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Abstract

VirtuosoNextTM is a distributed real-time operating system (RTOS) developed and supported by Altreonic NV { an
embedded technology focused company. The RTOS finds its origins in Hoare's CSP process algebra and others a
more generic programming model dubbed Interacting Entities. This paper focuses on these interactions,
implemented as so-called Hubs. Hubs act as synchronisation and communication mechanisms between the
application tasks and implement the services provided by the kernel as a kind of Guarded Protected Action with a
well defined semantics. As in any RTOS, having a predictable behaviour in time is crucial. While the kernel
provides the most basic services, each carefully designed, tested and optimised, tasks are limited to this handful
of basic hubs, leaving the development of more complex synchronization and communication mechanisms up to
application specific implementations. In this work we investigate how to support a programming paradigm to
compositionally build new services, using notions borrowed from the Reo coordination language, and relieving
tasks from coordination aspects while delegating them to the hubs. We formalise the semantics of hubs using an
automata model, identify the behaviour of existing hubs, and propose an approach to build new hubs by
composing simpler ones. We also provide tools and methods to analyse and simplify hubs under our automata
interpretation. In a first experiment several hub interactions are combined into a single more complex hub, which
raises the level of abstraction and contributes to a higher productivity for the programmer. Finally, we investigate
the impact on the performance by comparing different implementations on an embedded board.
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Abstract. VirtuosoNext™ is a distributed real-time operating system
(RTOS) developed and supported by Altreonic NV — an embedded tech-
nology focused company. The RTOS finds its origins in Hoare’s CSP pro-
cess algebra and offers a more generic programming model dubbed Inter-
acting Entities. This paper focuses on these interactions, implemented as
so-called Hubs. Hubs act as synchronisation and communication mecha-
nisms between the application tasks and implement the services provided
by the kernel as a kind of Guarded Protected Action with a well defined
semantics. As in any RTOS, having a predictable behaviour in time is
crucial. While the kernel provides the most basic services, each carefully
designed, tested and optimised, tasks are limited to this handful of ba-
sic hubs, leaving the development of more complex synchronization and
communication mechanisms up to application specific implementations.
In this work we investigate how to support a programming paradigm
to compositionally build new services, using notions borrowed from the
Reo coordination language, and relieving tasks from coordination aspects
while delegating them to the hubs. We formalise the semantics of hubs
using an automata model, identify the behaviour of existing hubs, and
propose an approach to build new hubs by composing simpler ones. We
also provide tools and methods to analyse and simplify hubs under our
automata interpretation. In a first experiment several hub interactions
are combined into a single more complex hub, which raises the level of
abstraction and contributes to a higher productivity for the programmer.
Finally, we investigate the impact on the performance by comparing
different implementations on an embedded board.

1 Introduction

When developing software for resource-constrained embedded systems, optimis-
ing the utilization of the available resources is a priority. In such systems, many
system-level details can influence time and performance in the execution, such as
interactions with the cache, mismatches between CPU clock speed, the speed of
the external memory, and connected peripherals, leading to unpredictable execu-
tion times. VirtuosoNext [13] is a Real Time operating system developed by the



company Altreonic that runs efficiently on a range of small embedded devices,
and is accompanied by a set of visual development tools — Visual Designer —
that generates the application framework from a visual description and provides
tools to analyse the timing behaviour in detail.

The developer is able to organise a program into a set of individual tasks,
scheduled and coordinated by the VirtuosoNext kernel. The coordination of tasks
is a non-trivial process. A kernel process uses a priority-based preemptive sched-
uler deciding which task to run at each time, with hub services used to syn-
chronise and pass data between tasks. A fixed set of hubs is made available by
the Visual Designer, which are used to coordinate the tasks. For example, a
Fifo hub allows one or more values to be buffered and consumed exactly once,
a Semaphore hub uses a counter to synchronise tasks based on counting events,
and a Port hub synchronises two tasks, allowing data to be copied between the
tasks without being buffered. However, the set of available hubs is limited. Cre-
ating new hubs to be included in the mainline distribution is difficult since each
hub must be carefully designed, model checked, implemented and tested. It is
still possible for users to create specific hubs in their installations, however they
would need to fully implement them, losing the assurances of existing hubs.

This paper starts by formalising hubs using an automata model, which we
call Hub Automata, inspired in Reo’s parametrised constraint automata seman-
tics [1]. This formalism brings several advantages. On the one hand, it brings
a generic language to specify hubs, which can be interpreted by VirtuosoNext’s
kernel task. New hubs can be built by specifying new Hub Automata, or by
composing the Hub Automata from existing hubs. On the other hand, it allows
existing (and new) hubs to be formally analysed, estimating performance and
memory consumption, and verifying desired properties upfront. Furthermore,
we show that by using more specific hubs one can shift some of the coordina-
tion burden from the tasks to the hubs, leading to easier and less error prone
programming of complex protocols, as well as leaving room for optimizations. In
some cases it can also reduce the amount of context switches between application
tasks and the kernel task of VirtuosoNext, improving performance.

We implemented a prototype implementation, available online,* to compose
hubs based on our Hub Automata semantics, and to analyse and simplify them.
We also compared the execution times on an embedded system between different
orchestration scenarios of tasks, one using existing hubs and another using a more
refined hub built out of the composition of hubs, evidencing the performance
gains and overheads of using composed hubs.

Summarising, our key contributions are the formalisation of coordinating
hubs in VirtuosoNext (Section 3), a compositional semantics of hubs (Section 4),
and a set of tools to compose and analyse hubs, together with a short evaluation
of the execution times of a given scenario using composed hubs (Section 5).

4 http://github.com/arcalab/hubAutomata
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Fig. 1: Example architecture in VirtuosoNext, where two tasks communicate with
an actuator in a round robin sequence through two semaphores and a port.

2 Distributed tasks in VirtuosoNext

A VirtuosoNext system is executed on a target system, composed of process-
ing nodes and communication links. Orthogonally, an application consists of a
number of tasks coordinated by hubs. Unlike links, hubs are independent of the
hardware topology. When building application images, the code generators of
VirtuosoNext map tasks and hubs onto specific nodes, taking into account the
target platforms. A special kernel task, running on each node, controls the sched-
uler of tasks, the hub services, and the internode communication and routing.
This section starts by giving a small overview of how tasks are built and
composed, followed by a more detailed description over existing hubs.

2.1 Example of an architecture

A program in VirtuosoNext is a fixed set of tasks, each running on a given
computational node, and interacting with each other via dedicated interaction
entities, called hubs. Consider the example architecture in Fig. 1, where tasks
Taskl and Task2 send instructions to an Actuator task in a round robin sequence.
SemaphoreA tracks the end of Taskl and the beginning of Task2, while SemaphoreB
does the reverse, and port Actuate forwards the instructions from each task to the
Actuator. In this case two semaphore hubs were used, depicted by the diamond
shape with a ’+’; and a port hub, depicted by a box with a 'P’. Tasks and hubs
can be deployed on different processing nodes, but this paper will consider only
programs deployed in the same node, and hence omit references to nodes. This
and similar examples can be found in the VirtuosoNext’s manual [11].

2.2 Task coordination via Hubs

Hubs are coordination mechanisms between tasks, which can be interacted with
via put and get service requests to transfer information from one task to another.
This can be a data element, the notification of an event occurrence, or some logi-
cal entity that needs to be protected for atomic access. A call to a hub constitutes
a descheduling point in the tasks’ execution. The behaviour depends on which



Table 1: Examples of existing Hubs in VirtuosoNext

Hub Waiting Lists for Service Requests

ili Port put — signals some data entering the port; and get — signals some
data leaving the port. Both must synchronize to succeed.

<> Event raise — sets an event. Succeeds if not set yet; and test — checks if
an event happened, in which case succeeds, and clears the event.

<D> DataEvent update — sets an event and buffers some data, overriding any pre-
vious data. Always succeeds; read — reads the data. Succeeds if
the event is set; and clear — clears the buffer and the event.

<'*> Semaphore signal — signals the semaphore, incrementing an internal counter
c. Succeeds if ¢ < MAX;® and test — checks if ¢ > 0, in which case
succeeds, and decrements c.

E Resource lock — locks a logical resource and buffers the id of the requesting
task. Succeeds only if the resource is free; and unlock — unlocks
the resource. Succeeds only if locked by the same task.

o Fifo enqueue — buffers some data in the queue. Succeeds if the queue
is not full; and dequeue — gets data from the queue. Succeeds if
the queue is not empty.

Blackboard update — buffers some data, overriding any previews data, incre-
menting a sequence number. Always succeeds; read — reads the
data and the sequence number. Succeeds if not empty. Reader
tasks can use the sequence number to attest the freshness of the
data; and wipe — clears the buffer.

hub is selected, e.g. tasks can simply synchronise (with no data being trans-
ferred) or synchronise while transferring data (either buffered or non-buffered).
Other hubs include the resource hub, often used to request atomic access to a
resource, and hubs that act as gateways to peripheral hardware.

Any number of tasks can make put or get requests to a given hub. Such
requests will be queued in waiting lists (at each corresponding hub) until they
can be served. Waiting lists are ordered by task priority — requests get served
by following such an order. In addition, requests can use different interaction
semantics. As such, the interaction can be blocking, non-blocking or blocking with
a time-out, which will determine how much time, if any, a task will wait on a
request to succeed — indefinitely, none, or a certain amount of time, respectively.

There are various hubs available, each with its predefined semantics [11].
Table 1 describes some of them and their put and get service request methods.

3 Deconstructing Hubs

This section formalises hubs, using an automata model with variables, providing
a syntax (Section 3.1) and a semantics (Section 3.2).

® Here, MAX represents L1_UINT32.MAX in VirtuosoNext™, which is 252 — 1.



3.1 Syntax

We formalise the behavioural semantics of a hub using an automata model, which
we call Hub Automata. We start by introducing some preliminary concepts.

Definition 1 (Guard). A guard ¢ € & is a logical formula given by the gram-
mar below, where x € X is a variable, T denotes a sequence of variables, and
pred € Pred is a predicate.

¢ = T[L|pred®) [¢VO[dNG| ¢
We say ®(X) is the set of all possible guards over variables in X.

Definition 2 (Update). An update u € U is an assignment of variables x € X
to expressions e € £, a sequence of updates, or updates in parallel, given by the
grammar below, where d € D is a data value, and f € F is a deterministic
function without side-effects.

u = x<+e|uu|ulu (update)

e :=d|z| f(T) (expression)
We write U(X) to denote the set of all updates over variables in X.

For example, the update a < 2; (b < ¢+ 1 | ¢ + getData()) is an update
that starts by setting a to 2, and then sets b to ¢+ 1 and ¢ to getData() in
some (a-priori unknown) order. Note that the order of evaluation of the parallel
assignments will affect the final result. We avoid non-determinism by following
up dependencies (e.g., ¢ + getData() should be executed before b - ¢+ 1) and
by requiring that the order of executing any two independent assignments does
not affect the result. This will be formalised later in the paper.

Hubs interact with the environment through ports that represent actions.
Let P be the set of all possible ports uniquely identified. For a p € P, p is a
variable holding a data value flowing through port p. We use P to represent the
set of all data variables associated to ports in P.

Definition 3 (Hub Automata). A Hub Automaton is a tuple H = (L, £y, P, X,
vo, —) where L is a finite set of locations, £y is the initial location, P = Pr¥ Pp,
is a finite set of ports, with Py and Pp representing the disjoint sets of in-
put and output ports, respectively, X is a finite set of internal variables, vy :
X — D is the initial valuation that maps variables in X to a value in D, and
—C Lx B(XUP) x 2P xUX UP) x L is the transition relation.
For a given transition (I, g,w,u,l’) €—, also written I <% [’ [ is the source
location, g is the guard defining the enabling condition, w is the set of ports
triggering the transition, u is the update triggered, and I’ is the target location.
Informally, a Hub Automaton is a finite automaton enriched with variables
and an initial valuation of such variables; and where transitions are enriched
with multi-action transitions, and logic guards and updates over variables. A



transition | 2% I’ is enabled only if (1) all of its ports w are ready to be
executed simultaneously, and (2) the current valuation satisfies the associated
guard g. Performing this transition means applying the update u to the current
valuation, and moving to location I’. This is formalised in the following section.

Fig. 2 depicts the Hub Automata for each of the hubs described in Section 2.2,
except the Resource hub (for space restrictions). Consider, for example, the Hub
Automaton for the Fifo hub, implemented using an internal circular queue, with
size N and with elements of type 7. Initially, the Fifo is at location idle and its
internal variables are assigned as follows: ¢+— 0, f—0, p— 0, and bf; — null for
alli € {0...N—1}. Here cis the current number of elements in the queue, f and
p are the pointers to the front and last empty place of the queue, respectively, and
each bf; holds the value of the i-th position in the queue. The Fifo can enqueue
an element —if the queue is not full (¢ < N)— storing the incoming data value
in bf,, and increasing the c and p counters; or it can dequeue an element—if the
queue is not empty (¢ > 1), updating the corresponding variables.

Note that more than one task can be using the same port of a given hub.
In these cases VirtuosoNext selects one of the tasks to be executed, using its
scheduling algorithm. The semantics of this behaviour is illustrated in the au-
tomaton of Portf, that uses multiple incoming and outgoing tasks, denoting all
possible combinations of inputs and outputs. This exercise can be applied to any
other hub other than the Port hub.

Hub Automata can be used to describe new hubs to restrict synchronous in-
teractions between tasks. Fig. 2 includes two hubs that do not exist in Virtuoso-
Next (hubs with *): a Duplicator broadcasts a given input to two outputs atom-
ically, and a Drain receives two inputs synchronously without storing any value.

3.2 Semantics

We start by defining guard satisfaction, used by the semantics of Hub Automata.

Definition 4 (Guard Satisfaction). The satisfaction of a guard g by a vari-
able valuation v, written v |= g, is defined as

vET  always vEG APy if viE ¢ and v = ¢
viEL  never vEO Vo if viE ¢ or vE de
vE-¢ if v v = pred(T) if pred(v(T)) evaluates to true

Definition 5 (Update application). Given a serialisation function o that
converts general updates into sequences of assignments, the application of an
update u to a valuation v is given by v[o(u)], where v[-] is defined below.

vz +e](z) =e

e o) ety @)= )

The serialisation function o is formalised in Section 4.3, after describing how
to compose Hub Automata. We will omit ¢ when not relevant. The execution
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Fig.2: Automata semantics of hubs — from VirtuosoNext except those with *.
Port! captures how VirtuosoNext interprets multiple calls to the same port.

of an automaton is defined as sequences of steps that do not violate the guards,
and such that each step updates the current variable valuation according to the
corresponding update.



Definition 6 (Semantics of Hubs). The semantics of a Hub Automaton H =
(L, by, P, X, vy, —) is given by the rule below, starting on configuration (o, vo).
2250 w=g v =

(,0) B ()

For example, the following is a valid trace of a Fifo hub with size 3 (Fig. 2).
(idle, {c — 0,f — 0,p — 0, bfy — null, bf; — null, bfy — null})
(idle, {c—1,f = 0,p — 1,bfp — 42, bf; — null, bfy — null})
(idle, {c — 0,f — 1,p— 1,bfp — 42, bf; — null, bfy — null})

(seq)

eEnqueue

dequeue

4 Reconstructing Hubs

Two hubs can be composed to form a more complex one, following the same
ideas as in Reo [1]. The composition is done on top of two simpler operations:
product and synchronisation. This section starts by defining these two operations,
followed by an example and by a suitable definition of serialisation of updates.

4.1 Hub composition

The product takes two hubs with disjoint ports and variables, and produces a
new hub where they behave in an interleaving or synchronous fashion, i.e. fully
concurrent. The synchronisation operation is conducted over a Hub Automaton
H and it links two ports a and b in P such that they can only operate in a
synchronous manner.

Definition 7 (Product of Hub Automata). Let Hy and Hs be two Hub
Automata with disjoint sets of ports and variables. The product of Hy and Ho,
written Hy X Hy, is a new Hub Automaton defined as

H = (Ll X LQ, (l017102)7pl U PQ,Xl U XQ,’UOl UUOQ; —))
where — is defined as follows:

w1,U w2 ,U g1,wW1,uU1 g2,w2,U2
ll g1,wW1,U1 l/l 12 g2,w2,u2 l/2 ll 5 s l/ 12 ) ) l/2

1
g2,w2,u2

(10, o) 28 (11 0y) (I, 1) 2222 (1 1) (1, 1) L2002z gy

Definition 8 (Synchronisation of Hub Automata). Let H be a Hub Au-
tomaton, a and b two ports in P, and x4 a fresh variable. The synchronisation
of a and b is given by A, p(H), defined below.

Aa’b(H) (LJm(P\{CLb}),XU {{Eab}7vo,—>/)
—/ (12250 agwand b g w} U

{l gl | 1225 0 acwb cw,w =w\{a, b},
9' = glran/d][ran/b], u' = ulzey/a][van/b]}

where glz/y] and ulx/y], are the logic guard and the update that result from
replacing all appearances of variable y with x, respectively.
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Fig. 3: Example of composition between two Hub Automata, where a DataEvent
automaton is composed with a Duplicator automaton by synchronising on ac-
tions read and put (left), resulting in the composed automaton on the right.

The composition of two Hub Automata consists of their product followed by
the synchronisation of their shared ports.

Definition 9 (Composition of Hub Automata). Let H; and Hs be two Hub
Automata with disjoint sets of ports and variables, and let {(ag,bo), - - ., (an,bpn)}
be a finite (possibly empty) set of ports bindings, such that for each pair (a;,b;)
for 0 <4 <n we have that (a;,b;) € Pr, X Poy, or (ai,b;) € Po,, X Pr,, . The
composition of Hi and Hs over such a set is defined as follows.

Hl [x](a07b0)5~w(an7bn) H2 = Aa07b0 et Aanybn (Hl X H2)

Intuitively, composing two automata means putting them in parallel (x), and
then restrict their behaviour by forcing shared ports to go together (A). The first
step joins concurrent transition into new transitions, placing updates in parallel.
This emphasises the need for a serialisation process that guarantees a correct
evaluation order of values to data in ports, which is the focus of Section 4.3.

Fig. 3 shows the composition of two Hub Automaton: a DataEvent, and a
Duplicator with two output points. The composed automaton (right) illustrates
the behaviour of the two hubs when synchronised over the actions read and put:
whenever a data event is raised and the buffer updated, the hub can be tested
simultaneously by two tasks through get; and get,. Both tasks will receive the
stored data in the DataEvent Hub, before setting the event to false. Synchronised
ports are removed from the composed model, and variables associated to such
ports are renamed accordingly, i.e. read and m, are both renamed to0 Zreqd-put-

4.2 Example: Round Robin tasks

Consider the example architecture in Fig. 1, consisting of 3 independent hubs.
Such architectures with independent hubs can be combined into a single hub, but
it brings little or no advantage because it will produce all possible interleavings
and state combinations. In this case, the joint automaton has 1 state and 26
transitions, representing the possible non-empty combinations of transitions from
the 3 hubs. More concretely, the set of transitions is the union of the 5 sets below,
abstracting away data, where p;, s; and t; denote the put, signal and test actions
of task i, respectively, and g denotes the get action of the actuator.



<> put;|get|starts
St(ﬂ)“ Eventlw w
T [T] @
Taski  Puts putz  Tasko

puts|get|start,

get « puty

E geto T

Actuate Actuator

Fig.4: Alternative architecture for the example in Fig. 1 — Reo connector (left)
and its Hub Automaton (right) after updates have been serialised and simplified.

A&B:{(Ll|9§2 | Xy G{Sz,tI},{L’ge{Sg,tQ}}
P&A|B = {pi|g|z | i€ {1,2} 2 € A[B}
P&A&B = {p;|g|lz | i€ {1,2},2 € A&B}

P={pilg, pelget}
AHB = {813527 tlvt,?,}

We propose an alternative hub that exploits shared ports (Fig. 4), built by
composing a set of primitives from Fig. 2, which further restricts the behaviour
of the coordinator. More specifically, when a task sends a data value to the
actuator, the coordinator interprets it as the end of its round. Furthermore, it
requires each task to send only when the other is ready to start — a different
behaviour could be implemented to buffer the end of a task round (as in Fig. 1).

4.3 Serialisation of Updates

Recall that the application of an update u (Definition 5) requires a serialisation
function o that converts an update with parallel constructs into a sequence of
assignments. This subsection proposes a serialisation algorithm that preserves
dependencies between variables, and rejects updates that have variables with
circular dependencies. It uses an intermediate dependency graph that is traversed
based on Kahn’s algorithm [8], and later discards intermediate assignments.

gety|gets,ug|ug (

Consider the transition (true, idle) -+ (false, idle) from Fig. 3, where
Ul = ZTread-put < bf and Uz = getl — Tread-put s g@tg < Zread-put- Herea %) de-
pends on a variable produced by w;. Thus, a serialisation of uq|ug is us = uq; us.
Once serialised, us has an intermediate assignment, Zyeqd-put < bf, which can
be removed by replacing appearances of T ¢qdpur With bf, leading to g/et\l +— bf;

g;z-t\g < bf, reducing the number of assignments and variables needed.

Building Dependency Graphs A dependency graph is a directed graph D =
(N, L), where N is a set of nodes, each representing an update of the form x «+ e,
and L C N x N is a set of links between nodes, where a link (n,m) indicates
that n must appear before m in a sequence of assignments. Given Dy and Do,
their composition, Dy X Dy = (N7 U No, L1 U L) is a new dependency graph.



Algorithm 1: Dependency Graph for an update u

input : An update u with parallel options w; for i = 1..n
output: A Dependency Graph for u
graphs < (JI_, struct(u;);
toVisit < graphs;
foreach g € graphs do
toVisit +— toVisit \ {g};
newLinks < newLinks U {links(n,m) | n € Ng,m € U, ciovisic Vv }
newNodes + the set of all nodes from all g € graphs;
newLinks <— newLinks U the set of all links from all g € graphs;
return A dependency graph with newNodes and newLinks;

® N O A W=

Given a dependency graph D = (N, L), we say a node n is a leaf (Leaf(n))
if Amoyer -0 =n, or a a root (rootr(n)) if Homer, - 0 = m. We first define
struct(u) recursively to consider dependencies between assignments imposed
by the structure of the update (i.e., imposed by ; and |), defined as follows.

struct(z < e) struct(u; | ug)

({z « e}, {}) struct(u;) X struct(usg)
struct(u; ; ug), struct(uy) = (N1, L1), struct(us) = (Na, La)
(NyUN2, Ly ULy U{(n,m) | n € Ny,1leaf, (n),m € Na,rootr,(m)})

Secondly, we create dependency links between nodes of different subgraphs of u
(generated by |) based on their dependency on variables. These links between
two nodes n and m, noted as links(n,m), are created as follows: from n to m
if m depends on a variable produced by n; from m to n if n depends on a variable
produced by m; and both ways if both conditions apply.

The complete algorithm to build a dependency graph is given in Algorithm 1.
If the graph is not acyclic, Kahn’s algorithm will return a topological order.

Simplification of Updates This step considers all transitions of the automa-
ton to find and remove unnecessary and intermediate assignments. We consider
unnecessary assignments: assignments to internal variables that are never used
on the right-hand side (RHS) of an assignment nor on a guard; and assignments
that depend only of internal variables that are never assigned (undefined vari-
ables). We consider intermediate assignments, assignments to internal variables
that are followed by (eventually in the same sequence) an assignment where the
variable is used on the RHS, and such that the variable is never used on guards.

5 Evaluation

We compare the two architectures from Section 4.2, using a variation of these,
and provide both an analytical comparison, using different metrics, and a per-
formance comparison, executing them in an embedded board.
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Fig. 5: Architectural view of scenarios Sg.porss (left) and Sayern (right).

Scenarios We compare four different scenarios in our evaluation, using the ar-
chitectures from Section 4.2, and compile and execute them on a TT Launchpad
EK-TM4C1294XL¢ board with a 120MHz 32-bit ARM Cortex-M4 CPU.

- Sorig the initial architecture as in Fig. 1;

- S ustom using a custom-made hub that follows the automaton in Fig. 4 without
any data transfer;

- Saitern using a custom-made hub that acts as S¢ystom, but discarding the start
queues, and assuming that tasks start as soon as possible (Fig. 5 right); and

- So-ports simple architecture with two ports, each connecting a task to the ac-
tuator, also discarding the start queue, whereas the actuator is responsible to
impose the alternating behaviour (Fig. 5 left).

Observe that Sgiern and Sg_pores are meant to produce the same behaviour,
but only the latter is compiled and executed. While Sgjer assumes that the
actuator is oblivious of who sends the instructions, Sg_porss relies on the actuator
to perform the coordination task.

Analytic comparison We claim that the alternative architecture requires less
memory and requires less context switches (and hence is expected to execute
faster). Memory can be approximated by adding up the number of variables and
states. The original example uses a stateless hub (a Port) and two semaphores,
each also stateless but with an integer variable each—hence requiring the stor-
age of 2 integers. The refined example requires 2 states and no variables (after
simplification), hence a single bit is enough to encode its state.

Table 2 lists possible sequence of context switches for each of the 4 proposed
scenarios, for each round where both tasks send an instruction to the actuator.
Observe that S,y requires the most context switches for each pair of values sent
(17), while Sg_pores and Sgern require the least (9).

Note that conceptually the original architecture further requires the tasks to
be well behaved, in the sense that a task should not signal/test a semaphore more
times than the other task tests/signals it. In the refined architecture functionality
is better encapsulated: tasks abstract from implementing coordination behaviour
and focus only on sending data to the actuator, while the coordinator handles
the order in which tasks are enabled to send the data. This contributes to a

S http://www.ti.com/tool/EK-TM4C1294XL#



Table 2: Possible sequence of context switches between the Kernel task (executing
the hubs) and the user tasks for each scenario.

# Sorig Scustom SZ—ports & Saltern

1 Kernel —  Actuator Kernel — Actuator Kernel — Actuator
2 Actuator 2% Kernel Actuator 2% Kernel  Actuator 2<% Kernel
3 Kernel —  Task2 Kernel — Taskl Kernel — Taskl
4 Task2 M Kernel Taskl 2“4 Kernel Taskl 2% Kernel

5 Kernel —  Taskl Kernel — Task2 Kernel — Actuator
6 Taskl =55 Kernel Task2 2% Kernel Actuator 2<% Kernel

7 Kernel —  Taskl Kernel — Actuator Kernel — Task2
8 Taskl 2% Kernel Actuator 2% Kernel Task2 2 Kernel

9 Kernel —  Actuator Kernel — Task2 Kernel — Actuator
10 Actuator 2%  Kernel Task2 2% Kernel (Repeat from #2)
11 Kernel —  Taskl Kernel — Taskl

12 Taskl M Kernel Taskl 2% Kernel

13 Kernel —  Task2 Kernel — Actuator

14 Task2 4 Kernel (Repeat from #2)

15 Kernel —  Task2

16 Task2 2% Kernel

17 Kernel —  Actuator

18 (Repeat from #2)

better understanding of the behaviour of both the tasks and the coordination
mechanism. In addition, by knowing the semantics of each hub and by looking
at the architecture in Fig. 1 is not enough to determine the behaviour of the
composed architecture, but it requires to look at the implementation of the
tasks to get a better understanding of what happens. However, in Fig. 4 these
two premises are sufficient to understand the composed behaviour.

Measuring execution times on the target processor We compiled, ex-
ecuted, and measured the execution of 4 systems: (1) Sy, (2) a variation of
S custom implemented as a dedicated task, which we call Task[Scystom), (3) a vari-
ation of S.ystom that abstracts away from the actual instructions (implemented
as a native hub, which we call NoData[Scustom]), and (4) Sgports- The results
of executing 1000 rounds using our TI Launchpad board are presented below,
whereas the end of each round consists of the actuator receiving an instruction
from both tasks (i.e., 500 values from each task).

Sor’ig TaSk[Scustom] NOData[Scustom] SQ-portS
Time (ms) 41.88 64.27 32.19 21.16




These numbers provide some insight regarding the cost of coordination. On one
hand, avoiding the loop of semaphores can double the performance (S,pig vs.
Sa-ports). On the other hand, replacing the loop of semaphores by a dedicated
hub that includes interactions with the actuator can reduce the execution time
to around 75% (Sorig vs. NoData[S custom |)- Note that this dedicated hub does
not perform data communication, and the tasks do not send any data in any
of the scenarios. Finally, Task[Scustom | reflects the cost of building a custom
hub as a user task, connected to the coordinated tasks using extra (basic) hubs,
which can be seen as the price for the flexibility of complex hubs without the
burden of implementing a dedicated hub.

Online analysis tools We implemented a prototype that composes, simplifies,
and analyses Hub Automata, available online,” and depicted in Fig. 6. The gen-
erated automata can be used to produce either new hubs or dedicated tasks that
perform coordination. These generated automata can also be formally analysed
to provide key insight information regarding the usefulness and drawbacks of
such hub. Our current implementation allows specifications of composed hubs
using a textual representation based on ReoLive [3,12], and produces (1) the
architectural view of the hub, (2) the simplified automaton of the hub, and (3)
a summary of some properties of the automaton, such as required memory, size
estimation of the code, information about which hubs’ ports are always ready to
synchronise, and minimum number of context switches for a given trace.

Hub Composer

alt {
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dupl(a,al,a2) dupl(b,bl,b2)
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fifo(bl, ¢) get(c,o0)

¥
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Q
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« 2> 1 by putlget,put2: 6 cs
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Pattern used: Hub Automaton of the instance port names || hub names || snow

« getget

Hub Automaton Analysis
Memory: 33 bits (T 1.get « bf

+ 2 state(s): 1 bit(s)
« 1variable(s) of type int: 1 * 32 bit(s)

Code size estimation: 8 loc
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Always Available

« get- out (must syncrhonise)

Fig. 6: Screenshot of the online analyser for VirtuosoNext’s hubs.

" http://github.com/arcalab/hubAutomata



6 Related work

The global architecture of VirtuosoNext RTOS, including the interaction with
hubs, has been formally analysed using TLA+ by Verhulst et al. [13]. More
concretely, the authors specify a set of concrete hubs, their waiting lists, and
the priority of requests, and use the TLC model checker to verify a set of safety
properties over these. Our approach uses a formalism focused on the interactions,
abstracting away waiting lists, and aims at the analysis and code generation of
more complex hubs built compositionally.

The automata model proposed here is mainly inspired by Reo’s paramiterised
constraint automata [1] and constraint automata with memory cells [7], both
used to reason about data-dependent coordination mechanism. In the former
states can store variables which are updated or initialised when transiting, while
the latter treats variables as first-class objects, as in here, allowing to efficiently
deal with infinite data domains. Both approaches use data constraints as a way to
assign values to ports, and define updates as a way to modify internal variables.
Here, we treat both variables more uniformly, requiring a serialization method,
and postponing it until obtaining the final composed automaton.

Finite-memory automata [9] are used to deal with infinite alphabets, by using
substitution instead of equality tests over the input alphabet with the support
of a finite set of registers (variables) associate to the automata.

Formal analysis of RTOS are more typically focused on the scheduler, which
is not the focus of this work. For example, theorem provers have been used to
analyse schedulers for avionics software [6]. Carnevali et al. [2] use preemptive
Time Petri Nets to support exact scheduling analysis and guide the development
of tasks with non-deterministic execution times in an RTOS with hierarchical
scheduling. Dietrich et al. [4] analyse and model check all possible execution
paths of a real-time system to tailor the kernel to particular application scenarios,
resulting in optimisations in execution speed and robustness. Dokter et al. [5]
propose a framework to synthesise optimised schedulers that consider delays
introduced by interaction between tasks. Scheduling is interpreted as a game
that requires minimising the time between subsequent context switches.

7 Conclusions

This paper proposes an approach to build and analyse hubs in VirtuosoNext,
which are services used to orchestrate interacting tasks in a Real Time OS that
runs on embedded devices. In VirtuosoNext, complex coordination mechanisms
are the responsibility of the programmer, who can use a set of fundamental hubs
to coordinate tasks, but have to implement more complex interaction mecha-
nisms as application specific code, deteriorating readability and maintainability.

Our proposed formal framework provides mechanisms to design and imple-
ment complex hubs that can provide the same level of assurance that predefined
hubs provide. Currently, the framework allows to build complex hubs out of sim-
pler ones, and analyse some aspects of the hubs such as: memory used, estimated
lines of codes, and always available ports.



Preliminary tests on a typical set of scenarios have confirmed our hypothesis
that using dedicated hubs to perform custom coordination can result in perfor-
mance improvements. In addition, we claim that moving coordination aspects
away from tasks enables a better understanding of the tasks and hubs behaviour,
and provides better visual feedback regarding the semantics of the system.

Ongoing work to extend our formal framework includes: runtime behaviour
analysis, by taking into account the time-sensitive requests made to hubs and
some contracts that tasks are expected to obey; variability support to anal-
yse and improve the development of families of systems in VirtuosoNext, since
VirtuosoNext provides a simple and error-prone mechanism to allow topologies
to be applied to the same set of tasks; code refactoring and generation ap-
plied to existing (on-production) VirtuosoNext programs, probably adding new
primitive hubs, by extracting the coordination logic from tasks and into new
complex hubs; and analysis extension to support a wider range of analysis
to Hub Automata, such as the number of context switches required to perform
certain behaviour, or the model checking of liveness and safety properties using
mCRL2 (c.f. [3,10]).
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