolerant real-time applications, using the
DEAR-COTS Hard Real-Time Subsystem.

1 Project DEAR-COTS (Leader: Paulo Veríssimo) is funded by the FCT as project
PRAXIS/P/EEI/14187/1998. The project members are: the University of Lisbon, the University of Porto, the
Polytechnic Institute of Porto, and the Technical University of Lisbon.

Definition of the System Architecture

10

2.2. Definitions

2.2.1. Real-Time Definitions

When the correctness of the system depends not only on the logical result of the
computation, but also on the time at which the results are produced, the system is
classified as a real-time system (Stankovic, 1988). Such kind of systems must process
inputs from the environment and provide the adequate outputs within an upper-bounded
time interval (relative deadline), which is dictated by the requirements of the controlled
system.

It is therefore necessary to analyse its timing behaviour, comparing the worst-case
response time (WCRT) of the application tasks with the relative deadline required by the
controlled system. The worst-case response time of an application task is defined as the
time interval between the arrival of a request from the controlled system and the
completion of the required processing (Joseph and Pandya, 1986). The relative deadline
can be defined as the maximum time interval between the arrival of the request and the
completion of the related processing. It is obvious that, in order to guarantee the timing
requirements of the controlled system, the worst-case response time of the application
tasks must be smaller or equal to the associated relative deadline. In this case, the system
is considered to be schedulable. Schedulability analysis is thus defined as the process to
assess if the responsiveness of the system is sufficient to guarantee the required timing
bounds.

Applications tasks may have different types of timing requirements, depending on the
consequences of not being completed before their deadlines (Burns, 1991). When the
benefit of the action to be performed by the task is zero or negative if it is performed
after the deadline, the task is defined as hard real-time. If missing the deadline does not
imply compromising the integrity of the system, the task can be defined as a soft
real-time task. It is important to note that applications may have a set of tasks with
different timing requirements. Nevertheless, if the application contains at least one hard
real-time task, the application is defined as being a hard real-time application.

2.2.2. Fault Tolerance Definitions

Fault tolerance is defined as the ability of a system to provide a service complying with
the specification in spite of faults (Laprie, 1992). It is one of the means to achieve
dependability in computer systems, that is, the property of a computer system such that
reliance can justifiably be placed on the service it delivers.

A fault can be defined as a potential source of system malfunction. It can be caused
by some external interference with the system (e.g. electro-magnetic interference), or it
can exist in the system itself (e.g. a design fault in the application software). A fault by
itself may not produce an incorrect behaviour of the system, since it may remain silent.
An error only occurs when the effect of a fault is observed. If the error propagates
through the boundaries of the system, it causes a failure. These notions are not
self-contained, since a failure in a component produces a fault of the system that
contains the component, or in other components that interact with it (Laprie, 1992).

Definition of the System Architecture

11

Therefore, the objective of providing fault tolerance is to preclude the failure of the
system in the presence of faults, caused by the failure of one of its components.

The simplest assumption that can be made on the failure modes of a component is that
it only fails by stopping to produce results (Powell et al., 1988). In such case, the
component is assumed to be fail-silent. The less restrictive assumption is that a
component can exhibit arbitrary (or Byzantine) failures. In this case, the component is
assumed to be fail-uncontrolled, and can fail by not producing any result, by producing
an incorrect result, by producing a result too early or too late, or by unexpectedly
producing a result.

One of the approaches to guarantee the fault tolerance requirements of computer
control applications is by error compensation. This is achieved by providing some form
of redundancy, replicating some of the system components, in order to detect errors by
some form of voting between replicas. A usual example is Triple Modular Redundancy
(TMR), where a component is constituted by three replicas, and the output of the
component is the result of the comparison of the individual replicas’ outputs. However,
this approach does not provide tolerance to software design faults, which must be
addressed by means of design diversity.

2.3. Requirements

2.3.1. Real-Time Requirements

Since there is the need to guarantee that the timing requirements of the controlled system
are met, it is necessary to analyse the response time of the application tasks, in order to
compare them with the defined set of timing requirements. In hard real-time computer
control applications it is necessary to guarantee a priori that deadlines are met.
Therefore, some sort of off-line analysis must be performed, to determine the worst-case
response time of application tasks and to make the comparison with the system imposed
deadlines, guaranteeing the schedulability of the task set before execution. This
pre-run-time schedulability analysis requires a priori knowledge of the tasks'
characteristics, which fortunately is possible in most of computer control applications.

In the controlled system, different devices may require different application
behaviours. Some devices require specific time intervals to be kept between consecutive
sampling, while others may sporadically require immediate processing. Consequently,
applications are required to support tasks with different behaviours: periodic or sporadic.
A periodic task is cyclically released with a defined time interval between release
requests, while a sporadic task is released in response to some change of state in the
environment.

A periodic task is characterised by its period (time interval between consecutive
arrivals), its worst-case execution time (maximum time to execute the task program per
period, without considering the existence of other tasks) and its relative deadline
(maximum duration for the response to be performed, related to the instant of the initial
release request). For the case of a sporadic task, since their release is usually requested

Definition of the System Architecture

12

by some event, the minimum time interval between requests is used instead of the
period.

time

Task τ2

t1 t2 t3

Task executing Input arrival Clock

Time-
triggered

Event-
triggered

Task τ1

Figure 2.1. Time-triggered vs. event-triggered

Therefore, it is necessary to support both the event-triggered and the time-triggered
model for task activation. In the event-triggered model, tasks are released when a state
change of the system is detected (sporadic tasks). Conversely, time-triggered tasks are
initiated at predefined points in time (periodic tasks). By allowing the simultaneous
execution of both sporadic and periodic tasks, applications are not restricted to just a
specific model. For instance, in Figure 2.1, task τ1 follows the time-triggered model,
since although the external event occurs at instant t2, the task only becomes ready for
execution by the passage of time (clock) at instant t3. On the other hand, task τ2 follows
the event-triggered model, as it becomes ready for execution when the event occurs.

Since it is expected that tasks often need to share information and to synchronise, the
application is also required to allow tasks to interact with each other. Thus, it is
necessary to provide mechanisms allowing tasks to interact without compromising the
integrity of the data.

τ1τ1 τ2τ1τx
τ1τ1τy

Network
Interface

Other nodes
trying to

communicate

Other tasks
trying to

communicate

Node 1 Node 2

Figure 2.2. Distributed interaction

Additionally, as real-time applications can also be distributed over the system nodes,
there will be real-time tasks interacting through the network (Figure 2.2). It is obvious
that, in order to guarantee the real-time requirements of the application, a network with
real-time characteristics must also be used. Furthermore, the response time of the

Definition of the System Architecture

13

messages depends not only on the scheduling of tasks in its node, but also on the
scheduling of messages in the network. As there could be several messages queued to be
transferred, the response time analysis of the task set must consider the interference of
the overall message scheduling.

In Figure 2.2, when task τ1 in node 1 sends a message to task τ2 in node 2, the transfer
of this message will suffer interference from other messages in the network, sent by
other tasks in the system. Moreover, also the scheduling of task τ2 may suffer
interference from the scheduling of messages in the network, if its release is dependent
on the arrival of the message. Therefore, in order to allow the schedulability analysis of
this distributed model the schedulability analysis of the communication network must be
integrated with the schedulability analysis of the processing tasks.

2.3.2. Fault Tolerance Requirements

In computer control applications, unexpected failures of the system must be avoided,
since value or timing requirements would not be met. It is clear that applications must
rely on specific mechanisms to tolerate faults in its components, precluding the failure of
the application. These mechanisms must allow applications to tailor their behaviour in
the presence of faulty components. The controlled system may allow applications to be
designed in order to provide a fail-safe behaviour, thus to correctly and gracefully
shutdown when the required level of fault tolerance can no longer be provided. Or it may
require that a functioning system is maintained (even if in a degraded mode), until the
faulty components can be repaired (or replaced) to restore the required system
capabilities.

This implies that it is necessary to provide continuous and adequate service to the
controlled system, in order to increase the confidence level put in the controlling system.
The use of COTS components presents new difficulties, since it generally implies
fail-uncontrolled components, as they usually do not have the required self-checking
mechanisms (Powell, 1994). The assumption of fail-silent components simplifies the
implementation of the fault tolerance mechanisms, however, achieving fail-silent
behaviour is only possible with the use of self-checking techniques, increasing the
system cost and complexity. So, software-based fault tolerance mechanisms must also
address components with fail-uncontrolled behaviour.

Network

Task A Task B

Task C

Task C
Replica

Task B
Replica

Task A
Replica

OS

Hardware

OS

Hardware

OS

Hardware

Diversity can also
be provided at the
OS and Hardware
level

Redundancy
should also be

provided at the
Network level

Figure 2.3. Redundancy with dissimilar task sets in a distributed system

These requirements can be guaranteed by providing redundancy through the
replication of application software on different nodes within a redundant distributed
system (Figure 2.3). Consequently, this requires support for replication of application

Definition of the System Architecture

14

components, with the consistent dissemination of data to replicated components. It is
necessary to manage the replicated components and to provide the appropriate
communication protocols with consistent multicast of information and consolidation of
replicated components. Fail-uncontrolled components require the use of active
replication (Powell, 1994), since masking the failure of a component requires the
replication of such component in other nodes, with some form of consolidation between
the components’ outputs, in order to give the illusion of a single component.
Consequently, the computer system must be able to manage this component replication,
guaranteeing that whenever a component fails, appropriate actions are performed in
order to preclude the failure of the system.

A broadcast network must be provided for interconnection with the controlled system
and between the processing nodes. As the network is a single point of failure, it should
also be replicated. By distributing the system elements, tolerance to temporary and
permanent external faults can be provided, due to some geographic distribution of the
system. In order to tolerate common mode faults in the system, diversity in the COTS
components may also be required (operating system and hardware platform).

Dissimilar replicated task sets can be provided in each node, thus providing different
execution environments, tolerating temporary design faults (Powell, 1994). Furthermore,
it also increases the system flexibility, as nodes are not just copies of each other,
allowing for a more flexible design of real-time applications. Note that this approach
embodies both distribution motivated fault tolerance (implementing fault tolerance in a
distributed environment) and fault tolerance motivated distribution (implementing
distribution to achieve fault tolerance), approaches that although similar present different
requirements (Powell, 1994).

However, when replicated components are provided, it is necessary to guarantee the
consistency of all replicas, that is, replicated components behave as a single fault-free
component. It must be guaranteed that all replicas work with the same input values and
that they all vote on the final output. Moreover, the different processing speed in
replicated nodes can cause different replicas to respond to the same inputs in different
order, providing inconsistent results if inputs are non-commutative. It is therefore
necessary that replicas present a deterministic behaviour (Poledna, 1994).

There are a number of aspects related with fault tolerance that may interfere with the
real-time performance of the system. By providing replicated software components, it is
necessary to include replication management and fault-tolerant communication in the
timing analysis models. It is also necessary to consider the intervals of time in which
nodes can be disconnected of the network due to temporary periods of error recovery.

When distribution is used, there is also the need for fault-tolerant and time-bounded
communication services. Messages must be correctly and orderly delivered according to
their timing requirements. Therefore, the full integration of the communication
infrastructure with the application fault tolerance mechanisms is required, in order to
obtain the desired level of confidence in the system.

2.3.3. Genericity and Transparency Requirements

Although with similar requirements, computer control applications have several different
structures and configurations. Thus, any solution for building fault-tolerant real-time

Definition of the System Architecture

15

applications must be generic, in order to allow the development of these different kinds
of applications. It is essential to allow tailoring applications to meet their specific
real-time and fault tolerance requirements.

As presented, the targeted applications may require different type of computational
models, encompassing both time-triggered and event-triggered requirements. Moreover,
as the introduction of replication in the system also introduces overheads, applications
may want to provide lower degrees of replication to less critical components, in order to
increase the system’s efficiency. These applications must not be restricted to a particular
configuration, since it is necessary to encompass different structures, ranging from a
redundant centralised system to a completely redundant distributed system.

Since developing computer control applications on top of COTS components is a
difficult task (further complicated with the incorporation of the pre-emptive model), it is
necessary to transparently deal with replication and distribution issues. Application
development must abstract from the low-level implementation details of distribution and
replication, focusing on the requirements of the controlled system.

Hence, a set of generic mechanisms must be provided, which can be parameterised
with both application-specific data and application-specific configuration (distribution
and replication). These mechanisms will be the basic building blocks of
distributed/replicated real-time applications, providing a higher level of abstraction to
developers and maximising the capability to reuse components and mechanisms in
different applications.

2.3.4. Interconnectivity Requirements

Currently, computer control systems demand for more flexibility and interconnectivity
capabilities, while guaranteeing the requirements of the supported real-time applications.
The integration of hard real-time applications, whose requirements have to be
guaranteed, with soft real-time applications, where a more flexible approach can be used,
is also a current requirement in computer control applications. There is the need to
integrate applications with less stringent fault tolerance and real-time requirements with
the hard real-time computer control applications, in order to allow the interoperability of
the computer control system with higher-level systems (e.g. supervision/management).

The interconnection mechanisms must be carefully designed, guaranteeing that
failures in less critical components do not interfere with the guarantees provided to hard
real-time applications. Thus, mechanisms for memory partitioning must be provided, and
also the integrity of data transferred from the different applications must be guaranteed
by appropriate inter-communication mechanisms.

2.4. The DEAR-COTS Architecture

A DEAR-COTS system (Figure 2.4) is built using distributed processing nodes,
where distributed hard real-time and soft real-time applications may coexist. Each
DEAR-COTS node can be constituted by several different subsystems, within which
applications with different requirements will be executed. A DEAR-COTS node is

Definition of the System Architecture

16

characterised by the subsystems it is composed of. There are essentially three basic node
types: Hard real-time nodes (H), Soft real-time nodes (S) and Gateway nodes (H/S).

Wide Area Network
General purpose

S
Node

Controller Area Network
Real-Time

Sensors/
Actuators

S
Node

H/S
Node

H
Node

H
Node DEAR-COTS

Gateway

Figure 2.4. A generic DEAR-COTS system

Hard real-time nodes are those where only the Hard Real-Time Subsystem (HRTS)
exists. Therefore, they will be exclusively used to support hard real-time applications,
which are at the core of the computer control system. Soft real-time nodes only include
the Soft Real-Time Subsystem (SRTS), providing the execution environment for the
remote supervision and remote management of applications.

A Gateway node integrates both subsystems, with two distinct and well-defined
execution environments. The idea is to allow hard real-time components, executing in
the HRTS, to interact in a controlled manner with soft real-time components, executing
in the SRTS.

In order to support distributed/replicated applications, a fault-tolerant and real-time
communication infrastructure based on the Controller Area Network (CAN) (ISO, 1993)
is provided to the set of H and H/S nodes. As there is the need to interconnect these
nodes with the upper levels of the system (e.g. for remote access, remote supervision
and/or remote management), there is a general-purpose network interconnecting H/S and
S nodes.

In the DEAR-COTS architecture, the Timely Computing Base (TCB) model
(Veríssimo et al., 2000a) is used as a reference model to deal with the heterogeneity of
system components and of the environment, with respect to timing properties. The TCB
model deals with the problem of implementing applications with real-time requirements
in environments that are unpredictable or unreliable.

This model requires systems to be constructed with a small control part, a TCB
module, to protect resources with respect to timeliness and to provide basic time related
services to applications. Applications can use the TCB to achieve different levels of
timing guarantees, even in an environment with soft real-time behaviour as the Soft
Real-Time Subsystem. Additionally, the supported hard real-time applications can use
the TCB services to be aware of their timing behaviour, preserving the reliability of the
system. The reasoning is that the TCB module is built as a small control module,
therefore it can be built with greater coverage of failure assumptions (Veríssimo et al.,
2000a).

Definition of the System Architecture

17

2.5. Fault-Tolerant Real-Time Applications in DEAR-COTS

In the set of H and H/S nodes, the Hard Real-Time Subsystem (HRTS) (Pinho and
Vasques, 2000) is intended for the transparent distribution and replication of real-time
applications. Since real-time guarantees must be provided, applications have guaranteed
execution resources, including processing power, memory and communication
infrastructure. This is the main reason for the need of a separated real-time
communication network for the HRTS, where messages are transmitted and processed in
a bounded time interval.

A multitasking environment is provided to support the real-time applications, with
services for task communication and synchronisation (including replication and
distribution support). Applications’ timing requirements are guaranteed through the use
of current off-line schedulability analysis techniques (e.g., the well-known Response
Time Analysis (Joseph and Pandya, 1986; Audsley et al., 1993)).

To ensure the desired level of fault tolerance to the supported real-time applications,
specific components of these applications may be replicated. This replication model
supports the active replication of software (Figure 2.5) with dissimilar replicated task
sets in each node. The goal is to tolerate faults in the COTS components underlying the
application. In order to tolerate common mode faults in the system, COTS components
diversity is also considered (operating system and hardware platform).

τ1

Replica Manager

Communication Manager

τ1‘ τ2 τ2’

τ3 τ3‘

HRTS
Support
Software

Figure 2.5. Replicated hard real-time application

However, using diverse operating systems has to be carefully considered, since in
order to guarantee a transparent approach, the programming environment in each node
must be the same. This can be achieved by using operating systems with a standard
programming interface or by using a programming language that abstracts from the
operating system details. DEAR-COTS considers the use of the Ada 95 (ISO/IEC, 1995)
language in the replicated hard real-time applications, namely the Ravenscar profile
(Burns, 1997), which is a restricted profile of the language tasking model suitable for the
development of efficient and deterministic real-time applications. This solution provides
the same programming model in all nodes, whilst diversity can be provided by using
different compilers and runtimes (Yeh, 1995).

The DEAR-COTS architecture does not address tolerance to application design faults.
Nevertheless, by providing different execution environments in each node, the tolerance
to temporary design faults is increased. Temporary design faults can be tolerated due to
the differences in the replicas’ execution environment (Powell, 1994), since nodes are
considered independent from the point of view of failures. Moreover, dissimilar
replicated task sets in each node also increase the system flexibility, as nodes are not just
copies of each other, allowing for a more flexible design of real-time applications.

Definition of the System Architecture

18

The HRTS Support Software provides the distribution support (including both the
application distribution itself and the replica management) to hard real-time applications.
The goal of the Replica Manager layer is to support hard real-time application objects
required for interaction between distributed and replicated tasks. The Communication
Manager layer is responsible for the adequate communication services, providing a
fault-tolerant and real-time transfer of data.

2.5.1. The Timely Computing Base in the HRTS

In the generic model of DEAR-COTS, the TCB can be used to guarantee the timing
requirements of soft real-time applications, or to increase coverage of timing faults at the
Hard Real-Time Subsystem (Figure 2.6). The different approaches can be combined in
any form, in each particular instantiation of the architecture.

HRTS Sup. Soft.

TCBHRTS Support Software

TCB

HRTS Support Software

TCB

Soft Real-Time Subsystem

(a) (b) (c)

Hard Real-Time
Applications

Figure 2.6. The Timely Computing Base in the HRTS

In the first approach (Figure 2.6a), the TCB is used as an additional hard real-time
application, to deal with the timing requirements of soft real-time applications executing
in the SRTS of the system. In this approach, the Support Software sees the TCB as any
other hard real-time application.

The second approach (Figure 2.6b) is to use the TCB as a timing error detector at the
hard real-time applications level. That is, tasks in the HRTS may use the services of a
TCB to detect timing errors, thus increasing the failure assumption coverage of the
application. In this approach, the TCB would serve as a second independent level of fault
tolerance. However, to the Support Software, it would also appear as one hard real-time
application.

The third approach (Figure 2.6c) is to use the TCB to increase the reliability of the
Support Software itself. In this approach, Support Software tasks use the TCB to detect
their own timing errors. This solution increases the system reliability, since it is possible
to detect both Support Software tasks’ overruns and incorrect communication requests.

2.5.2. Error Detection and Recovery

On the occurrence of faults, they will be masked by component replication, providing
the required fault-tolerant behaviour. However, in the case of permanent (or intermittent)
faults, the system can no longer provide the same level of fault tolerance as it was
designed to. Therefore, recovery actions must be executed.

Definition of the System Architecture

19

Three different approaches are considered in instantiated DEAR-COTS systems. First,
the occurrence of faults may require that only the higher levels of the system are
notified, and no action is taken. Second, it is possible to design applications in order to
provide a fail-safe system, thus to correctly shutdown when the required level of fault
tolerance can not be provided. Finally, applications may attempt to maintain a
functioning system in a degraded mode, until the faulty components can be repaired (or
replaced) to restore the required system capabilities.

Integrating new components in active systems is not an easy task, as these newly
created components are in an “amnesia” state (Powell, 1994), i.e., they have no
knowledge of the system state. This implies that, prior to their activation, their state must
be brought to be consistent with the replicas that continued execution. However, this
state is very application specific, meaning that this transfer cannot be easily performed in
a generic or transparent approach (Powell, 1991; Rushby, 1996; Bondavalli et al., 1998).
Moreover, the efficient transfer of this internal state is highly dependent of the properties
of applications, namely data-flow dependencies among tasks and the way that internal
task state data is replaced by data external to the task (Rushby, 1996).

Error recovery and state restoration is still an open issue in the DEAR-COTS
architecture. It is considered that an efficient and reliable mechanism can only be
obtained with some knowledge of the semantics and data-flow properties of applications,
therefore cannot be provided by the Support Software itself and application level
mechanisms must be used (Figure 2.7). Nonetheless, it is considered that error detection
and recovery actions must be supported.

Consequently, the Support Software of the HRTS provides mechanisms for
applications to be notified of error detection (in order to take actions to recover from
them) and component’s shutdown or silence mechanisms can be used to prevent
components that are performing incorrectly to contaminate the application.

HRTS Support Software

Hard Real-Time
Applications

Soft Real-Time Subsystem

Error Recovery
Mechanisms

Figure 2.7. Error recovery mechanisms

Error detection in the HRTS may take two complementary forms: by detection of
errors in the communication protocols and in the consolidation of replicated values by
the Support Software, or by the use of the TCB. The Support Software may also be used
to notify applications and/or to disseminate the error detection through the real-time
network. The TCB can be used to detect the occurrence of timing errors in the HRTS
(using approach c) of Figure 2.6), in order, for instance, to silence the node so that the
network is not contaminated (Veríssimo et al., 2000a).

Definition of the System Architecture

20

2.5.3. Relationship with the Research Objectives

The goal of this thesis is to propose a generic and transparent programming model for
the development of pre-emptive multitasking applications on top of Commercial
Off-The-Shelf components. The DEAR-COTS Hard Real-Time Subsystem (HRTS) is
considered to be suitable for the development of such programming model. Therefore,
this goal is accomplished by providing the HRTS with:

- A transparent framework for the development of replicated Ravenscar
applications.
In the HRTS, replicated Ravenscar applications are supported through the
active replication of their components. It is therefore necessary to provide a
transparent programming model, abstracting the development of applications
from the distribution/replication details, focusing on the requirements of the
controlled system. This programming model must be generic, in order to allow
applications with different structures and configurations to be developed.

- Fault-tolerant real-time communication mechanisms in CAN networks.
In the HRTS, a CAN network is provided as the communication infrastructure,
both for the interconnection with the controlled system and for the management
of replicated application components. This communication infrastructure must
guarantee the consistent state of replicated applications, while at the same time
preserving CAN real-time characteristics. This infrastructure must provide the
appropriate atomic multicast and consolidation protocols, in order to guarantee
the fault tolerance and real-time properties of message streams.

2.6. Summary

This chapter presented an overview of the system architecture used to support the
research presented in this thesis. Basic definitions of the real-time and fault tolerance
issues addressed in this thesis are presented, in order to allow a better comprehension of
the system architecture. The requirements that were considered in the development of
the architecture are then presented. In addition to the real-time and fault tolerance
requirements, the issues of genericity, transparency and interconnectivity are also
considered, as a more flexible programming environment must be provided for the
development of current applications.

The DEAR-COTS architecture is then briefly presented, focusing on how it is suitable
to support the development of fault-tolerant real-time applications. In DEAR-COTS, the
Hard Real-Time Subsystem is intended for the development of fault-tolerant real-time
applications. Within this subsystem a replication model is provided, supporting the
active replication of software with dissimilar replicated task sets in each node.

Finally, the relationship between the DEAR-COTS architecture and the research
objective of this thesis is emphasised, clarifying how the proposed framework is
accomplished within the DEAR-COTS Hard Real-Time Subsystem.

Chapter 3

Analysis of Previous Relevant Work

3.1. Introduction

The DEAR-COTS Hard Real-Time Subsystem (HRTS) is intended for the development
of fault-tolerant real-time applications in a COTS-based architecture. It is thus essential
to address the problems common to the development of such systems, and consider the
existent methodologies and mechanisms for providing fault tolerance and real-time
properties to computer control applications. Moreover, as the HRTS is based on
replicating Ravenscar applications on top of a CAN network, it is also necessary to
survey these technologies, and to study the impairments to their use.

The remaining of the chapter is structured as follows. Section 3.2 presents a survey of
fault-tolerant real-time systems, presenting relevant architectures that provide non
application-specific environments for the design of fault-tolerant real-time applications.
A special focus is given to software-based fault tolerance techniques, since they are
essential for providing fault tolerance to COTS-based architectures. Replica determinism
is also given a special emphasis, since real-time applications inherently lead to timing
non-determinism.

Afterwards, Section 3.3 presents relevant approaches for the schedulability analysis of
real-time applications. The use of the response time analysis technique allows
determining the worst-case response time of application tasks in the pre-emptive fixed
priority computational model, thus providing a means to determine if the deadlines
imposed by the controlled system can be guaranteed.

Section 3.4 presents an overview of the Controller Area Network (CAN) (ISO, 1993),
which is used as the communication infrastructure for the replication and distribution of
fault-tolerant real-time applications in the DEAR-COTS HRTS. The focus of the
overview will be on the real-time behaviour of CAN message transfers, and on
impairments that CAN presents for fault-tolerant communication. The problem of
inconsistency in CAN message transfers is presented, and it is discussed how this
problem precludes CAN from being used in a replication environment, without
providing further mechanisms.

Finally, Section 3.5 provides a brief description of the Ada 95 language (ISO/IEC,
1995), with a special focus on its use to build fault-tolerant real-time applications. A
small overview of its concurrency model is provided, being the main focus given to the
Ravenscar profile (Burns, 1997), which is a restricted profile of the language suitable for
the development of efficient and deterministic real-time applications.

Analysis of Previous Relevant Work

22

3.2. Fault-Tolerant Real-Time Systems

A considerable research effort has been devoted to the design and validation of
fault-tolerant real-time systems. The most significant examples are Delta-4 (Powell,
1991), MARS (Kopetz et al., 1989) and GUARDS (Powell, 2001), as these architectures
intend to provide non application-specific environments to the design of fault-tolerant
real-time applications. However, the integration of COTS components with the required
fault tolerance and real-time properties is considered difficult, since the efficient
implementation of fault-tolerant communication and replication management
mechanisms is not supported by most COTS components.

The Delta-4 project aimed to develop an open, dependable architecture for large
distributed real-time systems. In Delta-4, nodes are split in two different subsystems: the
host, which is a COTS component, and the Network Attachment Controller (NAC),
which is a fail-silent component making use of specialised self-checking hardware. The
need to target systems with more stringent timing requirements led to the specification of
the eXtended Performance Architecture (XPA) (Barrett et al., 1990). XPA systems are
constituted by a set of distributed homogeneous nodes, connected by a LAN network
with real-time properties, where the host is also considered to be fail-silent. However,
contrarily to the NAC, the fail-silent behaviour of hosts is achieved through the use of
soft fail-silent techniques, where fail-silence behaviour is achieved through software
management of replicated processors.

MARS is a fault-tolerant distributed real-time system intended to support process
control applications. The architecture consists of one or more clusters, which are
distributed systems composed of single board computers, called components, connected
by a real-time network. All the components maintain a global time base, allowing them
to synchronise their actions and to use a time-triggered approach. In MARS, both node
and network schedules are determined off-line and stored in a static schedule table.
Components are devised as fail-silent, through the use of self-checking hardware,
running in dual active redundancy, and of two redundant real-time networks where
messages are sent in duplicate. There was no intention to use COTS components, which
consequently led to a very specialised and costly architecture.

The GUARDS project intended to develop a generic architecture, substantially based
on the use of COTS components, in order to minimise the development time and costs
associated with critical real-time applications. The architecture is based on
software-based fault tolerance mechanisms, in order to cope with the unreliability in the
underlying COTS components. This difficulty to provide fault tolerance mechanisms led
to the development of a two level replication approach. The architecture is constituted by
a set of channels, each one containing replicated hosts interconnected by a shared
memory scheme. These channels are interconnected by the Interchannel Communication
Network (ICN), which is based on unidirectional serial links interconnecting channels.
Therefore, it is difficult to use this interconnection scheme when more than a few
channels are involved. Moreover, the ICN has to be scheduled in a static off-line
table-driven approach, leading to an increased burden in the analysis and to the difficulty
of changes in the application design. Nevertheless, since channel replication is only
motivated by fault tolerance, it is not foreseen the need for systems with more than 3 or 4
channels. Furthermore, this architecture is targeted to safety- or mission-critical systems

Analysis of Previous Relevant Work

23

(in the domains of railway, nuclear and space applications), that require a greater level of
dependability and a more restrictive set of failure assumptions (Laprie, 1992).

3.2.1. Software-Based Fault Tolerance

Fundamental for a COTS-based fault-tolerant architecture is the issue of software-based
fault tolerance. As previously discussed, there is no specialised hardware with
self-checking properties, thus it is up to the software to manage replication and fault
tolerance. The group abstraction can be used to implement replica management
(Guerraoui and Schiper, 1997). In this approach, a fault-tolerant service is implemented
by co-ordinating a group of replicated software components (Figure 3.1). The idea is to
manage the group in order to mask failures of some of its members. Inter-replica
co-ordination gives the illusion to other software components that the group is a single
(fault-free) software component (Powell, 1991).

Output
Voting

Replicated
Component

Group

Figure 3.1. Active replication of software components

Three main replication approaches are addressed in the literature: active replication
(presented in Figure 3.1), primary-backup (passive) replication and semi-active
replication (Powell, 1991). In active replication, all replicas process the same inputs,
keeping their internal state synchronised and voting all on the same outputs. In the
primary-backup approach only one replica (the primary) is responsible for processing the
inputs. In the semi-active replication, one of the replicas (the leader) co-ordinates the
non-deterministic decisions. If fail-silent replicas are assumed, then any of the three
approaches can be used. Otherwise, in the absence of the fail-silent assumption, incorrect
service delivery can only be detected by active replication, because it is required that all
replicas output some value, in order to perform some form of voting. Therefore, active
replication is the most adequate technique when fail-uncontrolled components are
considered (Powell, 1991). The use of COTS components generally implies
fail-uncontrolled replicas (as these components usually do not have the required
self-checking mechanisms), so it becomes necessary to use active replication techniques.

As real-time applications are based on time-dependent mechanisms, the different
processing speed in replicated nodes can cause different task interleaving. Consequently,
different replicas (even if correct) can process the same inputs in different order,
providing inconsistent results if inputs are non-commutative. That is the problem of
replica determinism in distributed real-time systems (Poledna, 1994).

For instance, in Figure 3.2, task τ1 is specified to send a message to task τ2. As both
tasks are replicated in nodes 1 and 2, task τ1 in node 1 will send a message to task τ2 in
node 1, while task τ1 in node 2 will send the message to task τ2 in node 2. However, a
slightly different execution pattern (e.g. caused by a small clock difference) causes task

Analysis of Previous Relevant Work

24

τ1 to be slightly delayed in node 2, and at instant t2 (the arrival of the input that releases
task τ2) task τ1 is pre-empted before being able to send the message. As in node 1 task τ1

has already sent the message (instant t1), while in node 2 task τ1 will only send the
message at instant t4, when task τ2 receives the message (instant t3) in node 2 it will
receive a previous version of the message (or no message at all). Thus, even with both
tasks executing correctly, replicated tasks τ2 will no longer be consistent.

timet1 t2 t3 t4

Node 2

Node 1

Task τ1

Completion of task execution Input arrival

Send
Message

Receive
Message

Send ReceiveTask τ2

Figure 3.2. Timing non-determinism

Determinism can be achieved by forbidding the applications to use non-deterministic
timing mechanisms. As a consequence, the use of multitasking would not be possible,
since task synchronisation and communication mechanisms inherently lead to timing
non-determinism. This is the approach taken by both MARS and Delta-4. The former by
using a static time-driven scheduling that guarantees the same execution behaviour in
every replica. The latter by restricting replicas to behave as state-machines (Schneider,
1990) when active replication is used.

Guaranteeing that replicas take the same scheduling decisions by performing an
agreement in every scheduling decision, allows for the use of non-deterministic
mechanisms. This imposes the modification of the underlying scheduling mechanisms,
leading to a huge overhead in the system since agreement decisions must be made at
every dispatching point. This is the approach followed by previous systems, such as
SIFT (Melliar-Smith and Schwartz, 1982) or MAFT (Keickhafer et al., 1988), both
architectures for fault-tolerant real–time systems with restricted tasking models.
However, the former incurred overheads up to 80% (Pradhan, 1996), while the latter was
supported by dedicated replication management hardware (Keickhafer et al., 1988).

3.2.2. The Timed Messages Concept

The use of the timed messages concept, independently developed in (Barrett et al., 1995)
and in (Poledna, 1998) and then integrated in (Poledna et al., 2000), allows a restricted
model of multitasking to be used, while at the same time minimises the need for
agreement mechanisms. This approach is based on preventing replicated tasks from
using different inputs, by delaying the use of a message until it can be proven (using
global knowledge) that such message is available to all replicas.

Analysis of Previous Relevant Work

25

This is the approach used in the GUARDS architecture in order to guarantee the
deterministic behaviour of replicated real-time transactions (Wellings et al., 1998).
However, in the GUARDS approach this mechanism is explicitly used in the application
design and implementation, thus forcing system developers to simultaneously deal with
both system requirements and replication issues.

Timed messages are based on the global knowledge of the release time (the instant
when the task becomes ready for execution) and the worst-case response times of tasks
(if approximately synchronised clocks are used). Therefore, it is possible, using this
global knowledge, for tasks to read the latest version of a value that it is known to be
available in all replicas.

In this approach, messages are associated with a validity time. This validity time is
defined as the instant where the message value becomes valid

2. A value becomes valid
when it is known that all replicas of the writer task have already written the value. Such
validity time is defined as (Poledna et al., 2000):

messages nodeinter

messages nodeintra
)(

−
−

+∆+
=

εW

W
vmk (3.1)

where mk(v) is the validity time of message mk, W is the maximum worst-case response
time of all replicated writer tasks, ∆ is the worst-case delivery time of the message and ε
is the maximum clock difference in the system. Note that all these values are known
prior to execution.

In order to guarantee that replicated tasks read the same value, it is necessary to store
several versions of the same message. Reader tasks must read the version that has the
maximum validity time older than the task release time (Poledna et al., 2000):

[]))(:(max)(.
0

jkk

n

i
jk trvimmtrreceivem ≤=

=
(3.2)

where trj is the release time of the reader task and n is the number of different versions
received of message mk. The release time of a task is not known prior to execution, but
can be globally known in the system. For a periodic task, its release time is the same in
all the replicas. For sporadic tasks released by other tasks, its release time can be
determined as:

iij Btrtr += (3.3)

where tri and Bi are the release time and the best-case execution time of the releasing
task, respectively. Sporadic tasks that are released by external events must also have a
common release time. This common time must be agreed upon all the replicas.

Figure 3.3 presents the same example as in Figure 3.2, but using the timed messages
concept. As it can be seen, since message versions have an associated valid time, when
replicated tasks τ2 receive the message they will both receive version [n-1] of the
message, thus will remain consistent. Version [n] of the message will only become valid
after a delay equal to the worst-case response time of task τ1 (W(τ1)).

2 Note that this is not the usual meaning of validity. In this case it is a not to use before rather than a not to use
after.

Analysis of Previous Relevant Work

26

time

Node 2

Node 1

Task τ1

Completion of task execution Input arrival

Replicated tasks τ2 will
both receive mk[n-1]

tr (task τ1)

mk.send

mk[n-1] valid mk[n] valid

mk.receive

W(task τ1)

Task τ2

mk[n]

mk[n]

Figure 3.3. Execution of timed messages

As it is necessary to store several versions of the same message, there is the need to
determine off-line the required number of versions to keep. This number depends on the
relative ratio of reader tasks’ response time and writer tasks’ periods. In (Poledna et al.,
2000) the non-deterministic send rate (NDSR(mk,τi)) of message mk is defined as the
number of versions of mk that become valid during the worst-case response time of
reader task τi :

∑
∈

+

=

)(
1),(

kmTSj j

i
ik P

W
mNDSR

τ
τ (3.4)

where TS(mk) is the set of tasks that send message mk, and Pj is the period of task τj.
Then, the number of message versions that must be available (MVersions(mk)) can be
determined as:

),(max)(
)(

ik
kmTRi

k mNDSRmMVersions τ
τ ∈

= (3.5)

where TR(mk) is the set of all tasks that read message mk. Therefore, the maximum
number of message versions that must be available can be upper bounded, since it is
known which are the tasks that read or write each message, and which are their periods
and their worst-case response times.

Poledna et al. (Poledna et al., 2000) also provides optimisations to these equations,
taking advantage of worst- and best-case response times of internal computations of a
task. However, for clarity reasons only the simpler optimisations were presented here.
The analysis can easily be extended to incorporate those optimisations if the required
values are available in the application.

3.2.3. Replication Support

Even using the timed messages concept for replica determinism, the existence of
replication and/or distribution implies that further mechanisms must be implemented in

Analysis of Previous Relevant Work

27

order to support replica consistency. The active replication technique implies that
replicas must process the same set of inputs, in the same order (Guerraoui and Schiper,
1997). Furthermore, replication management must support some form of output
consolidation, in order to give the illusion to other software components that the group
of replicas is a single component (Powell, 1991).

Therefore, active replication requires the communication infrastructure to provide
atomic multicast protocols and mechanisms to consolidate replicated components. An
atomic multicast has the following properties (Hadzilacos and Toueg, 1993):

- Validity: If a correct component broadcasts a message m, then all correct
components deliver m.

- Agreement: If a correct component delivers a message m, then all correct
components deliver m.

- Integrity: For any message m, every correct component delivers m at most once,
and only if m was previously broadcast by sender(m);

- Total Order: If correct components p and q both deliver message m and m’, then
p delivers m before m’ if and only if q delivers m before m’.

These properties guarantee that all messages sent by correct components are delivered
only once to all of the intended recipients, and in the same order.

Consolidation of replicated outputs requires a mechanism to allow components to
agree on a common value. If an underlying atomic multicast protocol is used to
disseminate each of the outputs, the consolidation mechanisms needs just to guarantee
the following properties (based on the consensus agreement (Hadzilacos and Toueg,
1993)):

- Validity: If all components that propose a value propose v, then all correct
components decide v;

- Agreement: If a correct component decides v, then all correct components
decide v.

The integrity property (Hadzilacos and Toueg, 1993) (which states that the value
decided must be present in the set of proposed values) is not considered, as it precludes
decisions on values different than those proposed, like average or median functions.

3.3. Schedulability Analysis of Real-Time Applications

In order to allow the comprehension of the difficulties associated with the
development of applications conforming to the pre-emptive fixed-priority model, this
section provides a brief overview of current state-of-the-art schedulability analysis for
guaranteeing the real-time requirements of the system. In the considered analysis (the
response time analysis approach (Joseph and Pandya, 1986; Audsley et al., 1993)), these
requirements are guaranteed by checking, before run-time, that the scheduling of the
application task set is feasible. This is accomplished by calculating the worst-case
response time of each task, verifying if it is smaller than the associated deadline. The
advantages of response time analysis is its precision (often exact or nearly exact) and
great flexibility in choice of process models. It is also applicable to other type of
resources (such as CAN networks).

In the pre-emptive fixed-priority model, an application is constituted by a set of
concurrent processing units (tasks) which may be periodic or sporadic. Each task can

Analysis of Previous Relevant Work

28

only be released by one event, but may be released an unbounded number of times. A
periodic task is released by the runtime (temporal invocation), while a sporadic task can
be released either by another task or by the environment.

A periodic task is characterised by its period (time interval between consecutive
requests), its worst-case execution time (maximum time that it takes to execute per
period, without considering the existence of other tasks) and its relative deadline
(maximum duration for the response to be performed, related to the instant of the
release). For the case of a sporadic task, as it is usually released by some event, a
minimum time interval between requests is usually considered to allow schedulability
analysis to be performed.

In the fixed priority pre-emptive model, priorities are off-line allocated to the system
tasks and, at any instant, the task with the greatest priority that is ready to run is assigned
to the processor. Note that although a task may be released at a specific instant, its start
of execution can be delayed, if the processor is currently executing a task with a priority
greater or equal than the priority of the released task.

Several different priority assignment approaches exist. The Rate Monotonic (RM)
approach (Liu and Layland, 1973) assigns to the tasks a priority level based on their
periods (the smaller the period the higher the priority). However, when considering
sporadic tasks (that can have a large minimum inter-arrival time with stringent deadline,
e.g. an alarm), it is not reasonable to base their priorities in the minimum inter-arrival
time. Therefore, the Deadline Monotonic (DM) priority assignment (Leung and
Whitehead, 1982), which gives the tasks a priority level based on their deadlines (the
smaller the deadline the higher the priority), can be used.

time

priority

t1 t2 t3 t4

Task τ1

Task executing Task pre-empted

Completion of task execution Input arrival

Task τ2

Task τ3

Task delayed

Figure 3.4. Pre-emptive fixed priority model

Figure 3.4 presents an example of a pre-emptive fixed priority model. In this example
three tasks compete for the node processor. From instant zero until instant t1 task τ2 is
allocated to the processor, as it is the only task ready for execution. At instant t1 some
event (either interrupt or clock-based) causes task τ3 to be ready for execution. As this
task has higher priority than task τ2, it will pre-empt this last task. At instant t2, task τ3

finishes its execution, thus it allows task τ2 to resume execution. At instant t3, an event
causes task τ1 to be ready for execution. However, as this task has lower priority than the
one executing, its execution will be delayed until instant t4, when task τ2 finishes
execution. This behaviour differs from the traditional cyclic executive model, where a

Analysis of Previous Relevant Work

29

table of sequence of task executions is off-line determined, and execution is carried
statically following the scheduling table.

3.3.1. Single Node Scheduling

The schedulability analysis considers the existence of a set of tasks, which may be
periodic or sporadic. A task is defined as:

),,(iiii DTC=τ (3.6)

where τi defines a task i, with a worst-case execution time of Ci and a periodicity of
arrival defined by Ti (for the case of a sporadic task, Ti refers to the minimum
inter-arrival time). Di is the relative deadline of the task.

Joseph and Pandya (Joseph and Pandya, 1986) proved that the worst-case response
time of a task occurs when all tasks are simultaneously released at their maximum rate.
This simultaneous release is referred to as the critical instant. The response time is thus
given by (Joseph and Pandya, 1986; Audsely et al., 1993):

iii ICR += (3.7)

where Ii is the maximum interference that task i can experience from higher-priority
tasks. During the interval [0,Ri), that is the time interval from the instant when task i is
released and the time instant of its worst-case response time, the number of releases of a
task j is:

=

j

i

T

R
I (3.8)

where the ceiling function () produces the smallest integer greater than the result of its
parameter. Each release of a higher-priority task j will interfere with task i by Cj. Hence:

j
j

i C
T

R
I

= (3.9)

The interference that task i will suffer from all higher-priority tasks can then be
determined (hp(i) is the set of tasks with higher priority than task i):

∑
∈∀

=

)(ihpj
j

j

i
i C

T

R
I (3.10)

Therefore, by replacing equation (3.10) in equation (3.7) the worst-case response time
of task i is:

∑
∈∀

+=

)(ihpj
j

j

i
ii C

T

R
CR (3.11)

Analysis of Previous Relevant Work

30

This equation is mutually dependent, since Ri appears in both sides of the equation. In
order to solve this dependency, a recurrence relationship may be used (Audsley et al.,
1993):

∑
∈∀

+

+=

)(

1

ihpj
j

j

n

i
i

n
i C

T

R
CR (3.12)

This recursion ends when Ri
n+1 equals Ri

n, or when it exceeds Di (in this case the task
is not schedulable), since it can be shown that the series is either convergent or
monotonically increasing (Audsley et al., 1993).

time

Task τ3 Period

Task τ3

Task τ2

Task τ1

Task executing

Task delayed

Completion of
task execution

R2

R3

R1

Priority

Task pre-empted

Figure 3.5. Task response time

Figure 3.5 presents an example of the task response time evaluation. In this example
three tasks compete for the node processor. In order to determine the worst-case
response time of the three tasks, it is considered that they are all released at the same
time (critical instant).

Since task τ3 is the higher priority task it will execute without being delayed, and its
worst-case response time (WCRT) is equal to its worst-case execution time (WCET):

33 CR = (3.13)

Task τ2, on the other hand, will suffer the interference of one occurrence of task τ3,
thus its WCRT will be equal to its WCET plus the WCET of task τ3:

323
3

2
22 CCC

T

R
CR +=

+= (3.14)

Finally, task τ1 will suffer interference both form task τ2 and from task τ3. Since the
period of task τ3 is inferior the WCRT of task τ1, it will execute twice during task τ1

execution.
Therefore, task τ1 WCRT becomes:

2312
2

1
3

3

1
11 2 CCCC

T

R
C

T

R
CR ++=

+

+= (3.15)

Analysis of Previous Relevant Work

31

In a real-time application is important to allow tasks to interact with each other.
However, when a higher priority task pretends to access a resource that is currently
being used by a lower priority task (for instance a semaphore), it will be blocked. In
Figure 3.6, when task τ3 tries to access a shared resource it becomes blocked, since this
resource is currently being used by task τ1. This means that, during this interval, the
effective priority of the lower-priority task is greater than the priority of the
higher-priority task (priority inversion). As the low priority task may be pre-empted by
any number of medium priority tasks (task τ2 pre-empts task τ1, and further blocks task
τ3), the duration of the priority inversion may be unbounded. It is thus necessary to upper
bound the duration of the maximum blocking that each task may suffer.

time

priority

Task τ3

t1 t2 t3 t4

Task τ1

Task executing Task in resource

Completion of task execution Input arrival

Task τ2

Task blocked

t5 t6 t7

Figure 3.6. Blocking example

In (Audsley et al., 1993) the response time analysis was also extended to incorporate
blocking introduced by task interaction. Equation (3.11) is then updated by:

∑
∈∀

++=

)(ihpj
j

j

i
iii C

T

R
BCR (3.16)

where Bi represents the maximum blocking time that task i can suffer. Determining Bi

depends on the particular protocol that is used for managing priority inversion. The
Priority Ceiling Protocol (Sha et al., 1990) is one of the protocols proposed to
upper-bound priority inversion periods, which also precludes deadlocks and blocking
chains. In this approach, resources are also assigned a priority (ceiling priority), which
must be equal or higher than the priority of any task that can use the resource.

The maximum priority inversion period that task i can suffer is equal to the longest
time interval of any lower priority task accessing a resource with a ceiling priority equal
or higher than the priority of task i. This allows to bound the blocking time as (Burns and
Wellings, 1995b):

))),((max(max
)()(

rCSB i
iresrilpj

i τ
∈∈

= (3.17)

where lp(i) is the set of tasks with a lower priority than task i, res(i) is the set of
resources with a ceiling priority greater than the priority of task i, and CS(τj , r) is the
worst-case execution time of task j while blocking resource r.

Analysis of Previous Relevant Work

32

3.3.2. Distributed Scheduling

Analysing tasks and messages’ response times in distributed systems must also be
considered. However, as the arrival patterns of tasks and messages are mutually
dependent, an appropriate analysis must be used. Consider the example presented in
Figure 3.7. The task in node 1 is a periodic task that always sends a message to the
receiving task in node 2. Consequently both the message and the receiving task in node 2
inherit the period of the sending task. The figure represents two consecutive executions
of the transaction. In the first execution of the sending task, it suffers interference from
higher-priority tasks (or blocking from lower-priority tasks) and thus it is delayed. The
same happens with the message sent, since it has to wait for the completion of transfer of
other messages. As in the second execution of the sending task, it does not suffer any
delay, the message will inherit the jitter (variability in the release of the task) of the
sending task. Furthermore, the receiving task in node 2 will inherit the jitter of the
message (both caused by the sending task and by the interference in the message itself).

time
Period (T)

Node 2

Node 1

Task Message

Network

Jitter
(J)

Task/Message delayed

Period (T) Inherited
Jitter

Jitter

Period (T) Inherited
Jitter

Figure 3.7. Distributed transaction

Therefore, it is possible to realise that the schedulability analysis of the messages in
the network is dependent on the release jitter of the sending task, and the schedulability
analysis of the receiving task is dependent on the message jitter. It is necessary to
consider a holistic approach, where both analyses are integrated.

Tindell and Clark (Tindell and Clark, 1994) addressed this issue, considering a time
division multiple access (TDMA) network with real-time properties. The devised
solution is based on the fact that both schedulability analysis equations of the node and
of the network are monotonic. A recurrent solution was provided (similar to the solution
used to determine tasks response times). In the first iteration, the inherited release jitter
of both the tasks and the messages is considered to be zero. In each iteration, the
inherited release jitter is set according to the response time result of the previous
iteration. This solution can thus be used to determine the overall response times of the
system, if the network schedulability analysis equations are also monotonic. As it will be
presented in the following section, the same reasoning can be applied to the CAN
network, which is the real-time network used in the DEAR-COTS architecture.

Analysis of Previous Relevant Work

33

3.4. The Controller Area Network

The Controller Area Network (CAN) (ISO, 1993) was originally developed to be used in
road vehicles to interconnect microprocessor-based components. It is also considered for
the automated manufacturing and distributed process control environments (Zuberi and
Shin, 1997), and is being used as the communication interface in proprietary
architectures, such as DeviceNet (Rockwell, 1997). Several studies on how to guarantee
the real-time requirements of messages in CAN networks are available, e.g. (Tindell et
al., 1995), providing the necessary pre-run-time schedulability analysis equations for the
timing analysis of the supported traffic.

The CAN protocol implements a priority-based bus, with a carrier sense multiple
access with collision avoidance (CSMA/CA) medium access control (MAC), where bus
signals can take two different states: recessive bits (idle bus), and dominant bits (which
always overwrite recessive bits). The collision resolution mechanism works as follows:
when the bus becomes idle, every node with pending messages will start to transmit. If a
node transmitting a recessive bit reads a dominant one, it means that there was a
collision with a higher-priority message, and consequently the transmission is aborted.
The highest-priority message being transmitted (the one with most leading dominant
bits) will proceed without perceiving any collision, and thus will be successfully
transmitted. Nodes that loose the arbitration phase will automatically retry the
transmission of requested messages.

There are 4 types of frames that can be transferred in a CAN network. Two are used
during the normal operation of the CAN network: the Data Frame, which is used to send
local data and the Remote Frame, which is used to request remote data. The other two
are used to signal an abnormal state of the CAN network: the Error Frame signals the
detection of an error and the Overload Frame signals that a node is not ready to transmit
data.

Data
(0,...,8) × 8 bits

CRC Sequence
15 bits

EOF
7 bits

SOF
1 bit

Control
3 bits

ACK Delimiter
1 bit

ACK
1 bit

CRC Delimiter
1 bit

Identifier
11 (or 29) bits

DLC
4 bits

Figure 3.8. Structure of a CAN Data Frame

Figure 3.8 shows the structure of a Data Frame (specific fields: SOF, Identifier,
Control, DLC, CRC and EOF are described in (ISO, 1993)). A Remote Frame has the
same structure (without data field) and identifier of the remotely requested Data Frame.
The structure of both the Error and the Overload Frames will be presented in the
following subsection.

At the physical layer, frames are transmitted using the NRZ (Non Returning to Zero)
coding technique, with the insertion of stuff bits. That is, whenever there are more than
five equal consecutive bits (up to the end of the CRC Field), there is the insertion of an
opposite bit in the frame. This opposite bit will be detected and removed by the physical

Analysis of Previous Relevant Work

34

layer at the receiving side. This bit stuffing technique ensures that, in the normal
behaviour, there will never be more than 5 consecutive equal bits on the bus.

3.4.1. Error Detection and Recovery Mechanisms

In the CAN protocol, all the nodes continuously monitor every frame being transmitted
on the bus, to detect any transmission error. The node that first detects an error, starts the
transmission of an Error Frame (which starts with 6 consecutive dominant bits). The
transmission of an Error Frame is an efficient way for the CAN protocol to tolerate
transient failures (e.g. due to electromagnetic interference).

This Error Frame transmission is immediate, pre-empting the ongoing transmission
and avoiding the reception of invalid frames by the other nodes. As a consequence, all
the receiving nodes know that the frame being transmitted has an error. Thus, the
transmitting node will automatically retry the transmission of the message.

An Error Frame has the following structure:
- 6-12 consecutive dominant bits (Error Flag). The node that first detects the

error starts transmitting the Error Flag and hopefully every node will also
recognise such error at the same instant. However, there is the possibility that
other nodes only recognise the bit stuffing error induced by the Error Flag. In
this case, such nodes will start transmitting Error Frames and the Error Flag will
be 12 bits long;

- 8 consecutive recessive bits (Error Delimiter) which signal the end of the Error
Frame.

Sending Error Frames is a very interesting mechanism to ensure that every node sees
the same global state of the network (state coherence). However, it is possible that a
failure in a node induces the transmission of consecutive error frames, blocking all the
ongoing communications.

To solve this problem, CAN controllers have two error counters (for transmitting and
receiving errors, respectively) to isolate erratic nodes. For instance, if a node is
consecutively signalling errors in every Data/Remote Frame (e.g., due to a circuitry
failure), there is a time bound after which the node cannot signal any more error with
active Error Flags.

The values of these counters, which determine the operating state of the node, are
increased or decreased (at different rates) as a function of the type of the detected error.
These error counters acts as self-surveillance mechanisms, which disconnect faulty
nodes (fault-confinement techniques).

Therefore, CAN controllers may operate in three different modes:
1) Error-active, which is the normal operating mode.
2) Error-passive, where the node is still able to transfer/receive messages, but it

must wait some time before initiating a transmission (automatically decreasing
the transmission priority) and the error signalling is performed with passive
Error Flags (6 consecutive recessive bits). When in this operating mode, the
node can no longer interfere with frames transmitted by other nodes.

3) Bus-Off, where the node is not able to transfer/receive messages.

Analysis of Previous Relevant Work

35

3.4.2. Response Time Analysis of CAN Networks

In order to guarantee the real-time requirements of messages transferred by CAN
networks, it is necessary to evaluate their worst-case response time. In (Tindell et al.,
1995) the authors address in detail the response time analysis of CAN networks. The
analysis assumes fixed priorities for message streams (since access to the medium is
based on the fixed identifiers, which must be assigned to message streams according to
their priority) and a non-preemptive model (since lower-priority messages being
transmitted cannot be pre-empted by pending higher-priority messages). The
schedulability analysis of (Audsley et al., 1993) presented in Section 3.3 is then adapted
to the case of scheduling messages in a CAN network.

The analysis assumes a network with n message streams defined as:

),,,(mmmmm DJTCS = (3.18)

where Sm defines a message stream m characterised by a unique identifier. A message
stream is a temporal sequence of messages concerning, for instance, the remote reading
of a specific process variable. Cm is the longest message duration of stream Sm and Tm is
the periodicity of its requests. Jm is the jitter of the queuing of a message of stream Sm.
Finally, Dm is the relative deadline of a message; that is, the maximum time interval
between the instant when the message request is placed in the outgoing queue and the
instant when the message must be completely transmitted.

The worst-case response time of a queued message, measured from the arrival of the
message request to its complete transmission, is:

mmmm CIJR ++= (3.19)

The schedulability of the message stream set is guaranteed if every message has a
response time smaller than its deadline. The term Im represents the worst-case queuing
delay (longest time interval between the arrival of the message request and the start of its
transmission).

The message duration of stream Sm (Cm) can be evaluated considering that for each
Data Frame there is a Data Field plus 44 overhead bits. Additionally, it must be
considered the overhead concerning bit stuffing and inter-frame spacing (3 bits of
minimum spacing between two consecutive frames). Bit stuffing mechanisms are only
applied to 34 bits of the overhead and to the 0..8 byte Data Field (it excludes the CRC
delimiter, ACK and EOF). Therefore, the duration of a CAN message is given by:

bitm n
n

C τ×

×++

 ×+

= 847
5

834
(3.20)

where n is the number of data bytes in the message and τbit is the duration of a bit
transmission.

The Deadline Monotonic (DM) priority assignment (Leung and Whitehead, 1982) can
be directly implemented in a CAN network, by setting the identifier field of each
message stream according to the DM rule. Therefore, the worst-case queuing delay of a
message of stream Sm is (Tindell et al., 1995):

Analysis of Previous Relevant Work

36

()
∑

∈∀

×

 ++
+=

mhpj
j

j

bitmm
mm C

T

JI
BI

τ
(3.21)

where hp(m) is the set of message streams with higher-priority than Sm.
Bm is the worst-case blocking factor, which is equal to the longest duration of a lower

priority message, since a message can be blocked at most once in the access to the
shared resource (the network):

()
{ }k

mlpk
m CB ,0max

∈∀
= (3.22)

where lp(m) is the set of message streams with lower-priority than message stream Sm.
As in node schedulability analysis, equation (3.21) embodies a mutual dependency,

since Im appears in both sides of the equation, meaning that it can be solved with a
recurrent relationship.

The main difference between the non-preemptive and pre-emptive models is that, in
equation (3.21), contrarily to the pre-emptive case (equation (3.10)), the actual
transmission time of message m (Cm) is not considered during the recurrent analysis of
interference. This is due to the fact that in the non-preemptive case a message being
transmitted cannot be pre-empted by higher-priority messages.

Note that these schedulability analysis equations are also monotonic, thus they can be
used in the holistic approach presented in Section 3.3.2, making it possible to determine
the overall response times of the system.

3.4.3. Network Load

The computation of the network load is a single measurement based on the
characteristics of the message streams. Such network load can be evaluated as follows:

∑
=

=
n

i i

i

T

C
U

1
(3.23)

3.4.4. Inaccessibility Analysis of CAN Networks

The use of CAN networks to support fault-tolerant real-time applications requires not
only time-bounded transmission services, but also a minimum level of confidence on the
continuity of service. Such continuity of service is not fully guaranteed in CAN
networks, since they may be disturbed by temporary periods of network inaccessibility
(periods during which nodes cannot communicate with each other, due to the existence
of on-going error detection mechanisms).

Considering the existent error recovery mechanisms, the longest network
inaccessibility (Rufino and Veríssimo, 1995) results from a Form Error (incorrect
structure of the frame) detected at the end of the EOF delimiter. Such network
inaccessibility is:

IFSerrorMAXina CCCt ++= (3.24)

Analysis of Previous Relevant Work

37

where Cerror and CIFS are the duration of an Error Frame and the Inter-Frame Spacing
(two consecutive frames must be separated by at least 3 recessive bits), respectively, and
CMAX is the longest duration of a CAN message.

In the presence of multiple bus errors, two different scenarios can be considered
(Rufino and Veríssimo, 1995):

- A burst of successive bit errors, where only the first one corresponds to a bit
corruption in a Data Frame. The others will just disturb Error Frames being
transmitted in response to the first error.

- A longer network inaccessibility results from considering that bus errors are
sufficiently apart to interfere with n Data Frames. This results in n failed
attempts to transmit a Data Frame.

The network inaccessibility resulting from this second scenario is:

()IFSerrorMAXinan CCCnt ++×=_ (3.25)

In addition to the frame error detection mechanisms, CAN controllers have two error
counters to isolate erratic transceivers, preventing them from interfering with the normal
bus operation (see Section 3.4.1). The values of these counters are increased or
decreased (at different rates), as a function of the detected error.

In the case of an erratic transmitter, the maximum number of transmission errors
(leading to the transmission of Active Error Frames) is given by:

∆

=
tx

tx

ect
n (3.26)

where ect is the error count threshold, and ∆tx is the increase of the counter at each
detected transmission error. As ect=127 and ∆tx=8, then 16 consecutive active Error
Frames will be transmitted before a failed transmitter enters into the Error-Passive state.

For the case of a receiver, the maximum number of receiving errors (leading to the
transmission of active Error Frames) is given by:

∆+∆

=
21 rxrx

rx

ect
n (3.27)

where ∆rx1 and ∆rx2 are used according to the detected error (ISO, 1993). As ∆rx1=8 and
∆rx2=1, then 15 Active Error Frames will be transmitted before a failed receiver enters
into the Error-Passive state.

Although the time interval during which an erratic transceiver can interfere with the
normal behaviour of the network is upper-bounded, an erratic transceiver will only stop
transmitting Active Error Frames when its error count reaches the Error-Passive
threshold. Hence, it can cause up to 16 failed transmissions in the network.

3.4.5. Inconsistencies in Messages’ Transfer

In spite of the extensive error detection and recovery mechanisms in CAN networks,
there are some known reliability problems (Rufino et al., 1998) that can lead to an
inconsistent state of the supported applications. This misbehaviour is a consequence of

Analysis of Previous Relevant Work

38

different error detection mechanisms at the transmitter and receiver sides. A message is
valid for the transmitter if there is no error until the end of the transmitted frame. If the
message is corrupted, a retransmission is triggered according to its priority. For the
receiver, a message is valid if there is no error until the last but one bit of the received
frame, being the value of the last bit treated as 'do not care'. Thus, a dominant value in
the last bit does not lead to an error, in spite of violating the CAN rule stating that the
last 7 bits of a frame are all recessive.

In Figure 3.9, the Sender node transmits a frame to Receivers A and B. Receiver B
detects a bit error in the last but one bit of the frame. Therefore, it rejects the frame and
sends an Error Frame (requesting the frame retransmission) starting in the following bit
(last bit of the frame). As for receivers the last bit of a frame is a ‘do not care’ bit,
Receiver A will not detect this error and will accept the frame. However, as the
transmitter re-schedules the frame, Receiver A will have an inconsistent message
duplicate. The use of sequence numbers in messages can easily solve this problem, but it
does not prevent messages from being received in different order, not guaranteeing total
order of atomic multicasts.

Error detected
Receiver rejects

the frame

r dReceiver A

Error detected
Sender schedules frame for
retransmission

‘Do not care’ bit
Receiver accepts

 the frame

At this moment, Receiver A has accepted the frame, while
Receiver B has rejected it

- If the sender retransmits the frame, then Receiver B will
have it, while Receiver A will have a duplicate frame
(inconsistent message duplicate)

- If the sender fails before the retransmission, then
Receiver B will never have the frame
(inconsistent message omission)r dSender

d dReceiver B

Receiver B signals the Error,
starting an Error Frame in the
last bit of the frame

Figure 3.9. Inconsistency in CAN

On the other hand, if the Sender fails before being able to successfully retransmit the
frame, then Receiver B will never receive the frame, although Receiver A has delivered
it. This situation causes an inconsistent message omission, which is a more difficult
problem to solve.

In (Rufino et al., 1998), the probability of message omission and/or duplicates is
evaluated, in a reference period of one hour, for a 32 node CAN network, with a network
load of approximately 90%. Bit error rates ranging from 10-4 to 10-6 were used, and node
failures per hour of 10-3 and 10-4 were considered. For inconsistent message duplicates
the results obtained ranged from 2.87 x 101 to 2.84 x 103 duplicates per hour, while for
inconsistent message omissions the results ranged from 3.98 x 10-9 to 2.94 x 10-6

omissions per hour.
These values show that for fault-tolerant real-time communications, CAN built-in

error recovery mechanisms are not sufficient, since the use of CAN networks to support
fault-tolerant real-time applications requires not only time-bounded transmission, but
also the guarantee of consistency for the supported applications. Therefore, additional

Analysis of Previous Relevant Work

39

mechanisms must be provided to ensure fault-tolerant real-time communication in CAN
networks.

Furthermore, from the requirements imposed to the communication infrastructure in
order to support active replication (Section 3.2.3), it can be perceived that CAN
networks do not support atomic multicast properties. CAN error detection and recovery
mechanisms ensure the Validity property, since when the sender is correct, all correct
nodes will receive the message. Note that the network can be referred as a fail-consistent
bus (Powell, 1992), since there is no possibility for different nodes to receive the
message with different values. CAN error detection and recovery mechanisms are not,
however, sufficient to guarantee the Agreement and Integrity properties (Rufino et al.,
1998). In fact, it is possible for a correct node to receive a message not received by some
other correct node (inconsistent message omission), and it is also possible that some
node receives the same message more than once (inconsistent message duplicate). Total
Order is also not guaranteed, since new messages can be interleaved with
retransmissions of failed messages, causing different nodes to receive the messages in
different order.

The problem of inconsistent messages in CAN networks has been given some
research in the last few years. In (Rufino et al., 1998), a set of fault-tolerant broadcast
protocols is proposed, solving the message omission and duplicate problems. In this set
of protocols, atomic multicast is addressed by the TOTCAN protocol. This protocol is
based on the transmission of a second data-free message (ACCEPT message), to signal
that the sender is still correct, meaning that the related message can be delivered.

The transmission of the ACCEPT message is performed using a lower layer protocol
(EDCAN), which is based on the retransmission of messages by every node in the
system (that has correctly received the message). When a node receives a retransmission
of the ACCEPT message, it will retransmit it again (even if it already has retransmitted
the original ACCEPT), and multiple retransmissions will occur in normal operation even
if no error occurs. Therefore, such protocols do not take full advantage of the CAN
synchronous properties, producing a great run-time overhead under normal operation.

Another approach presented in the literature is to use a hardware-based solution
(Kaiser and Livani, 1999) to prevent message inconsistencies. This approach is based on
a hardware error detector, which automatically retransmits messages that could
potentially be omitted in some nodes. This detector (SHARE) detects the bit pattern that
occurs in an inconsistent message failure, and automatically retransmits the received
frame, even if the transmitter handles this failure.

Although this hardware-based approach solves the inconsistent message omission
problem of CAN, it does not provide solution to total order, as duplicates may occur
(furthermore, inconsistent message omissions are transformed in inconsistent message
duplicates). In order to achieve order, it is necessary to complement this mechanism with
an off-line analysis approach (Livani and Kaiser, 1999).

In this analysis, messages must be separated in hard real-time and soft real-time. Only
hard real-time messages have guaranteed worst-case response time inferior to the
deadline, but it is necessary to use fixed time slots, off-line adjusting these messages to
never compete for the bus, thus causing an increased burden in the analysis of the
system.

Analysis of Previous Relevant Work

40

3.5. The Ada 95 Language

The Ada language (ANSI, 1983; ISO, 1987) was designed for the development of
embedded systems software, in order to replace multiple languages used at the United
States Department of Defence. The Ada 95 language revision (ISO/IEC, 1995) brought a
more open and extensible language without losing the inherent integrity of Ada 83,
addressing the limitations of Ada 83 (Sha and Goodenough, 1990) for hard real-time
systems programming. The need to target a broad range of applications led to the
specification of a core language (self-contained) and the provision of extra annexes
targeting special domains. Since in this work the interest is in the 1995 standard, from
now on the term Ada will be used instead of Ada 95.

In Ada, concurrency is supported in the core of the language, through the
specification of tasking constructs and of a new mechanism for task interaction: the
protected object. In an Ada program there can be a number of concurrent processing
units (termed tasks), each one with its own flow of control. These tasks are related to the
POSIX notion of threads (IEEE, 1995), since all tasks in an Ada program share the same
resources (memory area, files, etc).

The new task interaction model based on protected objects was one of the major
changes introduced in the language revision (Intermetrics, 1995). A protected object is a
passive object, which exports a set of protected operations. These operations provide
mutual exclusion to tasks accessing the object data. Therefore, they can be used to
provide a more efficient solution to build asynchronous communication and mutual
exclusion mechanisms than the Ada 83 Rendezvous mechanism. The clearly
data-oriented view brought by the protected object fits in naturally with the general spirit
of the object-oriented paradigm.

The specification of the object exports the subprograms that can be used to access the
object data: procedures, functions and entries. A procedure can access the private data
with exclusive read/write access, while a function can only read it. A protected entry also
has read/write exclusive access like a procedure, but it also specifies a barrier condition,
that must be true before the task is allowed to proceed. For each entry there is a queue,
where the calling tasks wait for the condition to become true.

3.5.1. Ada Support for Real-Time

Although part of the support that Ada provides to real-time systems is through the
facilities provided in the core language (such as concurrency), many of the important
features of Ada (concerning real-time) are provided in the Real-Time Systems and
Systems Programming annexes.

The Real-Time Systems (RTS) annex provides the language with the necessary
capabilities for schedulability analysis, namely the support of the Priority Ceiling
Protocol in the access to protected objects, priority queuing and First-In-First-Out
(FIFO) queuing within priorities. Since the goal of the language revision was to support
a broad range of application domains, the language’s scheduling model was removed
from the core of the language and provided through the RTS annex (Intermetrics, 1995).

The RTS annex supplies the capabilities to associate priorities to Ada tasks and
protected objects (ceiling priority), either at creation time or (for the case of tasks)

Analysis of Previous Relevant Work

41

dynamically during execution. In spite of the provision for supporting different
scheduling models, the RTS annex only specifies one scheduling model. A dispatching
policy must exist, defining tasks to execute until they are blocked
(FIFO_Within_Priorities). This also implies the need for the ceiling locking policy for
protected object locking, that is, each protected object has an associated ceiling priority
equal or greater than the priority of the highest priority task that can use the object. This
locking policy is based on the Immediate Ceiling Priority Protocol (Rajkumar et al.,
1995), which is an implementation variant of the Priority Ceiling Protocol presented in
Section 3.3, thus it provides bounded priority inversion in the access to protected objects.
When a task executes an operation on a protected object that has a higher priority than
the caller, the calling task will inherit this higher value as its active priority, but only
during the execution of the protected operation. A policy for task queuing based on the
task priority is also available, establishing priority as the criterion for task selection
instead of order of arrival.

Furthermore, the RTS annex specifies a monotonic and accurate timing capability,
mechanisms for synchronous and asynchronous task control and also tasking restrictions
that, for instance, can impose a maximum number of tasks, no asynchronous control or
no dynamic priorities.

An implementation providing the Real-Time System annex must also provide the
Systems Programming annex. This annex specifies the access to machine code, interrupt
handling and packages for general task identification and attributes. The existence of
Ada mechanisms to specify the exact size and layout of user data types and its simple
interface with other languages simplify the task of hardware interfacing.

3.5.2. Ada Support for Fault Tolerance

Although targeted to application domains where fault tolerance is required, the language
does not provide direct support for fault tolerance mechanisms, except for the exception
mechanism, which is a powerful tool that has been often used to provide higher-level
mechanisms for software fault tolerance. Note that software fault tolerance refers to the
tolerance of software faults, not to software-based fault tolerance where software is used
to tolerate faults in the underlying components.

Software fault tolerance has been a topic of research on Ada in the last few years. A
number of approaches have been proposed (e.g., atomic actions (Wellings and Burns,
1997), recovery blocks (Rogers and Wellings, 1999) and transactions (Kienzle, 2001)),
providing an extensive number of mechanisms for software fault tolerance in Ada 95.

Work is also being done in the integration of fault tolerance and distribution in Ada.
Ada provides a Distributed Systems annex, which defines the model of distribution of
Ada applications. A distributed application is seen as a set of program components that
are distributed on the system nodes, communicating through the network. These
components are called partitions (ISO/IEC, 1995). Interconnection between partitions is
performed through well-defined interfaces, with specific rules defining how partitions
can interact. In (Wellings and Burns, 1996) and (Burns and Wellings, 1998) the use of
replication within the partition model is evaluated, and some replication mechanisms,
which must be explicitly used by the application, are provided. Wolf (Wolf and
Strohmeier, 1999) presents some issues regarding replica implementation within the

Analysis of Previous Relevant Work

42

same partition model. Replica determinism is initially assumed and later extended to
non-deterministic replicas. This approach is based on the extension of the run-time
support to implement transparent replication of partitions.

ReplicAda (Heras-Quirós et al., 1997) presents another fault-tolerant implementation
using the Ada Distributed Systems annex. It is based on a layer under the Partition
Communication Subsystem that presents a transparent view to the programmer, hiding
all the replication issues. This approach assumes replica determinism, mainly through
the use of the Ada Restriction pragma. Drago (Miranda et al., 1996) is another Ada
extension intended for distributed fault-tolerant applications programming. The approach
is based on enriching the language with new constructs, providing mechanisms for
explicitly supporting the group abstraction in distributed systems.

However, the partition model of Ada does not allow flexibility in the configuration of
the system, since partitions are simultaneously the unit of replication and distribution,
not being possible to de-couple these roles. It is not possible to allocate a partition to one
node, and one of its replicas distributed through several nodes.

3.5.3. The Ravenscar Profile

The Ada 95 programming language is widely used in the areas of critical hard real-time
systems. Nevertheless, while the language provides a broad set of programming
constructs, the multitasking mechanisms are rarely used, since they are considered to be
too complex to be analysable, thus difficult to be certified. Therefore, a subset of the
language multitasking mechanisms was defined (the Ravenscar Profile (Burns, 1997)), in
order to reduce the size and overhead of Ada applications, and to allow applications to
be certified concerning its real-time and fault tolerance properties.

The profile restricts the language use by removing mechanisms that are considered to
be non-deterministic or which introduce high overhead. Even with these restrictions,
applications may be built using the pre-emptive fixed priority computational model.
Applications conforming to the Ravenscar profile consist in a set of tasks, with all
interactions between these tasks performed through the use of protected objects.

Protected objects are only used to provide access to shared resources and to release
sporadic tasks. The Profile does not support dynamic creation either of tasks or of
protected objects, task termination, alteration of task priorities and the select statement.
It also imposes that applications use the available Ceiling Locking mechanism for
protected objects, and the FIFO Within Priorities dispatching mechanism. These
restrictions force applications to be developed with the pre-emptive fixed priority model
of computation, allowing the use of the schedulability analysis approach presented in
Section 3.3.

Figures 3.10 to 3.12 present possible templates for developing Ravenscar applications
(based on (Dobbing and Burns, 1998)). In Figure 3.10 a template for a periodic task is
presented. The task body is a simple infinite loop containing a delay until statement at
the beginning, in order to block the task until the release time is reached. In each
iteration, a new release time for the next iteration is determined. The time type used is
the one provided by the Real-Time Systems annex, since it is the only one allowed by
the profile. The infinite loop never terminates, since the profile forbids task termination.

Analysis of Previous Relevant Work

43

1: task body Periodic is
2: Start: Ada.Real_Time.Time := ...;
3: Period: Ada.Real_Time.Time_Span := ...;
4: begin
 -- Initialisation Code

5: loop
6: delay until Start;
 -- Task Code
7: Start := Start + Period;
8: end loop;
9: end Periodic;

Figure 3.10. Periodic task template

1: protected Release_object is
2: entry Wait(D: out Task_Data);
3: procedure Release(D: Task_Data);
4: private
5: Data: Task_Data;
6: Released: Boolean := false;
7: end Release_object;

8: protected body Release_object is
9: entry Wait(D: out Task_Data) when Released = true is
10: begin
11: D := Data;
12: Released := false;
13: end Wait;
14: procedure Release(D: Task_Data) is
15: begin
16: Data := D;
17: Released := true;
18: end Release;
19: end Release_object;

20: task body Sporadic is
21: data: Task_Data;
22: begin
 -- Initialisation Code
23: loop
24: Release_object.Wait(data);
 -- Task Code
25: end loop;
26: end Periodic;

Figure 3.11. Sporadic task template

A sporadic task (Figure 3.11) also has an infinite loop, but with the blocking
statement being provided by a call to an entry of a protected object. This protected object
must only be used to release a single task, but it allows the transfer of data between the
releasing and the released task. It is also possible to use the Suspension_Object
mechanism defined in the Real-Time Systems annex for the release of sporadic tasks,
when no data is to be transferred.

Analysis of Previous Relevant Work

44

In the profile model, tasks share data asynchronously through the use of a protected
object (Figure 3.12), which only exports procedures and functions in its interface (that is,
no entries). The reason is that protected entries are only to be used for the release of
sporadic tasks.

1: protected Shared_data_object is
2: procedure Write(D: Obj_Data);
3: function Read return Obj_Data;
4: private
5: Data: Obj_Data;
6: end Shared_data_object;

7: protected Shared_data_object is
8: procedure Write(D: Obj_Data) is
9: begin
10: Data := D;
11: end Write;
12: function Read return Obj_Data is
13: begin
14: return Data;
15: end Write;
16: end Shared_data_object;

Figure 3.12. Shared data template

The Ravenscar profile allows the use of the pre-emptive fixed priority computational
model in critical applications, as it is demonstrated by available studies (Lundqvist and
Asplund, 1999; Audsley et al., 2000) and implementations (Puente et al., 2000; Aonix,
1998). Moreover, a commercial implementation of the Profile (Raven (Aonix, 1998)) is
certifiable under the Avionics Standard DO178B (RTCA, 1992), being already in use in
some applications (Wellings, 2000).

Nevertheless, it is considered that further studies are necessary for the use of the
profile in replicated and distributed systems (Wellings, 2000). The interaction between
multitasking pre-emptive software and replication introduces new problems, which must
be considered, particularly for the case of a transparent and generic approach. The
restrictions of the Ravenscar profile make difficult the implementation of an efficient
support for replicated or distributed programming, which may result on an increased
application complexity (Audsley and Wellings, 2000). Therefore, any environment for
transparent replication using the Ravenscar profile must be simple to implement and use,
but at the same time must provide the capabilities required by the fault-tolerant real-time
applications.

3.6. Summary

This chapter presented a survey of relevant work related to the development of
fault-tolerant real-time systems. This survey is strictly necessary as the background for
the remaining chapters of this thesis.

Initially, a survey of fault-tolerant real-time systems is given, focusing on the issue of
software-based fault tolerance mechanisms. Afterwards, the response time analysis

Analysis of Previous Relevant Work

45

approach for the schedulability analysis of real-time applications is presented,
demonstrating how real-time guarantees can be provided to applications.

A survey of the Controller Area Network is also presented, since it is the network
used as the communication infrastructure in the DEAR-COTS architecture for the
replication and distribution of fault-tolerant real-time applications. A brief survey of the
main characteristics of the network is provided, focusing on its real-time behaviour and
on its impairments for fault-tolerant communication. The problems of real-time
behaviour in the presence of network and transceiver errors and inconsistencies in
message transfers are identified, and some discussion on existent solutions is provided.

Finally, a brief description of the Ada 95 language is presented, with a special
emphasis on its support for fault-tolerant real-time systems. A small introduction to the
concurrency model of the language is presented, together with some discussion on its
support for real-time and fault-tolerant systems. A description of the Ravenscar profile is
also provided, describing how it can be used for the development of hard real-time
applications.

Replication Management Framework

57

For the interaction between the Sensor and Controller tasks, a Release Event with
Data object is created (Figure 4.6, lines 1 and 2) by instantiating a generic package with
the appropriate data type and by declaring an instance of the object. The Sensor task uses
this object (Figure 4.7, line 9) to release the Controller task (Figure 4.7, line 18).

For the interaction between Controller and Actuator tasks a similar approach is used,
but with a Shared Data object (created in Figure 4.6, lines 3 and 4). The Controller task
writes to the object (Figure 4.7, line 20), while the Actuator task performs the related
read (Figure 4.7, line 33).

Finally, a Release Event object is declared in Figure 4.6 (lines 5 and 6), for the
interaction between Controller (release in Figure 4.7, line 22) and Alarm (wait in Figure
4.7, line 41) tasks.

Application tasks use these objects, through their well-defined interfaces. The goal is
to avoid modification of tasks after the configuration phase, only different objects will be
used.

4.4.2. Interaction Internal to a Component

The interaction between tasks belonging to the same component (Figure 4.8) does not
require consolidation between replicas of the component. However, it may require the
use of distributed mechanisms (if the component is spread through several nodes) or the
use of timed messages (if the component is replicated).

τ1 τ2

τ1 τ2

(a) (b)

Figure 4.8. Internal interaction: distributed (a) or deterministic (b)

In the case of Release Events objects, as it is a synchronous one-way interaction, there
is no need to support the timed messages mechanism. However, it is necessary to change
the specification for the Release Event objects (Figure 4.4), even for the case of
non-distributed interaction, as the Replica Manager must store the release time of the
sporadic task if the component is replicated. Therefore, in the Deterministic Release
Event object (Figure 4.9), the release interface requests the release to the Replica
Manager, and a private_release interface is used by the Replica Manager to release the
task.

Note that for the case of a non-replicated component it is not necessary to use this
object, since storing tasks’ release times is only required when the component interacts
with a group of replicated components (see Section 4.4.3).

If releasing and released tasks are allocated to different nodes in the system, there is
the need for a mechanism to release tasks in other nodes. This is performed by replacing
the simple Release Event object by two objects (Figure 4.10) that work together to
perform the same action (proxy model).

Replication Management Framework

58

Release Event Object

1: when wait:
2: Task_Suspend

3: when release:
4: Replica_Manager.Request_Release_Event

5: when private_release:
6: Suspended_Task_Resume

Release Event with Data Object

6: when wait:
7: Task_Suspend
8: return Obj_Data

9: when release(data):
10: Obj_Data := data
11: Replica_Manager.Request_Release_Event

12: when private_release:
13: Suspended_Task_Resume

Figure 4.9. Deterministic Release Event objects

Release Event Proxy Object

1: when release:
2: Replica_Manager.Forward_Release_Event

Release Event Receive Object

3: when wait:
4: Task_Suspend

5: when private_release:
6: Suspended_Task_Resume

Release Event with Data Proxy Object

7: when release(data):
8: Replica_Manager.Forward_Release_Event(data)

Release Event with Data Receive Object

9: when wait:
10: Task_Suspend
11: return Obj_Data

12: when private_release(data):
13: Obj_Data := data
14: Suspended_Task_Resume

Figure 4.10. Distributed Release Event objects

Replication Management Framework

59

Therefore, in the releasing task side, the Release Event Proxy object is responsible for
forwarding the event to the corresponding Release Event Receive object in the other
node. The equivalent pair of objects is also available for the case of the Release Event
with Data object. The Proxy object has only the release interface, which requests the
Replica Manager to forward the request to the other node. The Receive object has the
corresponding wait interface, and it also provides a private_release to be used by the
Replica Manager when a request arrives. The release time of the task being released is
determined at the source by the Replica Manager (using the available information about
the releasing task) and is forwarded to the destination node.

1: when write (data):
2: tval := Replica_Manager.Request_Validity_Time(Writing_Task)
3: DataBuffer := DataBuffer ∪ (data,tval)

4: when read:
5: newest_data := null
6: tval := 0
7: trel := Replica_Manager.Request_Release_Time(Reading_Task)
8: for all i in Data_Buffer loop
9: if tval(i) < trel and tval(i)> tval then
10: newest_data := Data(i)
11: tval := tval(i)
12: end if
13: end loop
14: return newest_data

Figure 4.11. Deterministic Shared Data object

For the case of the Shared Data object, three situations are identified, concerning the
need to support replica determinism, to support distribution (when the object is used by
tasks in different nodes) or both. For the first case, the Repository provides a generic
object, the Deterministic Shared Data object (Figure 4.11) with the same interface of the
Shared Data object, but with extra functionalities related to the support of timed
messages. This object no longer holds a single data element, but a buffer of elements.
Associated with each element, the object also records the related validity time. The write
interface, as well as adding the element to the buffer, requests the related validity time
from the Replica Manager layer. The read interface requests from the Replica Manager
the release time of the reading task, and chooses from the buffer the newest value that is
older than this release time.

1: when write (data):
2: Replica_Manager.Request_Dissemination(Data)

3: when read:
4: return Obj_Data

5: when private_write (data):
6: Obj_Data := data

Figure 4.12. Distributed Shared Data object

Replication Management Framework

60

When a Shared Data object is used by tasks allocated to different nodes in the system
(distribution requirements), it must be locally replicated in all those nodes (in order to
avoid remote reading). Therefore, every write to the object must be atomically multicast
to all objects. Note that this is a second level replication, which is independent of
component replication.

As a consequence, the Distributed Shared Data object (Figure 4.12) provides a single
data element, and the read interface is the same as in the simplest form of the object.
However, the write interface is different, as it no longer updates the value in the object.
It simply requests the Replica Manager to disseminate that value (using the
communication mechanisms provided by the Communication Manager

3
). Additionally,

there is a third interface (private_write), which is used by the Replica Manager to update
the value when it is delivered.

1: when write (data):
2: tval := Replica_Manager.Request_Validity_Time(Writing_Task)
3: Replica_Manager.Request_Dissemination(Data,tval)

4: when read:
5: newest_data := null
6: tval := 0
7: trel := Replica_Manager.Request_Release_Time(Reading_Task)
8: for all i in Data_Buffer loop
9: if tval(i) < trel and tval(i)> tval then
10: newest_data := Data(i)
11: tval := tval(i)
12: end if
13: end loop
14: return newest_data

15: when private_write (data,tval):

16: DataBuffer := DataBuffer ∪ (data,tval)

Figure 4.13. Deterministic Distributed Shared Data object

The third situation is when an object is simultaneously used by tasks in different
nodes (distribution requirements) and it requires deterministic execution (replication
requirements). The Deterministic Distributed Shared Data object (Figure 4.13) has the
buffer and validity times of the Deterministic object, and its write interface must also
request the validity time of the value.

However, as the Distributed object, it does not add the value to the buffer, but request
its dissemination by the Replica Manager. A further interface (private_write) is also
available, enabling the Replica Manager to update the value when it is delivered by the
atomic multicast mechanism. The read interface is the same as the one in the
Deterministic object.

3 The Communication Manager provides different atomic multicast mechanisms, for different assumptions and
behaviours in case of faults. The actual mechanism used is configuration dependent.

Replication Management Framework

61

4.4.3. Interaction Between Groups

When tasks belonging to different components interact (Figure 4.14), there is the need to
consolidate values or events between the component replicas. As a set of replicated
components is defined as a group, this type of interaction is defined as inter-group,
instead of inter-component.

G1

(a)

G1G1G2

(b)

G1G1G2
G1G1G1

(c)

G1G1G1 G2

Figure 4.14. Inter-Group interaction: 1-to-many (a), many-to-many (b) or many-to-1 (c)

In the case where a group is releasing a task in another group (Figure 4.15), the
Replica Manager must consolidate the release proposals from the replicas. If a release
with data is requested, this data must also be consolidated. A similar approach to the
Distributed Release Event is used.

Inter-Group Release Event Proxy Object

1: when release:
2: Replica_Manager.Propose_Release_Event

Inter-Group Release Event Receive Object

3: when wait:
4: Task_Suspend

5: when private_release:
6: Suspended_Task_Resume

Inter-Group Release Event with Data Proxy Object

7: when release(data):
8: Replica_Manager.Propose_Release_Event(data)

Inter-Group Release Event with Data Receive Object

9: when wait:
10: Task_Suspend
11: return Obj_Data

12: when private_release(data):
13: Obj_Data := data
14: Suspended_Task_Resume

Figure 4.15. Inter-Group Release Event objects

When a task requests a release in another group, the Inter-Group Release Event Proxy
object forwards this request to the Replica Manager. In the other side, tasks wait in the
corresponding Receive object, which is released by the Replica Manager.

Replication Management Framework

62

The Replica Manager is also responsible for determining the release time of the
sporadic task being released. However, this is simplified due to the properties of the
Communication Manager, which guarantees a common delivery time of consolidated
values in every node (Pinho and Vasques, 2001c). This common time can be taken as the
release time of the sporadic task.

If the releasing task is in a non-replicated component, it is not necessary to propose
the release, but only to request it. The Replica Manager is responsible for detecting such
cases and for bypassing the regular behaviour, in order to optimise the system.

For the case of the Shared Data objects, the Inter-Group Shared Data object (Figure
4.16) is responsible for transparently managing the consolidation of the value being
written, and at the same time for maintaining the deterministic behaviour by determining
its validity time. This approach is similar to that used for the Deterministic Distributed
object, except that the Replica Manager is requested to propose a value and not to
disseminate it. Also, it is not necessary to request the validity time of the message at the
source, since, as in the case of the Inter-Group Release Event, the common delivery time
of the Communication Manager can be used for the validity time of the data being
written.

1: when write (data):
2: Replica_Manager.Propose_Value(Data)

3: when read:
4: newest_data := null
5: tval := 0
6: trel := Replica_Manager.Request_Release_Time(Reading_Task)
7: for all i in Data_Buffer loop
8: if tval(i) < trel and tval(i)> tval then
9: newest_data := Data(i)
10: tval := tval(i)
11: end if
12: end loop
13: return newest_data

14: when private_write (data,tval):

15: DataBuffer := DataBuffer ∪ (data,tval)

Figure 4.16. Inter-Group Shared Data object

Two special cases must be considered for the Inter-Group Shared Data object. The
first case is when the writer task is in a non-replicated component and thus it is not
necessary to propose a value, but only to disseminate it. The second case is when the
reader task is in a non-replicated component and thus it is not necessary to determine a
data validity time, as there is no reader replication. Once more, the Replica Manager is
responsible for detecting such cases and for bypassing the regular behaviour.

4.4.4. Interaction with the Soft Real-Time Subsystem

The interconnection between the HRTS and the SRTS must be supported by appropriate
mechanisms for the transfer of information between both subsystems. Data being

Replication Management Framework

63

transferred from the HRTS to the SRTS does not present a major problem, since it is
assumed that this information has a higher reliability level, as it is considered that hard
real-time applications have been designed to achieve higher reliability levels.
Nevertheless, if this data comes from replicated components, the appropriate
consolidation must be performed.

Conversely, the reliability of the data from the SRTS may not be high enough to be
directly used in the system. If possibly erroneous values are expected, the received data
must be filtered. As the definition of what it is erroneous is application-specific (since it
depends on the semantics and not just on the syntax), a generic mechanism cannot be
used. Additionally, if the data is to be provided to replicated components, it must be
disseminated using the appropriate mechanisms (e.g., atomic multicasts).

Additionally, mechanisms for the communication between both subsystems are
expected to depend on the actual platform of a particular instance of the architecture
(mainly on its operating system). Therefore it is not possible to implement a generic
mechanism for such purpose, and a model for such interconnection is provided. Figure
4.17 presents this model for the case of data received from the SRTS (data sent to the
SRTS is similar, just flows in the opposite direction). The application has to supply a
specific interconnection task, which reads the value from the HRTS/SRTS interface,
performs the necessary filtering, and interacts with the rest of the system through one of
the available objects (it can write to a shared data object, or release a sporadic task).

SRTS

HRTS

Instantiated
Object

Incoming
Data

Oper. System
Specific

Application
Specific

Figure 4.17. Model of interconnection with the SRTS

Note that, if fault tolerance is to be achieved, the interconnection with the Soft
Real-Time Subsystem should also be replicated. In order to achieve deterministic
execution, every external interaction with the system must have a common time
reference. As a consequence, it is necessary that the interface task is a component by
itself, in order to interact with the remaining system with consolidated values and times
(data validity time and/or sporadic task release time).

4.4.5. Interaction with the Controlled System

Interconnection with the controlled system is performed through the use of sensors and
actuators, connected to specific nodes. As the interconnection with these sensors and
actuators is application and platform specific, the model for this interconnection is the
same as in the interconnection with the SRTS, where application tasks are responsible
for interconnecting with the devices, and inserting their value (or event) in the system.

Replication Management Framework

64

Note that output actuator agreement may be made either in the computational system
or by mechanical or electronic voting on the result. In the first case, it means that there is
a single task responsible for interconnecting with a single actuator. Thus, the system
relies on the reliability of both the task (and the node where it is allocated) and the
actuator. Although the architecture itself does not forbid such configuration, it is
considered that it implies assumptions not provided by COTS components. Voting
outside the computational system provides much better coverage of the COTS
components failure assumptions (fail-uncontrolled). The way that such agreement is
made outside the computational system is, however, outside of the scope of the generic
architecture.

4.4.6. Configured Application Example

Section 4.4.1 presented a simple application to exemplify how the Object Repository
could be used during the development phase. The same example is re-visited in this
section, in order to exemplify how distributed/replicated applications are modified by the
configuration phase.

Release Event
with Data

Wait
Release
Event

WaitRelease

Sensor

(τ1)

Release

Intra-Component
Communication

Inter-Group
Communication

Component
C2

Component
C1

Controller

(τ2)
Alarm

(τ4)

Shared
Data

Actuator

(τ3)

Write

Component
C3

Read

Figure 4.18. Application configuration

Figure 4.18 presents the configuration of the application. As noted in Section 4.4.5,
since tasks Sensor and Actuator interact with the controlled system, they must be
configured as components. Therefore, component C1 is constituted by task Sensor (τ1)
and component C3 by task Actuator (τ3). Component C2 encompasses tasks Controller
(τ2) and Alarm (τ4). For the purpose of this example, a simplified replication is
considered. Obviously, in order to tolerate fail-uncontrolled behaviour of the replicas, it
would be necessary to use 2*f+1 replicas to tolerate f faults.

Figure 4.19 presents the allocation of the application tasks over the HRTS nodes.
Node 1 is configured with components C1 and C2, while node 2 is configured with a
replica of component C1, with component C3 and with a task of a replica of component
C2. Finally, node 3 is configured with the other task of the replica of component C2, and
with a replica of component C3.

Replication Management Framework

65

C1 C2’

C1’

τ1 τ2’

τ2
τ1’τ4

C2

τ4’

Node 1 Node 2 Node 3

C3

τ3

C3’

τ3’

Figure 4.19. Node configuration

Figure 4.20 presents the program configured to execute in node 1. The Release Event
with Data object of Figure 4.7 (Section 4.4.1) is replaced by its Inter-Group equivalent
(lines 1 and 2), since tasks Sensor and Controller are in different components. The same
occurs with the Shared Data object between Controller and Actuator tasks. The Release
Event object used for the interaction between Controller and Alarm tasks is replaced by a
Deterministic Release Event object, since it is related to an intra-component interaction
and, as it is replicated, the release time of the Alarm task must also be recorded. Note
that application tasks are not changed since the new objects have the same interface as
the ones in Section 4.4.1. The program in this node does not provide the Actuator task,
since no replica of component C3 is allocated to the node.

1: package Device_Event is new
 Object_Repository.Inter_Group.Release_Event_With_Data(
 Device_Data);
2: Device_Event_Obj: Device_Event.Release_Event_With_Data_Obj;

3: package Control_Shared_Data is new
Object_Repository.Inter_Group.Shared_Data(Control_Data);

4: Control_Data_Obj: Control_Shared_Data.Shared_Data_Obj;

5: package Alarm_Event is new
Object_Repository.Intra_Comp.Deterministic_Release_Event;

6: Alarm_Obj: Alarm_Event.Release_Event_Obj;

7: task Sensor; -- no changes

20: task Controller; -- no changes

-- no Task Actuator

47: task Alarm; -- no changes

Figure 4.20. Node 1 program

Figure 4.21 presents the program for node 2. In this node there is no Alarm task, and
as the replica of component C2 is spread between nodes 2 and 3, a Distributed Release
Event Proxy object is used. In node 3 (Figure 4.22) the counterpart Receive object is
used. As in this latter node there is only the Actuator and Alarm tasks, it is not necessary
to create any object responsible for the interaction between Sensor and Controller tasks.

Replication Management Framework

66

1: package Device_Event is new
 Object_Repository.Inter_Group.Release_Event_With_Data(

 Device_Data);
2: Device_Event_Obj: Device_Event.Release_Event_With_Data_Obj;

3: package Control_Shared_Data is new
Object_Repository.Inter_Group.Shared_Data(Control_Data);

4: Control_Data_Obj: Control_Shared_Data.Shared_Data_Obj;

5: package Alarm_Event is new
Object_Repository.Intra_Comp.Distributed_Release_Event;

6: Alarm_Obj: Alarm_Event.Proxy_Release_Event_Obj;

7: task Sensor; -- no changes

20: task Controller; -- no changes

36: task Actuator; -- no changes

-- no Task Alarm

Figure 4.21. Node 2 program

1: package Control_Shared_Data is new
Object_Repository.Inter_Group.Shared_Data(

 Control_Data);
2: Control_Data_Obj: Control_Shared_Data.Shared_Data_Obj;

5: package Alarm_Event is new
Object_Repository.Intra_Comp.Distributed_Release_Event;

6: Alarm_Obj: Alarm_Event.Receive_Release_Event_Obj;

-- no Task Sensor

-- no Task Controller

36: task Actuator; -- no changes

47: task Alarm; -- no changes

Figure 4.22. Node 3 program

4.5. HRTS Replica Manager

The Replica Manager layer (Figure 4.23) is intended to support the proposed task
interaction objects implementing the main processing of the replication and distribution
mechanisms.

The Property Recorder module is the database of the Replica Manager. It records both
the structure and information of tasks and components. Repository objects use this
module to query and/or change the release times of tasks, when a deterministic

Replication Management Framework

67

behaviour is required. This module is also used by the Replication Support and
Application Support modules, to query and record tasks’ release times and application
configuration information.

Application

Replica
Manager

Replication
Support

Property
Recorder

Application-level
Mechanisms

Communication Manager

Application
Support

Error
Manager

Figure 4.23. Replica Manager structure

The Replication Support module provides the required mechanisms for supporting
replicated task interaction. It also interfaces the repository objects with the
communication subsystem, thus it also receives/sends data values and events both
from/to the objects and from/to the Communication Manager.

The Application Support module provides applications executing in the HRTS with
the required support for the recording of periodic tasks’ release times and for allowing
components to be shutdown, silenced or activated.

The Error Manager module keeps a record of detected errors in the node (and in the
system, if configured to disseminate error detection). This module also provides
mechanisms for notification of errors, which can be used by applications error recovery
procedures.

4.5.1. Property Recorder Module

The Property Recorder module is responsible for storing all the information (Table 4.1)
needed to guarantee the correct behaviour of the replication/distribution framework. In
this module, two different categories of information are stored. The application
configuration information, which is off-line knowledge, and is constituted by the
component structure, task information and network information. This type of
information is similar in every node, since it is related to the global knowledge of the
supported applications, which is off-line knowledge.

The application execution information cannot be defined off-line, since it is
constituted by the tasks’ release times and the state of the application components
(active, silenced, shutdown). The Property Recorder at each node only stores the
information related to the components and tasks that execute in the node. The
Replication Support module is responsible for, when necessary, forwarding such local
information to the other nodes.

Replication Management Framework

68

Table 4.1. Application information

Component Structure: Task and object identifiers of each component

Task Information: Worst- and best-case execution time (may include internal
computations)

Application
Configuration

Network Information: Message streams worst-case delivery time

Component Structure: Component stateApplication
Execution

Task Information: Release time of tasks

Table 4.2 presents the interface provided by the Property Recorder. This interface is
used by the repository objects (Section 4.4) and also by the Replication Support and
Application Support modules of the Replica Manager. Note that there are two different
interfaces to record the release time of a task. The first one is to be used when both
released and releasing tasks are in the same node, thus the Property Recorder has the
necessary information to determine the release time (release time and best-case
execution time of the releasing task).

Table 4.2. Property Recorder interface

Query_Released_Task(Obj_Id)

Query_Component_Replication_Degree(Comp_Id)

Query_Component_Id (Task_Id)

Query_Component_Id (Obj_Id)

Query_Group(Obj_Id)

Query_Source_Group(Obj_Id)

Application
Configuration

Query_Dest_Groups(Obj_Id)

Query_Message_Validity_Time(Task,Msg)

Record_Task_Release_Time(Task_Id)

Record_Task_Release_Time(Task_Id, Time)

Query_Task_Release_Time(Task_Id)

Query_Component_State(Comp_Id)

Application
Execution

Record_Component_State(Comp_Id, State)

When distributed release events are used, this information is only available at the
source node, in spite of the release time being required at the destination node.
Therefore, Query_Task_Release_Time is used at the source node to determine the release
time of the task. Such release time is then sent through the network, in order to be stored
at the destination node, using the second Record_Task_Release_Time interface.

Replication Management Framework

69

Moreover, for the case of activating a component, the Application Support module also
needs to record the release time of the periodic tasks, also requiring the second interface.

4.5.2. Replication Support Module

The Replication Support module is the core of the Replica Manager layer. This module
is responsible for implementing the replication and distribution mechanisms, and also for
the interconnection with the communication subsystem through the interface provided by
the Communication Manager.

This interface allows the atomic multicast of messages to destination groups, the
notification of message reception, and also the atomic multicasting of messages within
the same group. Using a group communication interface to the communication
subsystem allows an easier management of component replication, and also simplifies
the necessary adaptations, if the communication subsystem or the Communication
Manager are changed.

This group communication interface is specified in terms of Groups and Group
Objects. Several different calls can be made to the same group, referring to different
interaction objects. Therefore, this interface specifies which group is being addressed
and, inside the group, which object is being addressed. Table 4.3 presents the syntax of
the calls that can be made to the interface, and also the syntax of the necessary handler to
receive messages.

Table 4.3. Communication Manager interface

Multicast(Message, Sender_Group_Id, Receiver_Group_Array,

 Receiver_Obj_Id)

To the
Communication
Manager

Consolidated_Multicast(Message,Sender_Group,Receiver_Group_Array,

 Receiver_Obj_Id)

From the
Communication
Manager

Receive(Message, From_Group, To_Group, To_Obj, Deliver_Time)

The Multicast call allows the atomic multicast of a message to a set of groups,
without requiring any type of consolidation from the communication system. The
Consolidated_Multicast call is to be used when consolidation is required between the
replicas of the sending component.

Messages between distributed elements within the same replica can use the Multicast
call, using the same group for Sender and Receiver groups. Note that using a multicast
call the same message can be sent or proposed to a set of groups. This is necessary, since
the same interaction object can be used by a set of components, thus, when replication is
considered, by a set of groups. It is expected that most of the time the writing group will
also be one of the receiving groups, if the same object is used for reading and writing in
a component. If it is to be sent or proposed to a single group, then a
Receiver_Group_Array with a cardinality of one can be used.

Replication Management Framework

70

Concerning the support to the interaction objects, when a release event is requested
(Figure 4.24) it is necessary to record the release time of the released task. When a
release event is to be forwarded (Figure 4.24), it is necessary to obtain from the Property
Recorder the release time of the sporadic task being released, as such value must be sent
together with the event message. When data is to be disseminated inside a component
(Figure 4.25), its validity time must also be disseminated if the source component is
replicated (lines 5 to 8).

1: when Request_Release_Event
2: Task_Id := Property_Recorder.Query_Released_Task(Obj_Id)
3: Property_Recorder.Record_Task_Release_Time(Task_Id)
4: Object(Obj_Id).private_release

5: when Forward_Release_Event
6: Task_Id := Property_Recorder.Query_Released_Task(Obj_Id)
7: Message := Msg_Type(Event) ∪

 Property_Recorder.Query_Task_Release_Time(Task_Id)
8: This_Group := Property_Recorder.Query_Group(Obj_Id)
9: Communication_Manager.Multicast(Message, This_Group,

 This_Group, Obj_Id)

10: when Forward_Release_Event(data)
11: Task_Id := Property_Recorder.Query_Released_Task(Obj_Id)
12: Message := Msg_Type(Event) ∪ data ∪

 Property_Recorder.Query_Task_Release_Time(Task_Id)
13: This_Group := Property_Recorder.Query_Group(Obj_Id)
14: Communication_Manager.Multicast(Message, This_Group,
 This_Group, Obj_Id)

Figure 4.24. Support for Intra-Component Release Events

1: when Request_Dissemination(Data)

2: Message := Msg_Type(Data) ∪ Data
3: This_Group := Property_Recorder.Query_Group(Obj_Id)
4: Communication_Manager.Multicast(Message, This_Group,

 This_Group, Obj_Id)

5: when Request_Dissemination(Data, tval)

6: Message := Msg_Type(Data_and_Validity) ∪ Data ∪ tval
7: This_Group := Property_Recorder.Query_Group(Obj_Id)
8: Communication_Manager.Multicast(Message, This_Group,
 This_Group, Obj_Id)

Figure 4.25. Support for Intra-Component data dissemination

To propose release events or data values (Figures 4.26 and 4.27), it is necessary to
query the Property Recorder to obtain source and destination group identifiers.
Moreover, if the source component is replicated, it is necessary to use the
Consolidated_Multicast interface to consolidate the outputs from the different replicas.

Replication Management Framework

71

1: when Propose_Release_Event
2: comp := Property_Recorder.Query_Component_Id(Obj_Id)

3: if Property_Recorder.Query_Component_State(comp)
 not Silenced then
4: Message := Msg_Type(Event)
5: Source_Group :=
 Property_Recorder.Query_Source_Group(Obj_Id)
6: Dest_Groups :=
 Property_Recorder.Query_Dest_Groups(Obj_Id)
7: degree :=

Property_Recorder.Query_Comp_Replication_Degree(comp)

8: if degree = 1 then
9: Communication_Manager.Multicast(Message,

Source_Group,
Dest_Groups,
Obj_Id)

10: else
11: Communication_Manager.Consolidated_Multicast(

Message,
Source_Group,
Dest_Groups,
Obj_Id)

12: end if
13: end if

14: when Propose_Release_Event(data)
15: comp := Property_Recorder.Query_Component_Id(Obj_Id)

16: if Property_Recorder.Query_Component_State(comp)
not Silenced then

17: Message := Msg_Type(Event_Data) ∪ data
18: Source_Group :=
 Property_Recorder.Query_Source_Group(Obj_Id)
19: Dest_Groups :=
 Property_Recorder.Query_Dest_Groups(Obj_Id)
20: degree :=

Property_Recorder.Query_Comp_Replication_Degree(comp)

21: if degree = 1 then
22: Communication_Manager.Multicast(Message,

Source_Group,
 Dest_Groups,

Obj_Id)
23: else
24: Communication_Manager.Consolidated_Multicast(

Message,
Source_Group,
Dest_Groups,
Obj_Id)

25: end if
26: end if

Figure 4.26. Support for Inter-Group Release Events

