

Analysing TDMA with Slot Skipping

Björn Andersson
Eduardo Tovar
Nuno Pereira

www.hurray.isep.ipp.pt

Technical Report

TR-051201

Version: 1.0

Date: December 2005

Analysing TDMA with Slot Skipping
Björn ANDERSSON, Eduardo TOVAR, Nuno PEREIRA

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: {bandersson, emt, nap}@dei.isep.ipp.pt

http://www.hurray.isep.ipp.pt

Abstract
We propose a schedulability analysis for a particular class of time division multiple access (TDMA)
networks, which we label as TDMA/SS. SS stands for slot skipping, reflecting the fact that a slot is skipped
whenever it is not used. Hence, the next slot can start earlier in benefit of hard real-time traffic. In the
proposed schedulability analysis, we assume knowledge of all message streams in the system, and that each
node schedules messages in its output queue according to a rate monotonic policy (as an example). We
present the analysis in two steps. Firstly, we address the case where a node is only permitted to transmit a
maximum of one message per TDMA cycle. Secondly, we generalise the analysis to the case where a node is
assigned a budget of messages per TDMA cycle it may transmit. A simple algorithm to assign budgets to
nodes is also presented..

Analysing TDMA with Slot Skipping

B. Andersson, E. Tovar and N. Pereira
IPP Hurray Research Group

Polytechnic Institute of Porto, Portugal
{bandersson,emt,npereira}@dei.isep.ipp.pt

Abstract

We propose a schedulability analysis for a
particular class of time division multiple access
(TDMA) networks, which we label as TDMA/SS. SS
stands for slot skipping, reflecting the fact that a slot is
skipped whenever it is not used. Hence, the next slot
can start earlier in benefit of hard real-time traffic. In
the proposed schedulability analysis, we assume
knowledge of all message streams in the system, and
that each node schedules messages in its output queue
according to a rate monotonic policy (as an example).
We present the analysis in two steps. Firstly, we
address the case where a node is only permitted to
transmit a maximum of one message per TDMA cycle.
Secondly, we generalise the analysis to the case where
a node is assigned a budget of messages per TDMA
cycle it may transmit. A simple algorithm to assign
budgets to nodes is also presented.

1. Introduction

A fundamental problem in distributed real-time
systems is the sharing of a communication resource
between message streams on different nodes such that
real-time requirements are satisfied. TDMA (time
division multiple access) communication protocols
solve this by assigning messages to time slots in a way
that no two nodes transmit at the same time and
messages’ queuing delays are bounded. Typically,
these communication protocols operate on the basis of
TDMA cycles, where a node is assigned one or many
time slots. Usually, each slot has a fixed length and the
number of slots per cycle is also fixed. Hence, a
TDMA cycle has fixed and known time duration, and
upper bounds on messages’ queuing delays can be
proved.

The majority of research work on TDMA
communications addresses the problem of finding
appropriate schedules (TDMA frames/templates) for
guaranteeing timeliness to real-time message streams.

This is the case of analysis over time-triggered
protocols such as TTP [1]. It is also the case of works
addressing distance constraints (maximum timing
interval between two adjacent instances of the same
message stream) as an additional temporal
restriction [2, 3]. Unfortunately, the flexibility in
assigning time slots to nodes in these approaches comes
at a price: an unused slot is wasted and cannot be used
for any other hard real-time traffic. A message stream
with periodic messages may need a specific time slot in
a TDMA cycle only in a few cycles, while in the
majority of the cycles that time slot is not used, hence
wasted. One way to overcome this waste is to have a
larger TDMA cycle serving several instances of a
message stream. Unfortunately, in the extreme case, the
length of a TDMA cycle may need to be the least
common multiple of periods, to avoid wasted slots.

In contrast, however, consider TDMA protocols
with slot skipping (TDMA/SS); that is, a slot is skipped
when it is not used. Hence, the next slot can start earlier
in benefit of hard real-time traffic. Such an approach is
already in use in some commercial-off-the-shelf
(COTS) technology [4], but in order to be useful, a
schedulability analysis that takes slot skipping into
account is needed. Such an analysis is still missing for
a generic TDMA/SS network.

In this paper we present a schedulability analysis for
TDMA networks with slot skipping (TDMA/SS). We
assume that all message streams in the system are
known, and that each node schedules messages in its
output queue according to a rate monotonic policy (as an
example). We present the analysis in two steps. Firstly,
we address the case where a node is only permitted to
transmit one message per TDMA cycle. Secondly, we
generalise the analysis to the case where a node is
assigned a budget of messages it may transmit per
TDMA cycle. Clearly, the queuing times of messages
depend on the assignment of budgets to nodes. In fact, a
poor assignment can cause deadlines to be missed, even
if the utilisation is arbitrarily low. We propose a simple
and suitable algorithm to assign budgets to nodes.

We consider this research work to be significant for
two reasons. First, our analysis is tighter than any other
previous analysis on TDMA networks that skip slots [5].
Second, we also consider the case where a node can be
assigned a fixed number of slots, whereas previous work
only considered the case of a single slot per TDMA cycle.

The remainder of this paper is organised as follows.
Section 2 illustrates the basics of operation of the
TDMA/SS network. In Section 3, we reason and
present a methodology on how to compute accurate
message queuing delays in a network where a node is
only permitted to transmit a single message per TDMA
cycle (the SMTC case). This analysis is then extended,
in Section 4, to networks that allow multiple messages
per TDMA cycle (the MMTC case). Section 5 presents
a numerical example to illustrate the use of the
analysis. Section 6 compares our approach to other
approaches in real-time communications. Finally, in
Section 7, conclusions are drawn.

2. TDMA Networks with Slot Skipping

2.1. Network and Message Models
Our network is composed of n nodes,

communicating messages via a shared medium.
Contention access between nodes is resolved by a
time division multiple access (TDMA) control
schema. The access to the medium is ordered by time,
such that each node is assigned one or more time
slots, each of length TMS, in a cyclic schedule – the
TDMA cycle. When a node observes its turn to access
the shared medium, it may transmit messages up to
the number of time slots assigned to it. To signal that
the node will not transmit any more messages during
the current TDMA cycle, a node transmits a protocol
slot of length TPR (typically TPR << TMS). In a concrete
setting, nodes can implement this protocol slot simply
by staying silent during a TPR time span.

Our network model can be described as follows:

{ }()PRMS
n TTNNNnnet ,,,,,, 21 …= (1)

Associated to each node k (k ranging fom 1 to n),
there is a set {S1

k, S2
k, …, Sk

nsk} of nsk message
streams. A node k is permitted to transmit at most mpck
(messages per cycle) in a TDMA cycle. Hence, a node
k is defined as follows:

{ }()kk
ns

kkkk mpcSSSnsN k ,,,,, 21 …= (2)

A message stream with index i (i ranging from 1 to nsk)
associated to node k is denoted as Si

k. Each message stream
is characterised by Ti

k and Di
k. Ti

k is the periodicity at which
a message related to Si

k is queued to be transmitted to the
network. Di

k is the relative deadline of Si
k.

Every message needs to be queued before being
transmitted. We consider the use of rate monotonic (RM)
scheduling [6] in all network nodes to serve the output
queue of message streams. Let qi

k denote the maximum
queuing time of messages belonging to Si

k. Let ri
k denote

the maximum response time of all messages belonging to
Si

k, ri
k = qi

k + TMS. If ri
k ≤ Di

k then we say that Si
k meets its

deadlines. We are interested in finding out whether all
messages meet their deadlines. In order to do so, we will
find an upper bound on qi

k,. This upper bound is denoted
Qi

k. Let Ri
k denote an upper bound on the response time;

that is, Ri
k = Qi

k + TMS. If Ri
k ≤ Di

k then we say that Si
k is

deemed to meet its deadlines according to our analysis
technique.

Our analysis assumes that Di
k ≤ Ti

k. Therefore, a
message from Si

k must finish its transmission before a
new message from Si

k arrives to the node’s output
queue. We assume that all messages in the network
have the length TMS.

In the description of the TDMA/SS protocol and
related time analysis, some shorthand notations are useful.
The next and the previous nodes are denoted as follows:

⎩
⎨
⎧

=
−≤≤+

=

⎩
⎨
⎧

≤≤−
=

=

 if ,1
 11 if 1,

)(

2 if ,1

 1 if ,
)(

nk
nkk

knext

nkk
kn

kprev
(3)

Additionally, and since we assume RM to be used to
schedule messages in the node’s output queue, the set
of higher/lower-priority message streams are denoted
as follows:

() () ()
⎭
⎬
⎫

⎩
⎨
⎧

<∧=∨<= ijTTTTSShp k
i

k
j

k
i

k
j

k
j

k
i

k :

() ()() ()
⎭
⎬
⎫

⎩
⎨
⎧

≠∧∉= k
i

k
j

k
i

kk
j

k
j

k
i

k SSShpSSSlp :

⎟
⎠

⎞
⎜
⎝

⎛
=

∀=
k

iNonSnk TTMIN kk
i

minmin ..1

(4)

where TMIN is also introduced to denote the minimum
period among all the message streams in the system.

We will now describe the operation of the network
protocol being used. During the operation of the
protocol, all nodes maintain a variable
− address_counter − that keeps track of the node
holding the right to transmit at any time.
address_counter has the same value on all nodes,
and thus in the discussion we treat it as a variable.
When address_counter makes the transition to k,
then node k will dequeue and transmit up to mpck
messages from its output queue. If the output queue
contains 0 ≤ x < mpck messages, then only those 0 ≤ x
messages are transmitted (we say that node k skips
mpck - x slots). After the transmission of those x

messages, a protocol slot is transmitted (this takes TPR
time units). As a consequence, the above mentioned
system-wide variable will change as follows:
address_counter := next(address_counter).

When a node does not transmit, it listens to the
network to update address_counter consistently
with the other nodes. For this, we assume that all nodes
hear the same state of the network.

2.2. Network Example and Operation
As an instantiation of (1), (2) and (3) concerning the

previously described network and message models,
consider a network with 3 nodes as follows:

{ }()51, 1, ,,,3 321 NNNnet =

{ }() { }() { }()
0.7
1,,1

2.5
1,,1

4.13
0.13
0.4

1,,,,3
3
1

3
1

3
1

3

2
1

2
1

2
1

2

1
3

1
3

1
2

1
2

1
1

1
1

1
3

1
2

1
1

1

⎪
⎪
⎩

⎪
⎪
⎨

⎧

==
=

⎪
⎪
⎩

⎪
⎪
⎨

⎧

==
=

⎪
⎪
⎩

⎪
⎪
⎨

⎧

==
==
==

=
DT

SN
DT

SN

DT
DT
DT

SSSN

Figure 1. Example network scenario.

Consider that the arrival pattern of messages to the
output queues is as illustrated in Figure 2a. For this
scenario, the timeline for message transmissions and
address counter evolution in the network is as
illustrated in Figure 2b.

The events at time 0 require further explanation. We
are assuming that:

1. a message from S3
1 arrives marginally before time 0;

2. the address_counter changes from 3 to 1 at
time 0;

3. and messages from both S1
1 and S2

1 arrive at time 0.
We also assume that a message is only able to be

transmitted by node k, if and only if it has been queued
before address_counter changes to the value k.
As a result, and for the exemplified scenario, neither
the message from S1

1 nor the one from S2
1 are

transmitted at time 0. Instead, a message from S3
1,

which has lower priority, is transmitted at time 0, since
this was the only message ready in the output queue of
node 1 at the time address_counter changes to 1.

Looking now at the scheduling at time t > 0, observe
that every time a message is transmitted it takes 1 time
unit, and after there is a protocol slot of 1/5 time units.
However, in some of the illustrated TDMA cycles, only
a protocol slot is transmitted. This occurs because, at
the time the node was granted the right to transmit, its
output queue was empty (for example, the output queue
of node 2 is empty at time instant 4.8).

Consider the message of S2
1 that was placed in the

output queue at time 0. This message is queued during
[0,10.4) and hence q2

1 is 10.4. The message of S2
1 is

blocked during the time interval [0,3.6) because some

messages, a lower priority message S3
1 and other

messages S1
2 and S1

3, cause S2
1 to be queued although it

has the higher priority. The message of S2
1 suffers from

interference during [3.6,10.4).
In order to see why the schedulability analysis of this

system is non-trivial, look at time instant 10. At this time
instant, a message from S2

1 (queued at time 0) is still in
the output queue, and a message from another message
stream, S1

2, arrives. However, this message from S1
2 does

not have any effect on the queuing time of the message
from S2

1, transmitted at time instant 10.4.

 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Time
(T units)

...

S1
1

S1
2

S2
1

S3

Addr. Counter

2

S1
3

MS

...

Time
(T units)MS

2

TPR TMS

a) Arrival pattern of messages to the three outgoing queues

b) Message transfers in the network and address counter evolution

Queuing Time for the message of S queued at time 0 (q)

Figure 2. Arrival times and schedule of the

example network scenario.

3. Single Message per TDMA Cycle (SMTC)

In this section, we will develop an accurate
schedulability analysis technique for the network
described in Section 2, considering the case of a single
message per TDMA cycle (SMTC); that is,
∀ k : mpck = 1. Response time equations [7] for static-
priority scheduling on a uniprocessor can be extended to
the problem of finding the queuing delay in
communication networks. Inspired by this, we can reason
as follows. If nodes never skip slots, then we can
compute the queuing delay Qi

k of a message as follows:

()
∑

∈
⎟
⎟
⎠

⎞

⎜
⎜
⎝

⎛
×
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+=

k
i

kk
j ShpS

TDMAk
j

k
ik

i
k
i T

T
Q

BQ

(5)

where TTDMA corresponds to the maximum TDMA cycle
duration; that is, the maximum time interval that can
elapse between two consecutive node accesses to the
network. In our network model, this quantity is given by:

PRMSTDMA TnTnT ×+×= (6)

The blocking Bi
k can be computed as follows:

()
() ()⎩
⎨
⎧

∅=×+×−
∅≠×+×

= k
i

k
PRMS

k
i

k
PRMSk

i SlpifTnTn
SlpifTnTn

B
 ,1
 ,

(7)

Equation (7) requires some further explanation. If
lpk (Si

k) ≠ ∅ then the message from Si
k is not the

lowest-priority message at the output queue of node k.
If address_counter has just made the transition to
k and a message from Si

k arrives marginally later, then
Si

k will have to wait until the address_counter
becomes k again. This takes n × TMS + n × TPR time
units. If lpk (Si

k) = ∅ then Si
k is the lowest-priority

message at the output queue of node k. If
address_counter has just made the transition to k,
the output queue of node k was empty and messages
from all message streams arrive marginally later at
node k, then messages from Si

k will have to wait until
address counter becomes k again. This takes
(n - 1) × TMS + n × TPR time units. The reason is that it
has to wait TPR time units for the address counter to
become next(k), and then it has to wait an additional
amount of (n -1) × TMS + (n - 1) × TPR time units.

We will now compute Qi
k considering the effect of

slot skipping. Equation (5) can be refined as follows:

()

() MS
k
i

n

kyy

ky

TDMA
ShpS

k
j

k
ik

i
k
i

TiQnss

T
T
QBQ

k
i

kk
j

×⎥
⎦

⎤
⎢
⎣

⎡

−×
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+=

∑

∑

≠=

→

∈

,
,1

(8)

where nss y→k(Qi
k, i) denotes a lower bound on the

number of skipped slots on node y during a time
interval of length Qi

k. The term TMS represents the
amount of time saved when a slot is skipped.

We will compute nss y→k(Qi
k, i) by considering how many

TDMA cycles a message belonging to Si
k has to wait in the

output queue before being transmitted. The number of
skipped slots on node y is the difference between the number
of slots that were available to node y and the actual number of
slots used by node y. Computing these quantities is however
not trivial, and therefore we will use upper and lower bounds
on them. A quantity that starts with LB stands for a lower
bound and, analogously, UB stands for an upper bound.
Using these bounds and observing that any lower bound on
the number messages must be non-negative, we obtain:

{
}ynodebydtransmittewasthatslotsofUBnumber

ynodetoavailablewerethatslotsofLBnumber
NonslotsunusedofLBnumber y

−
=

,0max (9)

Since only one message is transmitted per TDMA
cycle, we know that this is also the number of messages
transmitted on node y. Based on this reasoning, one may

believe that a lower bound on the number of skipped
slots on node y during a time interval of length Wi

k is:

() ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
+−

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
∑∑

∀∈ yy
j

k
i

kk
j NonS

y
j

k
iy

ShpS
k
j

k
i

T
W

ns
T
W

,0max

(10)

However, equation (10) is used only to provide some
insight on the reasoning towards the final results. It is
incomplete because we need to assign a value to Wi

k. It
would be tempting to use Wi

k = Qi
k. But, unfortunately,

doing so would not be correct, because the maximum
queuing delay (or minimum number of skipped slots)
does not occur when all messages on all nodes arrive at
the same time. Additionally, some messages that arrive
late on node y do not affect node k.

We will now compute a correct upper bound on the
queuing delay when slot skipping is considered. Let t0
denote the time instant when a message of Si

k of
maximum queuing time arrives. Consider the message
stream Sj

y on node y, with y = prev(k). This message
stream Sj

y has a message which arrived before t0 or at t0.
Let us call it M. At which time should M arrive to
generate the maximum number of transmissions that
cause a delay on the message from Si

k? It should arrive
late enough to make sure that its entire transmission
time TMS occurred after t0 or at t0, but it should arrive as
early as possible to maximise the number of
transmissions of Sj

y that cause a delay on the message
from Sj

k. This occurs when M arrives at time t0 - TPR.
We can repeat this argument with node

prev(prev(k)), prev(prev(prev(k))), and so on. Hence,
we obtain the following expression to compute the
number of skipped slots:

() ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢ Φ+
+−

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
∑∑

∀

→

∈ yy
j

k
i

kk
j NonS

y
j

kyk
iy

ShpS
k
j

k
i

T
Qns

T
Q,0max

(11)

where Φy→k is given as follows:

⎩
⎨
⎧

≠Φ+
=

=Φ →
→

kyifT
kyif

kynext
PR

ky
)(

0
(12)

Although (11) can be used to compute a lower
bound on the number of messages on node y, we will
not do so since there is a source of pessimism that we
will reduce first. In order to understand this, consider
Figure 2 illustrating the operation of the protocol. Let
us try to compute Q2

1. In that TDMA cycle, a message
from node 3 will be processed before Q2

1 if it arrives at
node 3’s output queue at least TPR before the end of the
time window Q2

1 (if the message would arrive later,
then address_counter would have already
changed to 1). This reasoning can be extended so that a
message on node 2 that should be transmitted before the
end of the time window Q2

1 must arrive 2 × TPR before

the end of the time window. This reasoning applies
regardless of whether node 2 or node 3 transmits at the
end of the window Q2

1. If, however, node 3 transmits a
message, and another message (belonging to S1

2) arrives
on node 2, that message from S1

2 must arrive TMS +
2 × TPR time units before the end of the window Q2

1.
We will now present the general equations to

compute the window of a node y. These windows are
used to compute the number of skipped slots that are
generated at node y.

It turns out that finding how much the window
should be shrunken is difficult, and therefore,
analogously to a previous reasoning, we will instead
find a lower bound on how much the window should be
shrunken. Clearly this offers an upper bound on the
length of the window, and so this is safe.

Let Ω y→k denote a lower bound on the amount that
the window of node y should be shrunken at the end of
the Qi

k. In that way we have:

() ()

()
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

<

≠
Ω+

≥

≠
Ω++

=

=Ω

→
→

→
→→

1)(
,

1)(
,

,0

)(

)(

tLBql
andky

iftT

tLBql
andky

iftTT

kyif

t

ky
kynext

PR

ky
kynext

PRMS
ky (13)

Intuitively, we can understand (13) as follows. If y = k
then we are looking at the skipped slots on the node
where the message from Si

k is assigned. This means that
the window should not be shrunken at all and thus Ω y→k
should be zero. Otherwise, y and k are different nodes.
Then, it matters if node y transmitted a message at the
end of the window Qi

k. If it did, then the window of node
y should finish TMS + TPR earlier than node next(y). In
order to know if a message was transmitted on node y at
the end of the window Qi

k, we might compute the length
of the queue of output messages at node y. Finding if a
message is transmitted is hard however, and thus we will
use a lower bound instead. In such way, if the lower
bound on the queue length is 1 or greater, then we know
that a message was transmitted. LBql y→k denotes this
lower bound and it stands for (lower-bound queue-
length). We compute it as follows:

() () ()
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
= ∑∑

∀

→

∀

→
→

kk
j

yy
j

ky

NonS
k
j

ky

NonS
y

j

ky

T
tL

T
tLtLBql

(14)

where

() () ()
⎭
⎬
⎫

⎩
⎨
⎧ +−Ω−= →→

PRMS
kynextky TTtttL)(,0max

(15)

It may appear that there is a circular dependency
between (13) and (15) since to compute Ω we need to

know the value of Ω. There is however no such
dependency. We can compute Ω k→k easily from (13).
We can compute Ω prev(k)→k from (13) as well; it depends
on Ω k→k, which we have already computed. We can
compute Ω prev(prev(k))→k from (13) in the same way; it
depends on Ω prev(k)→k, which we have already computed
too. Hence, we can compute any Ω with no circular
dependency. We will omit the proof of (14), because it is
a special case of an inequality that we will use in
Section 4, about multiple messages per TDMA cycle
(MMTC). Based on (11), we obtain the following result:

()

()
()

⎪⎭

⎪
⎬
⎫

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢ Ω−Φ+
+−

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡

⎩
⎨
⎧=

∑∑
∀

→→

∈

→

yy
j

k
i

kk
j NonS

y
j

kyky
y

ShpS
k
j

ky

T
ttns

T
t

itnss ,0max,

(16)

where Φ y→k is as defined in (12) and Ω y→k is as
defined in (13).

4. Multiple Messages per TDMA Cycle (MMTC)

If nodes are very unequally loaded, then some nodes
will have many skipped slots while others will be busy
most of the time. When nodes are idle, they still
consume TPR time units of the network. This is an
overhead. It would be desirable that a node is only
given TDMA slots if it has something to transmit. We
will now turn our attention to the case of multiple
messages per TDMA cycle (MMTC), where mpck
(messages per cycle) is permitted to be greater than 1.
It reduces the overhead and hence it offers a greater
ability to meet deadlines. To understand this, consider
the following simple scenario (Figure 3).

{ }()51, 1, ,,2 21 NNnet =

{ }() { }()

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

==
=

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

==

==
==

=

0.100

1,,1

0.100

0.100
0.100

1,,,,,72
2

1
2

1

2
1

2

1
72

1
72

1
2

1
2

1
1

1
1

1
72

1
2

1
1

1

DT
SN

DT

DT
DT

SSSN

…

…

Figure 3. Message streams that need MMTC.

For this scenario, with SMTC we have 11 =mpc
and 12 =mpc . Let us analyse S72

1, the message stream
in node 1 with the lowest priority. It will have to wait
for at least 71 × (TMS + TPR) + 70 × TPR until it is permitted
to transmit. It will finish its transmission no
earlier than time 71 × (TMS + TPR) + 70 × TPR + TMS = 100.2,
thus missing its deadline. But, if we use mpc1 = 72 and
mpc2 = 1, then deadlines would be met.

This overhead becomes more and more severe the
larger the network is. Actually, one can extend the
previous example to show that there is a set of message

streams (all with the same period) such that the
utilisation of the network approaches zero and a
deadline is missed if SMTC is used, while all deadlines
are met with MMTC. Assigning mpck > 1 may not only
reduce the overhead; it may also change the schedule
favourably, and hence mpck > 1 may be useful even if
TPR = 0. Motivated by this, we will first present an
extension of our single message per TDMA cycle
analysis, and then propose a heuristic on how to choose
the mpc value for each network node.

4.1. Analysis
One obvious difference with the MMTC is that the

TDMA cycle duration must now be computed as follows:

PRMS

n

l

l
TDMA TnTmpcT ×+×⎟

⎠

⎞
⎜
⎝

⎛
= ∑

=1

(17)

while the blocking Bi
k is given by:

(){ } PRMS
k
i

kk
n

kll

lk
i TnTSlpmpcmpcB ×+×

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= ∑

≠=

,min
,1

(18)

We can adapt the SMTC equation to compute the
queuing time in the case of MMTC. If node k needs to
transmit x messages, it takes ⎣ x / mpck ⎦ TDMA cycles,
and it also needs to wait for x mod mpck message slots.
Therefore, an upper bound on the queuing delay can be
computed as follows:

()
+

⎥
⎥
⎥
⎥
⎥

⎦

⎥

⎢
⎢
⎢
⎢
⎢

⎣

⎢

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡

×+=
∑

∈

k

ShpS
k
j

k
i

TDMA
k
i

k
i mpc

T
Q

TBQ
k
i

kk
j

(19)

()
() MS

k
i

n

kyy

ky
MS

k

ShpS
k
j

k
i TiQnssTmpc

T
Q

k
i

kk
j

×⎥
⎦

⎤
⎢
⎣

⎡
−×⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
∑∑

≠=

→

∈

,mod
,1

Computing the number of skipped slots can be made
similarly to the SMTC case, but some of the terms
require more care.

() [()

()
⎥
⎥
⎦

⎤

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢ Ω−Φ+
+

−×

⎥
⎥
⎥
⎥
⎥

⎦

⎥

⎢
⎢
⎢
⎢
⎢

⎣

⎢

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡

=

∑

∑

∀

→→

∈→

yy
j

k
i

kk
j

NonS
y

j

kyky
y

y
k

ShpS
k
jky

T
ttns

mpc
mpc

T
t

itnss ,0max,

(20)

The terms Φ y→k and Ω y→k have the same
interpretation as in the SMTC case, but we will revisit
their equations now. The term Φ y→k does not change, and
the intuition behind it is the same as the one for the SMTC
case.

We will now present and prove the equations for
computing Ω y→k. Recall, from our discussion in the
SMTC case, that finding how much the window should
be shrunken is difficult. It is even more difficult to find
Ω y→k when mpc y can be assigned any value. For this
reason, we will again find instead a lower bound on how
much the window should be shrunken. Clearly this offers
an upper bound on the window, and thus it is safe. Let
Ω y→k denote a lower bound on the amount that the
window of node y should be shrunken due to the address
counter evolution at the end of the Qy→k. Thus, we have:

() () ()⎩
⎨
⎧

≠Ω++×
=

=Ω →
→

→

kyiftTtnT
kyif

t kynext
PRslotsMS

ky
ky

,
,0

)(

(21)

The intuition behind (21) is similar to the intuition
provided for Ω y→k in the SMTC case. If y = k, then we
are looking at the skipped slots on the node where the
message from Si

k is assigned; that is, the window should
not be shrunken at all, and hence Ω y→k should be zero.
Otherwise y and k are different nodes. Then, it matters if
node y transmitted a message at the end of the window
Qy→k. If it did, then the window of node y should finish
earlier than the window of node next(y).

In order to know if a message was transmitted on
node y at the end of the window Qy→k, we compute the
length of the queue of output messages at node y. We
also need to know how many messages were transmitted
(()tn ky

slots
→ denotes that). Finding if a message is

transmitted is hard however, so instead we will use a
lower bound. If the lower bound on the queue length is 1
or greater, then we know that a message was transmitted.
LBql y→k denotes this lower bound. If we know LBql y→k,
then we can compute

ky

slotsn
→

as follows:

() (){ }
⎭
⎬
⎫

⎩
⎨
⎧

= →→ tLBqlmpctn kyyky
slots ,0max,min

(22)

A lower bound on the queue length must be 0 or more,
hence the term max {0, LBql y→k(t)} in (22). It represents
another lower bound on the queue length. If, however,
this would be greater than mpcy, then

ky

slotsn
→

= mpck, and
thus this is the maximum number of messages that node y
can transmit in the last TDMA cycle.

We will now focus on computing LBql y→k. Let ql y
denote the length of the output queue of node y at time
L y→k(t) after the message from Si

k was put in the output
queue. L y→k(t) is given by:

() ()()
⎭
⎬
⎫

+×+Ω−
⎩
⎨
⎧

= →→
PRMS

ykynextky TTmpctttL)(,0max (23)

As a message from Si
k was in the queue at the end of

the time window Qi
k, clearly it must have been in the

queue earlier. Hence, we know that 1 ≤ ql k. Since the

queue length of node k depends on the number of
arrived messages and on the number of transmitted
messages, we obtain (24):

∑
∀

→

−
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
≤

kk
j NonS

k
k
j

ky
k edntransmitt

T
tLql)(

(24)

where ntransmittedk denotes the number of messages
transmitted during the time window of length L y→k.
Using a similar reasoning we get:

∑
∀

→

−
⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
≥

yy
j NonS

y
y

j

ky
y edntransmitt

T
tLql)(

(25)

Observe that (24) and (25) offer a lower/upper
bound on the output queue length, and that they refer to
the queue length at different nodes.

Consider those TDMA cycles such that node y
transmitted at least one message during the time interval
of length L y→k. Let nTDMArounds y denote the number
of those TDMA cycles. We know that the network is
fair, in the sense that in a time interval two different
nodes receive almost the same number of TDMA cycles.
It follows that the difference between the number of
TDMA cycles received by any two nodes is at most one:

1+≤ ky snTDMAcyclesnTDMAcycle (26)

Since node k used all its messages in all its time slots
during the window of length Qi

k, it also used all its time
slots in the window of length L y→k(t). This implies that all
its TDMA cycles transmitted mpc k messages. Therefore:

⎥
⎥

⎤
⎢
⎢

⎡
≤ k

k
k

mpc
edntransmittsnTDMAcycle

(27)

On node y, we do not know whether slots are
skipped or not and how many slots are skipped. We do
know however that every TDMA cycle can transmit at
most mpc y messages. Hence, we have:

yyy mpcsnTDMAcycleedntransmitt ×≤ (28)

Combining (26), (28) and (27) yields:

y
k

k
y mpc

mpc
edntransmittedntransmitt ×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎥

⎥

⎤
⎢
⎢

⎡
≤ 1

(29)

We have already seen that 1 ≤ ql k. Combining it
with (24), (25) and (29) leads to (30).

()

()
y

k

NonS
k
j

ky

NonS
y

j

ky
ky

mpc
mpc

T
tL

T
tLtLBql

kk
j

yy
j

×

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

⎥
⎥
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢
⎢
⎢

⎢

⎡
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡

−
⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
=

∑

∑

∀

→

∀

→
→

1

1

)(

(30)

The expression for LBql y→k in (30) can be used in
(22) and then in (21) to obtain the value of Ω y→k.
We can also see that (30) is a generalisation of (14).

4.2. Heuristic
Having analysed the behaviour of MMTC, we will now

focus on the problem of assigning mpc values to nodes.
It would be tempting to use a scheme that assigns

mpck to be proportional to ∑ ∀Sj
k on Nk ⎡TMS / Tj

k⎤ as was
done in the normalised proportional allocation scheme
used in timed token networks [8]. However, applying
such an algorithm in TDMA/SS is non-trivial for two
reasons. Firstly, in TDMA/SS, the TDMA cycle time
may vary at run-time, because the number of skipped
slots may be different in different TDMA cycles.
Secondly, if Di

k ≠ Ti
k, then it is not obvious how to

compute the utilisation of a message stream, and
therefore to compute the utilisation of a node.

The idea we use was demonstrated by the example
outlined in Figure 3: nodes having message streams
that miss a deadline should receive a larger mpc.
Thus, a simple algorithm to apply this concept is
sketched below (Algorithm 1).

Algorithm 1: Assigning mpc to nodes.

1. for all nodes k: mpck ←1 end for

2. while

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎥

⎤
⎢
⎢

⎡
≤∑

= MS

n

k

k

T
TMINmpc

1

do begin

3. for all nodes k
4. for all messages streams Sik at node k:
5. Compute all Qik using (19)
6. end for
7. end for
8. if all messages meet their deadlines
9. return SUCCESS
10. else
11. for all nodes k such that there is a messages
 stream on node k that misses a deadlines
12. mpck ← mpck + 1
13. end for
14. end if
15. end while
16. return FAILURE

Observe that since there is a node with mpck that
increases in each iteration, there will be at most
⎡TMIN / TMS⎤ iterations of the lines 2-15.
Considering that (19) is used to compute Qi

k has an
upper bound of max {∀Si

k on Nk Ti
k } iterations, the

algorithm to assign mpcs to nodes has a low
computational complexity.

Another advantage of our algorithm is that if the
workload of a node is not known, the algorithm can
attempt to find it anyway by replacing line 8 with
detecting deadline misses. When a deadline is
missed, then we execute lines 11-13 and continue
operation for some time (typically some multiples of

the maximum period). At that point, deadlines misses
are detected and iteration 2-15 starts again. After a
long time of no deadline misses, a node should
decrease its mpc, if it is greater than 1. With such an
application, a node does not need global knowledge
(such as the normalized allocation scheme in [8]
does), but only local knowledge is needed.

5. Numerical Example

We have developed a tool (called TDMA analyser)
to compare the real queuing times qi

k with the upper
bound on the queuing times Qi

k. In the test scenarios
we have run, the analysis is often tight; that is, qi

k = Qi
k.

Nevertheless, there are some message streams on which
the analysis is not tight. We will now look at it to
understand the reason for this small level of pessimism,
to give an idea of how large it can be, and to illustrate
how the calculations are made. Consider the network
example given by Figure 4.

We calculated the mpcs by Algorithm 1, with
resulting values as illustrated in Figure 4. This
assignment of mpcs is good since all deadlines are met
and our analysis claims (by calculating Qi

k) that all
deadlines are met. Furthermore, there is no other
assignment of mpcs with a lower TTDMA.

Looking now at the behaviour of the protocol after
time 0, we can see that the queuing delay q2

3 = 15.4.
This is less than the calculated upper bound on the
queuing delay Q2

3 = 19.4. To understand this, look at
node 4 at time instant 14.4. A message of message
stream S1

4 arrives at time instant 14.4. So, without using
our analysis based on Ω, we would have concluded that

{ }()51, 1, ,,,,4 4321 NNNNnet =

{ }() { }()

{ }() { }()
0.15
1,,1

0.27
0.10

1,,,2

0.30

0.20
0.15
0.9

2,,,,4

0.25
0.10
0.8

2,,,,3

4
1

4
1

4
1

4

3
1

3
1

3
1

3
1

3
2

3
1

3

2
4

2
4

2
3

2
3

2
2

2
2

2
1

2
1

1
3

1
2

1
1

2

1
3

1
3

1
2

1
2

1
1

1
1

1
3

1
2

1
1

1

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

==
=

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

==
==

=

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

==

==
==
==

=

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

==
==
==

=

DT
SN

DT
DT

SSN

DT

DT
DT
DT

SSSN

DT
DT
DT

SSSN

Figure 4. MMTC message streams.

the message that arrived at time 14.4 would be
transmitted before time 15.4, and hence has caused
interference. However, we can see that, at time instant
11.8, node 4 has address_counter with value 4.
Moreover, at that time instant its output queue is
empty, and after that, node 4 will not have
address_counter=4 before time instant 15.4.
Hence, the message that arrived at time 14.4 does not
cause interference on S2

3. A tight analysis must recognise
this and observe that node 4 skips a slot at time 11.8.

Let us now turn our attention to see how our analysis
deals with this. Our analysis performs the following
iterations of Q2

3: 0, 5.8, 12.6, 18.4, finally converging to
19.4. The real queuing time q2

3 = 15.4 is never
considered by the analysis, but if it would be considered,
it would be deemed to be too small. In order to
understand this, insert Q2

3 = 15.4 in the right hand side
of (19). We need to compute nss 4→3 (15.4,2) from (20).

 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Time
(T units)

S1
1

Addr. Counter

MS

a) Arrival pattern of messages to the four outgoing queues

b) Message transfers in the network and address counter evolution

S1
2

S1
3

S2
1

S2
2

S2
3

S2
4

S3
1

S3
2

S4
1

...

22Queuing Time for the message of S queued at time 0 (q)

Time
(T units)MS

Figure 5. Arrival times and schedule of MMTC network.

This requires computing Ω 2→3 (15.4) from (21), and
hence we need to compute ()4.1532→

slotsn from (22). We
obtain ()4.1532→

slotsn = 0, but in fact one message was
transmitted during the time interval [14.2, 15.4), and thus
a more accurate analysis of the window should have
computed Ω 2→3(15.4)=1 × TMS + TPR=1.2. With our
analysis (21), we obtain Ω 2→3(15.4)=TPR=0.2. Repeatedly
applying (21) gives us Ω 1→3(15.4)=2 × TPR=0.4, and
Ω 4→3(15.4)=3 × TPR =0.6.

From (12), we obtain: Φ4→3 = 3 × TPR = 0.6. We
are now ready to apply (20) to compute the number of
skipped slots at node 4. We obtain:

()

0
15

6.06.04.1511
1

10
4.15

,0max2,4.1534

=

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥⎦
⎥

⎢⎣
⎢ −+

+−×

⎥
⎥
⎥
⎥

⎦

⎥

⎢
⎢
⎢
⎢

⎣

⎢
⎥⎥
⎤

⎢⎢
⎡

⎪
⎩

⎪
⎨

⎧
=→nss

Hence, our analysis does not detect the skipped slot
on node 4, and this is the source of the pessimism
illustrated in Figure 5. This example (Figure 4) shows
that our analysis is not exact; but we err on the safe
side. We have chosen this example because of all
message streams we have simulated, this is the one
with most pessimism, and still it is reasonably small.

6. Discussion and Related Work

TDMA/SS has the following advantages. First, it is
not dependent on bit-level synchronisation, and hence
the speed can be quite high (unlike the binary
countdown protocol [9] used in CAN). Second,
TDMA/SS does not require sensing-while-
transmitting. Third, TDMA/SS relies on nodes that are
equipped with a real-time clock, but it does not depend
on them being synchronised; nodes only need to listen
for the protocol slot of length TPR to update the
address_counter. (If nodes remain silent for a
long time there may be a need to transmit a dummy
message in order to keep synchronisation; if this
occurs for periodic traffic then it must have been that
the utilisation was low and hence this overhead of
dummy messages should not be a problem). Fourth,
TDMA/SS can (if we use Ω y→k = 0) be used to
schedule sporadic [9] message streams. Fifth,
TDMA/SS is energy-efficient because it is collision-
free and the network-controller only needs to listen in
the beginning of a new slot (to determine whether the
slot was a message slot or a protocol slot). Sixth,
TDMA/SS is resilient to crashes if nodes are fail-silent.
(One way to implement TDMA/SS is that a node

transmitting a protocol slot keeps silent for TPR time
units. Then, if a node y crashes, this idle time will
cause, address_counter to become next(y) after
TPR time units, and hence the operation of the other
nodes are unaffected.)

As already mentioned, a TDMA/SS-like protocol was
studied in [5] but it had the drawbacks of (i) lacking an
accurate calculation of Ω, (ii) lacking the opportunity to
transmit multiple messages per TDMA cycle, and (iii)
assuming FIFO scheduling on each node.

The TDMA/SS protocol has similarities to the ARINC
629 protocol [10] in that ARINC 629 is a TDMA
protocol which does not need synchronised clocks.
Nodes are given time slots in a pre-specified order; they
have a terminal gap (TG) specifying an idle between
nodes (similar to our TPR) and they permit slot skipping.
Unfortunately, their analysis is not accurate in the sense
that they do neither take into account effects like the Φ
and the Ω, nor the local scheduling of output queues.

Scheduling messages in TDMA without slot skipping
[1-3] is well studied but, as we have already mentioned,
they may require long TDMA cycles. Usually they
create schedules before run-time. However, one recently
proposed protocol [11] creates the schedule at run-time
in a distributed fashion. First, it selects periods (shorter
than required) to make sure that periods are harmonic.
Then, at run-time, when a collision is detected, a winner
of the colliding nodes is elected. The winning node will
transmit and it is assigned an offset so future collisions
cannot occur. Such an approach is efficient in the sense
that no time is wasted on protocol slots. However,
synchronised clocks are required, and sporadic message
streams cannot be efficiently scheduled.

The timed token protocol is similar to TDMA/SS,
and it has been used in FDDI rings and IEEE 802.5.
Schedulability analysis techniques and algorithms to
assign Hk (similar to our mpck) have been developed
[8, 12, 13]. These protocols differ from TDMA/SS in
that they explicitly pass a token while TDMA/SS does
not. Timed token networks have a target token
circulation time. This is similar to our TTDMA, but there
is one important difference though. If the token
circulates faster in one circulation, then this time can
be used on a node to transmit soft real-time messages
(this is called asynchronous). In TDMA/SS however,
the address_counter will actually change faster,
and hence there will be more capacity for hard real-
time traffic. Hence, there are hard real-time message
streams that can be scheduled with TDMA/SS but that
cannot be scheduled with the timed token protocol.
The analysis of timed token protocols performed in
holistic scheduling [14, 15] addresses a problem
similar to ours (the Sp in [14] is equivalent to our mpcp;

in [15] mpck is more restricted, it is assumed to be 1,
and [15] uses EDF to schedule messages from the
same node). However, neither [14] nor [15] take the Φ
and Ω y→k into account or something similar (issues
due the fact that this is a distributed system).

Real-time scheduling on IEEE 802.5 networks were
studied in [16]. It uses explicitly message passing
where a token must circulate and nodes announce their
priority before transmitting. That is unlike TDMA/SS
which only prioritise messages on each node.

Implicit EDF is a TDMA MAC protocol recently
proposed [17]. It assumes that all nodes know all
messages streams in the system. Every node computes
the earliest deadline of all those message streams and
hence at most one message is transmitted at every time.
Such a protocol offers faster response to urgent events
than TDMA/SS does. However, their protocol has
three drawbacks. First, the protocol requires
knowledge of all message streams of other nodes.
Second, they depend on synchronised clocks. Third,
sporadic messages cannot be efficiently scheduled.

7. Conclusions and Future Work

We conclude that the TDMA/SS protocol has
attractive real-time and energy-efficient properties suited
for real-time applications. For future work, we consider
nodes that are non-work-conserving; that is, they are idle
although they have non-empty output queue. This can
make the address_counter change faster and it is
necessary when arbitrating if some message streams
have very fine-grained deadlines. We also would like to
explore techniques that permit a node to sleep for an
extended period and still maintain consistent
address_counter when it wakes up. This is
important to make the protocol not only energy-efficient
but also to achieve low power consumption.

8. References

[1] H. Kopetz and G. Grunsteidl, "TTP-a protocol for fault-
tolerant real-time systems", IEEE Computer, vol. 27(1),
pp. 14-24, 1994.

[2] L. Dong, R. Melhem, and D. Mossé, "Scheduling
Algorithms for Dynamic Message Streams with Distance
Constraints in TDMA protocol", in proceedings of the
12th Euromicro Conference on Real-Time Systems
(ECRTS'00), pp. 239-246, 2000.

[3] C.-C. Han, K.-J. Lin, and C.-J. Hou, "Distance-
constrained scheduling and its applications to real-time
systems", IEEE Transactions on Computers, vol. 45(7),
pp. 814 -826, 1996.

[4] IPUO, "The P-NET Standard": International P-NET User
Organisation, 1994.

[5] E. Tovar, F. Vasques, and A. Burns, "Communication
Response Time in P-NET Networks: Worst-Case
Analysis Considering the Actual Token Utilisation",
Real-Time Systems Journal, Kluwer Academic
Publishers, vol. 22(3), pp. 229-249, 2002.

[6] C. L. Liu and J. W. Layland, "Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment",
Journal of the ACM (JACM), vol. 20(1), pp. 46-61,
1973.

[7] M. Joseph and P. Pandya, "Finding Response Times in a
Real-Time System", The Computer Journal, British
Computer Society, vol. 29(5), pp. 390-395, 1986.

[8] G. Agrawal, "Guaranteeing Synchronous Message
Deadlines with the Timed Token Medium Access
Control Protocol", IEEE Transactions on Computers, vol.
43(3), pp. 327 - 339, 1994.

[9] A. Mok, "Fundamental Design Problems of Distributed
Systems for the Hard Real-Time Environment", PhD
thesis, Massachusetts Institute of Technology, Cambridge,
Mass., 1983. Available online at http://www.lcs.mit.edu/
publications/specpub.php?id=865.

[10] N. Audsley and A. Grigg, "Timing analysis of the ARINC
629 databus for real-time application", Microprocessors and
Microsystems, vol. 21, pp. 55-61, 1997.

[11] T. W. Carley, M. A. Ba, R. Barua, and D. B. Stewart,
"Contention-Free Periodic Message Scheduler Medium
Access Control in Wireless Sensor / Actuator Networks",
in proceedings of the Proceedings of the 24th IEEE
International Real-Time Systems Symposium (RTSS'03),
pp. 298, 2003.

[12] S. Zhang and A. Burns, "An Optimal Synchronous
Bandwidth Allocation Scheme for Guaranteeing
Synchronous Message Deadlines with the Timed-Token
MAC Protocol", IEEE/ACM Transactions on
Networking (TON), vol. 3(6), pp. 729 - 741, 1995.

[13] N. Malcolm and W. Zhao, "The timed-token protocol
for real-time communications", IEEE Computer, vol.
27(1), pp. 35-41, 1994.

[14] K. Tindell, "Analysis of hard real-time
communications", University of York Dept. of Computer
Science, Heslington, York, England, Technical report
YCS-94-222, 1994. Available online at ftp://ftp.cs.york.
ac.uk/reports/YCS-94-222.ps.Z.

[15] M. Spuri, "Holistic Analysis for Deadline Scheduled
Real-Time Distributed Systems", INRIA, Technical Report
RR-2873, April 1996. Available online at http://www-
rocq.inria.fr/reflecs/research_reports/RR-2873.pdf.

[16] J. K. Strosnider, T. Marchok, and J. Lehoczky,
"Advanced Real-time Scheduling Using the IEEE 802.5
Token Ring", in proceedings of the 9th IEEE Real-Time
Systems Symposium (RTSS'88), Huntsville, Alabama,
USA, pp. 42-52, 1988.

[17] M. Caccamo and L. Y. Zhang, "An Implicit Prioritized
Access Protocol for Wireless Sensor Networks", in
proceedings of the 23rd IEEE Real-Time Systems
Symposium (RTSS'02), Austin, Texas, pp. 39-48, 2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

