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Abstract 
We propose a schedulability analysis for a particular class of time division multiple access (TDMA) 
networks, which we label as TDMA/SS. SS stands for slot skipping, reflecting the fact that a slot is skipped 
whenever it is not used. Hence, the next slot can start earlier in benefit of hard real-time traffic. In the 
proposed schedulability analysis, we assume knowledge of all message streams in the system, and that each 
node schedules messages in its output queue according to a rate monotonic policy (as an example). We 
present the analysis in two steps. Firstly, we address the case where a node is only permitted to transmit a 
maximum of one message per TDMA cycle. Secondly, we generalise the analysis to the case where a node is 
assigned a budget of messages per TDMA cycle it may transmit. A simple algorithm to assign budgets to 
nodes is also presented.. 
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Abstract 
 

We propose a schedulability analysis for a 
particular class of time division multiple access 
(TDMA) networks, which we label as TDMA/SS. SS 
stands for slot skipping, reflecting the fact that a slot is 
skipped whenever it is not used. Hence, the next slot 
can start earlier in benefit of hard real-time traffic. In 
the proposed schedulability analysis, we assume 
knowledge of all message streams in the system, and 
that each node schedules messages in its output queue 
according to a rate monotonic policy (as an example). 
We present the analysis in two steps. Firstly, we 
address the case where a node is only permitted to 
transmit a maximum of one message per TDMA cycle. 
Secondly, we generalise the analysis to the case where 
a node is assigned a budget of messages per TDMA 
cycle it may transmit. A simple algorithm to assign 
budgets to nodes is also presented. 

1. Introduction 

A fundamental problem in distributed real-time 
systems is the sharing of a communication resource 
between message streams on different nodes such that 
real-time requirements are satisfied. TDMA (time 
division multiple access) communication protocols 
solve this by assigning messages to time slots in a way 
that no two nodes transmit at the same time and 
messages’ queuing delays are bounded. Typically, 
these communication protocols operate on the basis of 
TDMA cycles, where a node is assigned one or many 
time slots. Usually, each slot has a fixed length and the 
number of slots per cycle is also fixed. Hence, a 
TDMA cycle has fixed and known time duration, and 
upper bounds on messages’ queuing delays can be 
proved.  

The majority of research work on TDMA 
communications addresses the problem of finding 
appropriate schedules (TDMA frames/templates) for 
guaranteeing timeliness to real-time message streams. 

This is the case of analysis over time-triggered 
protocols such as TTP [1]. It is also the case of works 
addressing distance constraints (maximum timing 
interval between two adjacent instances of the same 
message stream) as an additional temporal 
restriction [2, 3]. Unfortunately, the flexibility in 
assigning time slots to nodes in these approaches comes 
at a price: an unused slot is wasted and cannot be used 
for any other hard real-time traffic. A message stream 
with periodic messages may need a specific time slot in 
a TDMA cycle only in a few cycles, while in the 
majority of the cycles that time slot is not used, hence 
wasted. One way to overcome this waste is to have a 
larger TDMA cycle serving several instances of a 
message stream. Unfortunately, in the extreme case, the 
length of a TDMA cycle may need to be the least 
common multiple of periods, to avoid wasted slots.  

In contrast, however, consider TDMA protocols 
with slot skipping (TDMA/SS); that is, a slot is skipped 
when it is not used. Hence, the next slot can start earlier 
in benefit of hard real-time traffic. Such an approach is 
already in use in some commercial-off-the-shelf 
(COTS) technology [4], but in order to be useful, a 
schedulability analysis that takes slot skipping into 
account is needed. Such an analysis is still missing for 
a generic TDMA/SS network. 

In this paper we present a schedulability analysis for 
TDMA networks with slot skipping (TDMA/SS). We 
assume that all message streams in the system are 
known, and that each node schedules messages in its 
output queue according to a rate monotonic policy (as an 
example). We present the analysis in two steps. Firstly, 
we address the case where a node is only permitted to 
transmit one message per TDMA cycle. Secondly, we 
generalise the analysis to the case where a node is 
assigned a budget of messages it may transmit per 
TDMA cycle. Clearly, the queuing times of messages 
depend on the assignment of budgets to nodes. In fact, a 
poor assignment can cause deadlines to be missed, even 
if the utilisation is arbitrarily low. We propose a simple 
and suitable algorithm to assign budgets to nodes. 



We consider this research work to be significant for 
two reasons. First, our analysis is tighter than any other 
previous analysis on TDMA networks that skip slots [5]. 
Second, we also consider the case where a node can be 
assigned a fixed number of slots, whereas previous work 
only considered the case of a single slot per TDMA cycle. 

The remainder of this paper is organised as follows. 
Section 2 illustrates the basics of operation of the 
TDMA/SS network. In Section 3, we reason and 
present a methodology on how to compute accurate 
message queuing delays in a network where a node is 
only permitted to transmit a single message per TDMA 
cycle (the SMTC case). This analysis is then extended, 
in Section 4, to networks that allow multiple messages 
per TDMA cycle (the MMTC case). Section 5 presents 
a numerical example to illustrate the use of the 
analysis. Section 6 compares our approach to other 
approaches in real-time communications. Finally, in 
Section 7, conclusions are drawn.  

2. TDMA Networks with Slot Skipping 

2.1. Network and Message Models 
Our network is composed of n nodes, 

communicating messages via a shared medium. 
Contention access between nodes is resolved by a 
time division multiple access (TDMA) control 
schema. The access to the medium is ordered by time, 
such that each node is assigned one or more time 
slots, each of length TMS, in a cyclic schedule – the 
TDMA cycle. When a node observes its turn to access 
the shared medium, it may transmit messages up to 
the number of time slots assigned to it. To signal that 
the node will not transmit any more messages during 
the current TDMA cycle, a node transmits a protocol 
slot of length TPR (typically TPR << TMS). In a concrete 
setting, nodes can implement this protocol slot simply 
by staying silent during a TPR time span.  

Our network model can be described as follows: 

{ }( )PRMS
n TTNNNnnet ,,,,,, 21 …=  (1) 

Associated to each node k (k ranging fom 1 to n), 
there is a set {S1

k, S2
k, …, Sk

nsk} of nsk message 
streams. A node k is permitted to transmit at most mpck 
(messages per cycle) in a TDMA cycle. Hence, a node 
k is defined as follows: 
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A message stream with index i (i ranging from 1 to nsk) 
associated to node k is denoted as Si

k. Each message stream 
is characterised by Ti

k and Di
k. Ti

k is the periodicity at which 
a message related to Si

k is queued to be transmitted to the 
network. Di

k is the relative deadline of Si
k.  

Every message needs to be queued before being 
transmitted. We consider the use of rate monotonic (RM) 
scheduling [6] in all network nodes to serve the output 
queue of message streams. Let qi

k denote the maximum 
queuing time of messages belonging to Si

k. Let ri
k denote 

the maximum response time of all messages belonging to 
Si

k, ri
k = qi

k + TMS. If ri
k ≤ Di

k  then we say that Si
k meets its 

deadlines. We are interested in finding out whether all 
messages meet their deadlines. In order to do so, we will 
find an upper bound on qi

k,. This upper bound is denoted 
Qi

k. Let Ri
k denote an upper bound on the response time; 

that is, Ri
k = Qi

k + TMS. If Ri
k ≤ Di

k then we say that Si
k is 

deemed to meet its deadlines according to our analysis 
technique. 

Our analysis assumes that Di
k ≤ Ti

k. Therefore, a 
message from Si

k must finish its transmission before a 
new message from Si

k arrives to the node’s output 
queue. We assume that all messages in the network 
have the length TMS. 

In the description of the TDMA/SS protocol and 
related time analysis, some shorthand notations are useful. 
The next and the previous nodes are denoted as follows: 
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Additionally, and since we assume RM to be used to 
schedule messages in the node’s output queue, the set 
of higher/lower-priority message streams are denoted 
as follows:  
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where TMIN is also introduced to denote the minimum 
period among all the message streams in the system. 

We will now describe the operation of the network 
protocol being used. During the operation of the 
protocol, all nodes maintain a variable 
− address_counter − that keeps track of the node 
holding the right to transmit at any time. 
address_counter has the same value on all nodes, 
and thus in the discussion we treat it as a variable. 
When address_counter makes the transition to k, 
then node k will dequeue and transmit up to mpck 
messages from its output queue. If the output queue 
contains 0 ≤ x < mpck messages, then only those 0 ≤ x 
messages are transmitted (we say that node k skips  
mpck - x slots). After the transmission of those x 



messages, a protocol slot is transmitted (this takes TPR 
time units). As a consequence, the above mentioned 
system-wide variable will change as follows: 
address_counter := next(address_counter). 

When a node does not transmit, it listens to the 
network to update address_counter consistently 
with the other nodes. For this, we assume that all nodes 
hear the same state of the network. 

2.2. Network Example and Operation 
As an instantiation of (1), (2) and (3) concerning the 

previously described network and message models, 
consider a network with 3 nodes as follows: 
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Figure 1. Example network scenario. 

Consider that the arrival pattern of messages to the 
output queues is as illustrated in Figure 2a. For this 
scenario, the timeline for message transmissions and 
address counter evolution in the network is as 
illustrated in Figure 2b.  

The events at time 0 require further explanation. We 
are assuming that: 

1. a message from S3
1 arrives marginally before time 0;  

2. the address_counter changes from 3 to 1 at 
time 0; 

3. and messages from both S1
1 and S2

1 arrive at time 0.  
We also assume that a message is only able to be 

transmitted by node k, if and only if it has been queued 
before address_counter changes to the value k. 
As a result, and for the exemplified scenario, neither 
the message from S1

1 nor the one from S2
1 are 

transmitted at time 0. Instead, a message from S3
1, 

which has lower priority, is transmitted at time 0, since 
this was the only message ready in the output queue of 
node 1 at the time address_counter changes to 1. 

Looking now at the scheduling at time t > 0, observe 
that every time a message is transmitted it takes 1 time 
unit, and after there is a protocol slot of 1/5 time units. 
However, in some of the illustrated TDMA cycles, only 
a protocol slot is transmitted. This occurs because, at 
the time the node was granted the right to transmit, its 
output queue was empty (for example, the output queue 
of node 2 is empty at time instant 4.8).  

Consider the message of S2
1 that was placed in the 

output queue at time 0. This message is queued during 
[0,10.4) and hence q2

1 is 10.4. The message of S2
1 is 

blocked during the time interval [0,3.6) because some 

messages, a lower priority message S3
1 and other 

messages S1
2 and S1

3, cause S2
1 to be queued although it 

has the higher priority. The message of S2
1 suffers from 

interference during [3.6,10.4).  
In order to see why the schedulability analysis of this 

system is non-trivial, look at time instant 10. At this time 
instant, a message from S2

1 (queued at time 0) is still in 
the output queue, and a message from another message 
stream, S1

2, arrives. However, this message from S1
2 does 

not have any effect on the queuing time of the message 
from S2

1, transmitted at time instant 10.4.  
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a) Arrival pattern of messages to the three outgoing queues

b) Message transfers in the network and address counter evolution
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Figure 2. Arrival times and schedule of the 

example network scenario. 

3. Single Message per TDMA Cycle (SMTC) 

In this section, we will develop an accurate 
schedulability analysis technique for the network 
described in Section 2, considering the case of a single 
message per TDMA cycle (SMTC); that is,  
∀ k : mpck = 1. Response time equations [7] for static-
priority scheduling on a uniprocessor can be extended to 
the problem of finding the queuing delay in 
communication networks. Inspired by this, we can reason 
as follows. If nodes never skip slots, then we can 
compute the queuing delay Qi

k of a message as follows:  
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(5) 

where TTDMA corresponds to the maximum TDMA cycle 
duration; that is, the maximum time interval that can 
elapse between two consecutive node accesses to the 
network. In our network model, this quantity is given by: 

PRMSTDMA TnTnT ×+×=  (6) 



The blocking Bi
k can be computed as follows: 
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Equation (7) requires some further explanation. If 
lpk  (Si

k) ≠ ∅ then the message from Si
k is not the 

lowest-priority message at the output queue of node k. 
If address_counter has just made the transition to 
k and a message from Si

k arrives marginally later, then 
Si

k will have to wait until the address_counter 
becomes k again. This takes n × TMS + n × TPR time 
units. If lpk  (Si

k) = ∅ then Si
k is the lowest-priority 

message at the output queue of node k. If 
address_counter has just made the transition to k, 
the output queue of node k was empty and messages 
from all message streams arrive marginally later at 
node k, then messages from Si

k will have to wait until 
address counter becomes k again. This takes  
(n - 1)  × TMS  +  n × TPR time units. The reason is that it 
has to wait TPR time units for the address counter to 
become next(k), and then it has to wait an additional 
amount of   (n -1) × TMS + (n - 1) × TPR  time units. 

We will now compute Qi
k considering the effect of 

slot skipping. Equation (5) can be refined as follows: 

( )

( ) MS
k
i

n

kyy

ky

TDMA
ShpS

k
j

k
ik

i
k
i

TiQnss

T
T
QBQ

k
i

kk
j

×⎥
⎦

⎤
⎢
⎣

⎡

−×
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+=

∑

∑

≠=

→

∈

,
,1

 
(8) 

where nss y→k(Qi
k, i) denotes a lower bound on the 

number of skipped slots on node y during a time 
interval of length Qi

k. The term TMS represents the 
amount of time saved when a slot is skipped. 

We will compute nss y→k(Qi
k, i) by considering how many 

TDMA cycles a message belonging to Si
k has to wait in the 

output queue before being transmitted. The number of 
skipped slots on node y is the difference between the number 
of slots that were available to node y and the actual number of 
slots used by node y. Computing these quantities is however 
not trivial, and therefore we will use upper and lower bounds 
on them. A quantity that starts with LB stands for a lower 
bound and, analogously, UB stands for an upper bound. 
Using these bounds and observing that any lower bound on 
the number messages must be non-negative, we obtain: 

{
}ynodebydtransmittewasthatslotsofUBnumber

ynodetoavailablewerethatslotsofLBnumber
NonslotsunusedofLBnumber y

−
=

,0max (9) 

Since only one message is transmitted per TDMA 
cycle, we know that this is also the number of messages 
transmitted on node y. Based on this reasoning, one may 

believe that a lower bound on the number of skipped 
slots on node y during a time interval of length Wi

k is: 

( ) ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
+−

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
∑∑

∀∈ yy
j

k
i

kk
j NonS

y
j

k
iy

ShpS
k
j

k
i

T
W

ns
T
W

,0max
 

(10) 

However, equation (10) is used only to provide some 
insight on the reasoning towards the final results. It is 
incomplete because we need to assign a value to Wi

k. It 
would be tempting to use Wi

k = Qi
k. But, unfortunately, 

doing so would not be correct, because the maximum 
queuing delay (or minimum number of skipped slots) 
does not occur when all messages on all nodes arrive at 
the same time. Additionally, some messages that arrive 
late on node y do not affect node k. 

We will now compute a correct upper bound on the 
queuing delay when slot skipping is considered. Let t0 
denote the time instant when a message of Si

k of 
maximum queuing time arrives. Consider the message 
stream Sj

y on node y, with y = prev(k). This message 
stream Sj

y has a message which arrived before t0 or at t0. 
Let us call it M. At which time should M arrive to 
generate the maximum number of transmissions that 
cause a delay on the message from Si

k? It should arrive 
late enough to make sure that its entire transmission 
time TMS occurred after t0 or at t0, but it should arrive as 
early as possible to maximise the number of 
transmissions of Sj

y that cause a delay on the message 
from Sj

k. This occurs when M arrives at time t0 - TPR. 
We can repeat this argument with node 

prev(prev(k)), prev(prev(prev(k))), and so on. Hence, 
we obtain the following expression to compute the 
number of skipped slots: 
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where Φy→k is given as follows: 
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Although (11) can be used to compute a lower 
bound on the number of messages on node y, we will 
not do so since there is a source of pessimism that we 
will reduce first. In order to understand this, consider 
Figure 2 illustrating the operation of the protocol. Let 
us try to compute Q2

1. In that TDMA cycle, a message 
from node 3 will be processed before Q2

1 if it arrives at 
node 3’s output queue at least TPR before the end of the 
time window Q2

1 (if the message would arrive later, 
then address_counter would have already 
changed to 1). This reasoning can be extended so that a 
message on node 2 that should be transmitted before the 
end of the time window Q2

1 must arrive 2 × TPR before 



the end of the time window. This reasoning applies 
regardless of whether node 2 or node 3 transmits at the 
end of the window Q2

1. If, however, node 3 transmits a 
message, and another message (belonging to S1

2) arrives 
on node 2, that message from S1

2 must arrive TMS + 
2 × TPR time units before the end of the window Q2

1. 
We will now present the general equations to 

compute the window of a node y. These windows are 
used to compute the number of skipped slots that are 
generated at node y. 

It turns out that finding how much the window 
should be shrunken is difficult, and therefore, 
analogously to a previous reasoning, we will instead 
find a lower bound on how much the window should be 
shrunken. Clearly this offers an upper bound on the 
length of the window, and so this is safe.  

Let Ω y→k denote a lower bound on the amount that 
the window of node y should be shrunken at the end of 
the Qi

k. In that way we have:  
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Intuitively, we can understand (13) as follows. If y = k 
then we are looking at the skipped slots on the node 
where the message from Si

k is assigned. This means that 
the window should not be shrunken at all and thus Ω y→k 
should be zero. Otherwise, y and k are different nodes. 
Then, it matters if node y transmitted a message at the 
end of the window Qi

k. If it did, then the window of node 
y should finish TMS + TPR earlier than node next(y). In 
order to know if a message was transmitted on node y at 
the end of the window Qi

k, we might compute the length 
of the queue of output messages at node y. Finding if a 
message is transmitted is hard however, and thus we will 
use a lower bound instead. In such way, if the lower 
bound on the queue length is 1 or greater, then we know 
that a message was transmitted. LBql y→k denotes this 
lower bound and it stands for (lower-bound queue-
length). We compute it as follows: 
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where 
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It may appear that there is a circular dependency 
between (13) and (15) since to compute Ω we need to 

know the value of Ω. There is however no such 
dependency. We can compute Ω k→k easily from (13). 
We can compute Ω prev(k)→k from (13) as well; it depends 
on Ω k→k, which we have already computed. We can 
compute Ω prev(prev(k))→k from (13) in the same way; it 
depends on Ω prev(k)→k, which we have already computed 
too. Hence, we can compute any Ω with no circular 
dependency. We will omit the proof of (14), because it is 
a special case of an inequality that we will use in 
Section 4, about multiple messages per TDMA cycle 
(MMTC). Based on (11), we obtain the following result: 
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where Φ y→k  is as defined in (12) and Ω y→k is as 
defined in (13). 

4. Multiple Messages per TDMA Cycle (MMTC) 

If nodes are very unequally loaded, then some nodes 
will have many skipped slots while others will be busy 
most of the time. When nodes are idle, they still 
consume TPR time units of the network. This is an 
overhead. It would be desirable that a node is only 
given TDMA slots if it has something to transmit. We 
will now turn our attention to the case of multiple 
messages per TDMA cycle (MMTC), where mpck 
(messages per cycle) is permitted to be greater than 1. 
It reduces the overhead and hence it offers a greater 
ability to meet deadlines. To understand this, consider 
the following simple scenario (Figure 3). 
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Figure 3. Message streams that need MMTC. 

For this scenario, with SMTC we have 11 =mpc  
and 12 =mpc . Let us analyse S72

1, the message stream 
in node 1 with the lowest priority. It will have to wait 
for at least 71 × (TMS + TPR) + 70 × TPR until it is permitted 
to transmit. It will finish its transmission no 
earlier than time 71 × (TMS + TPR) + 70 × TPR + TMS = 100.2, 
thus missing its deadline. But, if we use mpc1 = 72 and 
mpc2 = 1, then deadlines would be met. 

This overhead becomes more and more severe the 
larger the network is. Actually, one can extend the 
previous example to show that there is a set of message 



streams (all with the same period) such that the 
utilisation of the network approaches zero and a 
deadline is missed if SMTC is used, while all deadlines 
are met with MMTC. Assigning mpck > 1 may not only 
reduce the overhead; it may also change the schedule 
favourably, and hence mpck > 1 may be useful even if 
TPR = 0. Motivated by this, we will first present an 
extension of our single message per TDMA cycle 
analysis, and then propose a heuristic on how to choose 
the mpc value for each network node. 

4.1. Analysis 
One obvious difference with the MMTC is that the 

TDMA cycle duration must now be computed as follows: 
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while the blocking Bi
k is given by: 
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We can adapt the SMTC equation to compute the 
queuing time in the case of MMTC. If node k needs to 
transmit x messages, it takes ⎣ x / mpck ⎦ TDMA cycles, 
and it also needs to wait for x mod mpck message slots. 
Therefore, an upper bound on the queuing delay can be 
computed as follows: 
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Computing the number of skipped slots can be made 
similarly to the SMTC case, but some of the terms 
require more care.  
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The terms Φ y→k and Ω y→k have the same 
interpretation as in the SMTC case, but we will revisit 
their equations now. The term Φ y→k does not change, and 
the intuition behind it is the same as the one for the SMTC 
case. 

We will now present and prove the equations for 
computing Ω y→k. Recall, from our discussion in the 
SMTC case, that finding how much the window should 
be shrunken is difficult. It is even more difficult to find 
Ω y→k when mpc y can be assigned any value. For this 
reason, we will again find instead a lower bound on how 
much the window should be shrunken. Clearly this offers 
an upper bound on the window, and thus it is safe. Let 
Ω y→k denote a lower bound on the amount that the 
window of node y should be shrunken due to the address 
counter evolution at the end of the Qy→k. Thus, we have:  
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The intuition behind (21) is similar to the intuition 
provided for Ω y→k in the SMTC case. If y = k, then we 
are looking at the skipped slots on the node where the 
message from Si

k is assigned; that is, the window should 
not be shrunken at all, and hence Ω y→k should be zero. 
Otherwise y and k are different nodes. Then, it matters if 
node y transmitted a message at the end of the window 
Qy→k. If it did, then the window of node y should finish 
earlier than the window of node next(y). 

In order to know if a message was transmitted on 
node y at the end of the window Qy→k, we compute the 
length of the queue of output messages at node y. We 
also need to know how many messages were transmitted 
( ( )tn ky

slots
→ denotes that). Finding if a message is 

transmitted is hard however, so instead we will use a 
lower bound. If the lower bound on the queue length is 1 
or greater, then we know that a message was transmitted. 
LBql y→k denotes this lower bound. If we know LBql y→k, 
then we can compute 

ky

slotsn
→

as follows: 
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A lower bound on the queue length must be 0 or more, 
hence the term max {0, LBql y→k(t)} in (22). It represents 
another lower bound on the queue length. If, however, 
this would be greater than mpcy, then 

ky

slotsn
→

= mpck, and 
thus this is the maximum number of messages that node y 
can transmit in the last TDMA cycle.   

We will now focus on computing LBql y→k. Let ql y 
denote the length of the output queue of node y at time 
L y→k(t) after the message from Si

k was put in the output 
queue. L y→k(t) is given by: 
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As a message from Si
k was in the queue at the end of 

the time window Qi
k, clearly it must have been in the 

queue earlier. Hence, we know that 1 ≤ ql k. Since the 



queue length of node k depends on the number of 
arrived messages and on the number of transmitted 
messages, we obtain (24): 
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where ntransmittedk denotes the number of messages 
transmitted during the time window of length L y→k.  
Using a similar reasoning we get: 
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Observe that (24) and (25) offer a lower/upper 
bound on the output queue length, and that they refer to 
the queue length at different nodes. 

Consider those TDMA cycles such that node y 
transmitted at least one message during the time interval 
of length L y→k. Let nTDMArounds y denote the number 
of those TDMA cycles. We know that the network is 
fair, in the sense that in a time interval two different 
nodes receive almost the same number of TDMA cycles. 
It follows that the difference between the number of 
TDMA cycles received by any two nodes is at most one: 

1+≤ ky snTDMAcyclesnTDMAcycle  (26) 

Since node k used all its messages in all its time slots 
during the window of length Qi

k, it also used all its time 
slots in the window of length L y→k(t). This implies that all 
its TDMA cycles transmitted mpc k messages. Therefore: 
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On node y, we do not know whether slots are 
skipped or not and how many slots are skipped. We do 
know however that every TDMA cycle can transmit at 
most mpc y messages. Hence, we have: 

yyy mpcsnTDMAcycleedntransmitt ×≤  (28) 

Combining (26), (28) and (27) yields: 
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We have already seen that 1 ≤ ql k. Combining it 
with (24), (25) and (29) leads to (30).  
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(30) 

The expression for LBql y→k in (30) can be used in 
(22) and then in (21) to obtain the value of  Ω y→k. 
We can also see that (30) is a generalisation of (14). 

4.2. Heuristic 
Having analysed the behaviour of MMTC, we will now 

focus on the problem of assigning mpc values to nodes.  
It would be tempting to use a scheme that assigns 

mpck to be proportional to ∑ ∀Sj
k on Nk ⎡TMS / Tj

k⎤ as was 
done in the normalised proportional allocation scheme 
used in timed token networks [8]. However, applying 
such an algorithm in TDMA/SS is non-trivial for two 
reasons. Firstly, in TDMA/SS, the TDMA cycle time 
may vary at run-time, because the number of skipped 
slots may be different in different TDMA cycles. 
Secondly, if Di

k ≠ Ti
k, then it is not obvious how to 

compute the utilisation of a message stream, and 
therefore to compute the utilisation of a node.  

The idea we use was demonstrated by the example 
outlined in Figure 3: nodes having message streams 
that miss a deadline should receive a larger mpc. 
Thus, a simple algorithm to apply this concept is 
sketched below (Algorithm 1). 

Algorithm 1: Assigning mpc to nodes. 

1. for all nodes k: mpck ←1 end for 

2. while
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do begin

 

3.  for all nodes k 
4.   for all messages streams Sik at node k: 
5.    Compute all Qik using (19) 
6.   end for 
7.  end for   
8.  if all messages meet their deadlines 
9.   return SUCCESS 
10.  else  
11.   for all nodes k such that there is a messages  
         stream on node k that misses a deadlines 
12.    mpck ← mpck  + 1 
13.   end for 
14.  end if 
15. end while 
16. return FAILURE 

Observe that since there is a node with mpck that 
increases in each iteration, there will be at most 
⎡TMIN / TMS⎤ iterations of the lines 2-15.  
Considering that (19) is used to compute Qi

k has an 
upper bound of max {∀Si

k on Nk Ti
k } iterations, the 

algorithm to assign mpcs to nodes has a low 
computational complexity. 

Another advantage of our algorithm is that if the 
workload of a node is not known, the algorithm can 
attempt to find it anyway by replacing line 8 with 
detecting deadline misses. When a deadline is 
missed, then we execute lines 11-13 and continue 
operation for some time (typically some multiples of 



the maximum period). At that point, deadlines misses 
are detected and iteration 2-15 starts again. After a 
long time of no deadline misses, a node should 
decrease its mpc, if it is greater than 1. With such an 
application, a node does not need global knowledge 
(such as the normalized allocation scheme in [8] 
does), but only local knowledge is needed. 

5. Numerical Example 

We have developed a tool (called TDMA analyser) 
to compare the real queuing times qi

k with the upper 
bound on the queuing times Qi

k. In the test scenarios 
we have run, the analysis is often tight; that is, qi

k = Qi
k. 

Nevertheless, there are some message streams on which 
the analysis is not tight. We will now look at it to 
understand the reason for this small level of pessimism, 
to give an idea of how large it can be, and to illustrate 
how the calculations are made. Consider the network 
example given by Figure 4. 

We calculated the mpcs by Algorithm 1, with 
resulting values as illustrated in Figure 4. This 
assignment of mpcs is good since all deadlines are met 
and our analysis claims (by calculating Qi

k) that all 
deadlines are met. Furthermore, there is no other 
assignment of mpcs with a lower TTDMA. 

Looking now at the behaviour of the protocol after 
time 0, we can see that the queuing delay q2

3 = 15.4. 
This is less than the calculated upper bound on the 
queuing delay Q2

3 = 19.4. To understand this, look at 
node 4 at time instant 14.4. A message of message 
stream S1

4 arrives at time instant 14.4. So, without using 
our analysis based on Ω, we would have concluded that 
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Figure 4. MMTC message streams. 

the message that arrived at time 14.4 would be 
transmitted before time 15.4, and hence has caused 
interference. However, we can see that, at time instant 
11.8, node 4 has address_counter with value 4. 
Moreover, at that time instant its output queue is 
empty, and after that, node 4 will not have 
address_counter=4 before time instant 15.4. 
Hence, the message that arrived at time 14.4 does not 
cause interference on S2

3. A tight analysis must recognise 
this and observe that node 4 skips a slot at time 11.8. 

Let us now turn our attention to see how our analysis 
deals with this. Our analysis performs the following 
iterations of Q2

3: 0, 5.8, 12.6, 18.4, finally converging to 
19.4. The real queuing time q2

3 = 15.4 is never 
considered by the analysis, but if it would be considered, 
it would be deemed to be too small. In order to 
understand this, insert Q2

3 = 15.4 in the right hand side 
of (19). We need to compute nss 4→3 (15.4,2) from (20). 
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Figure 5. Arrival times and schedule of MMTC network. 



This requires computing Ω 2→3 (15.4) from (21), and 
hence we need to compute ( )4.1532→

slotsn  from (22). We 
obtain ( )4.1532→

slotsn = 0, but in fact one message was 
transmitted during the time interval [14.2, 15.4), and thus 
a more accurate analysis of the window should have 
computed Ω 2→3(15.4)=1 × TMS + TPR=1.2. With our 
analysis (21), we obtain Ω 2→3(15.4)=TPR=0.2. Repeatedly 
applying (21) gives us Ω 1→3(15.4)=2 × TPR=0.4, and 
Ω 4→3(15.4)=3 × TPR =0.6. 

From (12), we obtain: Φ4→3 = 3 × TPR  =  0.6. We 
are now ready to apply (20) to compute the number of 
skipped slots at node 4. We obtain: 
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Hence, our analysis does not detect the skipped slot 
on node 4, and this is the source of the pessimism 
illustrated in Figure 5. This example (Figure 4) shows 
that our analysis is not exact; but we err on the safe 
side. We have chosen this example because of all 
message streams we have simulated, this is the one 
with most pessimism, and still it is reasonably small. 

6. Discussion and Related Work 

TDMA/SS has the following advantages. First, it is 
not dependent on bit-level synchronisation, and hence 
the speed can be quite high (unlike the binary 
countdown protocol [9] used in CAN). Second, 
TDMA/SS does not require sensing-while-
transmitting. Third, TDMA/SS relies on nodes that are 
equipped with a real-time clock, but it does not depend 
on them being synchronised; nodes only need to listen 
for the protocol slot of length TPR to update the 
address_counter.  (If nodes remain silent for a 
long time there may be a need to transmit a dummy 
message in order to keep synchronisation; if this 
occurs for periodic traffic then it must have been that 
the utilisation was low and hence this overhead of 
dummy messages should not be a problem). Fourth, 
TDMA/SS can (if we use Ω y→k = 0) be used to 
schedule sporadic [9] message streams. Fifth, 
TDMA/SS is energy-efficient because it is collision-
free and the network-controller only needs to listen in 
the beginning of a new slot (to determine whether the 
slot was a message slot or a protocol slot). Sixth, 
TDMA/SS is resilient to crashes if nodes are fail-silent. 
(One way to implement TDMA/SS is that a node 

transmitting a protocol slot keeps silent for TPR time 
units. Then, if a node y crashes, this idle time will 
cause, address_counter to become next(y) after 
TPR time units, and hence the operation of the other 
nodes are unaffected.) 

As already mentioned, a TDMA/SS-like protocol was 
studied in [5] but it had the drawbacks of (i) lacking an 
accurate calculation of Ω, (ii) lacking the opportunity to 
transmit multiple messages per TDMA cycle, and (iii) 
assuming FIFO scheduling on each node. 

The TDMA/SS protocol has similarities to the ARINC 
629 protocol [10] in that ARINC 629 is a TDMA 
protocol which does not need synchronised clocks. 
Nodes are given time slots in a pre-specified order; they 
have a terminal gap (TG) specifying an idle between 
nodes (similar to our TPR) and they permit slot skipping. 
Unfortunately, their analysis is not accurate in the sense 
that they do neither take into account effects like the Φ 
and the Ω, nor the local scheduling of output queues. 

Scheduling messages in TDMA without slot skipping 
[1-3] is well studied but, as we have already mentioned, 
they may require long TDMA cycles. Usually they 
create schedules before run-time. However, one recently 
proposed protocol [11] creates the schedule at run-time 
in a distributed fashion. First, it selects periods (shorter 
than required) to make sure that periods are harmonic. 
Then, at run-time, when a collision is detected, a winner 
of the colliding nodes is elected. The winning node will 
transmit and it is assigned an offset so future collisions 
cannot occur. Such an approach is efficient in the sense 
that no time is wasted on protocol slots. However, 
synchronised clocks are required, and sporadic message 
streams cannot be efficiently scheduled. 

The timed token protocol is similar to TDMA/SS, 
and it has been used in FDDI rings and IEEE 802.5. 
Schedulability analysis techniques and algorithms to 
assign Hk (similar to our mpck) have been developed 
[8, 12, 13]. These protocols differ from TDMA/SS in 
that they explicitly pass a token while TDMA/SS does 
not. Timed token networks have a target token 
circulation time. This is similar to our TTDMA, but there 
is one important difference though. If the token 
circulates faster in one circulation, then this time can 
be used on a node to transmit soft real-time messages 
(this is called asynchronous). In TDMA/SS however, 
the address_counter will actually change faster, 
and hence there will be more capacity for hard real-
time traffic. Hence, there are hard real-time message 
streams that can be scheduled with TDMA/SS but that 
cannot be scheduled with the timed token protocol. 
The analysis of timed token protocols performed in 
holistic scheduling [14, 15] addresses a problem 
similar to ours (the Sp in [14] is equivalent to our mpcp; 



in [15] mpck is more restricted, it is assumed to be 1, 
and [15] uses EDF to schedule messages from the 
same node). However, neither [14] nor [15] take the Φ 
and Ω y→k into account or something similar (issues 
due the fact that this is a distributed system). 

Real-time scheduling on IEEE 802.5 networks were 
studied in [16]. It uses explicitly message passing 
where a token must circulate and nodes announce their 
priority before transmitting. That is unlike TDMA/SS 
which only prioritise messages on each node. 

Implicit EDF is a TDMA MAC protocol recently 
proposed [17]. It assumes that all nodes know all 
messages streams in the system. Every node computes 
the earliest deadline of all those message streams and 
hence at most one message is transmitted at every time. 
Such a protocol offers faster response to urgent events 
than TDMA/SS does. However, their protocol has 
three drawbacks. First, the protocol requires 
knowledge of all message streams of other nodes. 
Second, they depend on synchronised clocks. Third, 
sporadic messages cannot be efficiently scheduled. 

7. Conclusions and Future Work 

We conclude that the TDMA/SS protocol has 
attractive real-time and energy-efficient properties suited 
for real-time applications. For future work, we consider 
nodes that are non-work-conserving; that is, they are idle 
although they have non-empty output queue. This can 
make the address_counter change faster and it is 
necessary when arbitrating if some message streams 
have very fine-grained deadlines. We also would like to 
explore techniques that permit a node to sleep for an 
extended period and still maintain consistent 
address_counter when it wakes up. This is 
important to make the protocol not only energy-efficient 
but also to achieve low power consumption. 
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