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1 Introduction

This deliverable describes the testbed that has been built in order to perform thermal mea‐
surements of the i.MX8 system‐on‐chip (SoC). i.MX8was chosen as one of the project’s demon‐
strators platforms. Still, the same or similar testbed can be used even for different hardware
platforms. The testbed consists of the hardware part, described in Section 2 and software part
(Section 3). In Section 4, we describe ourmethodology used to process measured data and get
reliable and relevant information about the executed workload. We validate both hardware,
software and methodology on a set of benchmarks and present results in Section 5.
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Figure 1: THERMAC testbed

2 Testbed setup

This section describes the setup of THERMAC testbed used at ČVUT (see Figure 1). The testbed
consists of:

• i.MX 8QuadMax Multisensory Enablement Kit (MEK)①
• Workswell thermal camera②
• Minnowboard Turbot – similar to Raspberry Pi, but x86 architecture③
The following devices are connected to it:

– Thermal camera (via USB3)
– HTU21 ambient temperature sensor (via I2C)④
– WeMos D1 mini fan motor controller (via I2C)⑤

• Two USB‐controlled relays:
– one can power‐cycle the Minnowboard⑥
– one is connected to i.MX8 reset and power buttons⑦

2.1 i.MX8 board

The i.MX8 board is the target of our thermal measurements and thermal‐aware scheduling
techniques. It is equipped with i.MX 8QM SoC consisting of two CPU clusters (4× ARM Cortex‐
A53 and 2× ARM Cortex‐A72) and two GPUs.
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To make testing of different software stacks and OS kernel easier, we do not boot the board
from NXP‐supplied SD card images, but from network. This also makes it easier to share the
board between multiple users. All these aspects are described in more details in following
subsections.

2.1.1 Network boot

We have configured the U‐Boot bootloader of our i.MX8 board, to load the Linux kernel and
mount the root file system from network. The kernel is fetched via TFTP protocol while the
root filesystem is mounted via the NFS protocol.

Mounting the root filesystem from network has the following advantages compared to using
an SD card:

• It is easy to switch to another filesystem/distribution (e.g. Yocto and Debian)
• Each board user can have its own private filesystem/distribution
• When the board crashes, data is stored safely on the server. Therefore, risk of data
corruption is greatly reduced.

To load the kernel and root filesystem from network, we do the following:

1. Interrupt automatic boot by pressing a key after seeing U‐Boot message: Hit any key to
stop autoboot:

2. At “=>” prompt, enter the following U‐Boot commands:

setenv autoload no
dhcp
run loadfdt # load devicetree from SD card
tftpboot /srv/tftp/imx8/Image−−4.19.35−r0−imx8qmmek−20200402085702.bin
setenv bootargs console=ttyLP0,115200 earlycon=lpuart32,0x5a060000,115200 \

rootwait root=/dev/nfs ip=dhcp rw \
nfsroot=<server−ip>:<server−path>,v3,tcp

booti ${loadaddr} − ${fdt_addr}

The <server−ip> and <server−path> parameters should match the NFS server configuration.
<server−path> is where the root file system is stored on the server. It can be either the file
system generated by Yocto or another distribution such as Debian, which can be prepared as
shown in the next section.

2.1.2 Debian root file system

This section shows, how to create a Debian file system for the i.MX8 board. We use the
debootsrap tool for this purpose. Due to the fact, that we want to create the root file sys‐
tem for a different architecture (ARM64) than our server has (x86), we have to perform the
installation in two stages:

1. The initial stage is run on the x86 server:

debootstrap −−arch=arm64 −−foreign buster /srv/nfs/imx8_debian
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2. The second stage must be run on the board. To do this, boot the board from the initial
stage file systemas shown above, but append init=/bin/sh to the setenv bootargs line.
This boots the Linux kernel and drops you directly into the shell. From the shell, run:

/debootstrap/debootstrap −−second−stage

For the installation to be useful, you should set at least root password and allow logging in
from the serial line:

passwd
echo ttyLP0 >> /etc/securetty

Then you can reboot the systemwithout init=/bin/sh and use it as an ordinary Debian system.
For example, install whatever packages with apt install etc.

2.1.3 Board sharing and automated boot

To share the board betweenmultiple users and to automate its booting, we use the novaboot1
tool. The board is accessible by running the following command:

ssh imx8@rtime.ciirc.cvut.cz

This runs so called novaboot shell on the rtime server, which mediates connection to and con‐
trol of the board. Without any argument (as above) or with the console argument, the com‐
mand powers on and resets the board and then it connects to the board’s serial console. If the
board is currently used by another user, an information message is shown and the command
waits until the board becomes free.

Depending on the configuration on the server (which can be different for each user), the board
boots either a preconfigured system (e.g. Debian prepared as described above) or allows the
user to interact with the bootloader and boot whatever the user wants.

To control the board, one can use on, off and reset commands as shown below:

ssh imx8@rtime.ciirc.cvut.cz reset

After the board boots up, one can log in via SSH as follows:

ssh root@imx8

2.1.4 Controlling the CPU fan

We use an external PWM motor controller to control the CPU fan speed as it seems that it
cannot be controlled directly from the board. To control the fan, run (from the board):

ssh imx8fan@turbot <speed>

1https://github.com/wentasah/novaboot
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Figure 2: Web interface of thermocam‐pcb

<speed> is a real number between 0 and 1. Zero means to switch the fan off, one means to
rotate it at full speed. The numbers in between select PWM duty cycle of the fan motor con‐
troller. Note that speeds below approximately 0.3 are not sufficient to make the fan move.
When the command is run from the board, it does not require any authentication.

2.1.5 Reading ambient temperature

Data from the ambient temperature sensor can be obtained from the imx8 board by running
the following command:

ssh ambient@turbot

This will print the temperature to stdout every 10 seconds.

2.1.6 Thermal camerameasurements

The thermal camera is connected to theMinnowboard Turbot. The Turbot board runs a custom
application called thermocam‐pcb2, which processes the images from the camera and makes
the results available over theHTTPprotocol (see Fig. 2). From the external network, the camera
is accessible via https://imx8cam.iid.ciirc.cvut.cz/ and is protected by a password. From the
internal network (i.e. from the imx8 board), it can be accessed without restrictions at http:
//turbot:8080/.

2https://github.com/CTU‐IIG/thermocam‐pcb

Version 1.0 Page 5

https://github.com/CTU-IIG/thermocam-pcb
https://imx8cam.iid.ciirc.cvut.cz/
http://turbot:8080/
http://turbot:8080/
https://github.com/CTU-IIG/thermocam-pcb


D5.1 – Benchmark suite and evaluation techniques Grant Agreement nº832011

The thermocam−pcb tool measures the temperatures of selected points determined by thermo‐
cam‐pcb configuration. Position of the points can be seen by pointing the web browser to one
of the root URLs shown above. The temperatures can be read from imx8 with the following
command:

curl −sS turbot:8080/temperatures.txt

Each line of the output has the format point_name=temperature, which is compatible with the
thermobench tool (see Section 3). The thermobench sensor file (src/sensors.imx8) already
contains this command so that the thermal camera temperatures are automatically captured
during experiments when using this sensor file.

2.2 Minnowboard Turbot

Minnowboard Turbot3 runs Ubuntu 16.04. This version is used because WIC_SDK, which is
needed for reading the images from the thermal camera, does not support newer versions.

2.2.1 Ambient temperature sensor

Weconnected an ambient temperature sensor to theMinnowboard. We use theHTU21‐based
sensor bought in a local Czech store4. Similar modules are available from eBay, AliExpress or
Adafruit. Temperature accuracy of the sensor is±0.3°C.

To make this sensor work, the following commands are executed during the boot:

modprobe htu21
echo htu21 0x40 > /sys/bus/i2c/devices/i2c−8/new_device

These commands are placed into /etc/rc.local.

Then, the temperature can be read with:

cat /sys/bus/i2c/devices/i2c−8/8−0040/iio:device0/in_temp_input

2.2.2 Fanmotor controller

To control the i.MX8 CPU fan, we use WeMos D1 mini TB6612FNG dual motor driver shield5
connected to the Minnowboard’s I2C bus. We control the shield by a simple C program that
sends required I2C messages.

2.2.3 NFS booting

To save SD card life and to have a faster system (our SD card is very slow),Minnowboardmounts
its root filesystem from NFS too. The kernel and the bootloader remains on the SD card. This

3Information about the board was available from http://minnowboard.org, but this site is currently down.
The raw content of the website is available at https://github.com/MinnowBoard‐org/website.

4https://www.gme.cz/i2c‐senzor‐teploty‐a‐vlhkosti‐htu21d
5https://www.laskarduino.cz/wemos‐d1‐mini‐tb6612fng‐dual‐motor‐driver‐shield‐‐i2c/
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setup ensures that if the Ubuntu kernel package is updated (apt upgrade), the new kernel
should boot automatically and the root filesystem stays on NFS. This was a bit tricky to set up,
so we document what has been done here.

In /etc/default/grub, variable GRUB_CMDLINE_LINUX was set as follows:

GRUB_CMDLINE_LINUX=”console=ttyS0,115200 ip=dhcp \
nfsroot=<server−ip>:<rootfs−path>,v3,nolock,tcp rw”

In /usr/sbin/grub−mkconfig, assignment to GRUB_DEVICE variable has been changed from:

GRUB_DEVICE=”`${grub_probe} −−target=device /`”

to:

GRUB_DEVICE=/dev/nfs

Note that grub package update will revert these changes, but it seems there is no better way
to accomplish the same result.
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3 Thermobench tool

Thermobench is a tool that has beendeveloped toperform temperaturemeasurements needed
for this project. It is an open source software hosted at GitHub6. It consists of threemain parts:

• A C++ tool that collects various data, such as temperatures, and stores them to CSV files.

• Julia7 package Thermobench.jl8, for processing of the datameasuredwith thermobench.
It implements the methods described in Section 4 and allows one to generate various
graphs from the data.

• A set of benchmarks that we run under thermobench to measure their thermal effects.
These benchmarks are described in Section 5.

In a nutshell, the thermobench C++ tool runs a given benchmark and periodically collects var‐
ious data (most importantly measured temperatures), which are then stored to a CSV file for
later processing. Thermobench can store the following information to the CSV file:

• Timestamps,

• temperatures from Linux thermal‐zone sensors,

• CPU frequencies,

• CPU load,

• standard output of the benchmark program – either everything or just selected values,
for example values from lines matching key=value,

• output (or just selected values) fromarbitrary commands; this feature is used for reading
temperatures from the ambient temperature sensor and from the thermal camera with
commands mentioned above in Sections 2.1.5 and 2.1.6.

Note that storing of the most of these pieces of information is optional and can be enabled or
disabled via thermobench command line options.

Other notable thermobench features are:

• Waiting to cool down the platform to a given temperature before starting the bench‐
mark.

• Controlling the fan.

• Possibility to specify the data to collect via a so called sensor file. This makes it easier
to collect data from all relevant sensors available for the given board. The thermobench
GitHub repository contains the sensors.imx8 file, which defines the data sources used
for our testbed.

Typically, thermobench is executed on our testbed with the following bash9 command:
6https://github.com/CTU‐IIG/thermobench
7https://julialang.org/
8https://ctu‐iig.github.io/thermobench/dev/
9bash is needed for interpretation of {0..5} syntax.
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thermobench −−verbose −−fan−cmd='ssh imx8fan@turbot' −−fan−on=0.5 −−time=900 \
−−wait=30 −−wait−timeout=240 −−sensors_file=sensors.imx8 \
−−cpu−usage −−column=CPU{0..5}_work_done \
−−output=data.csv −− ./benchmark ...
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Figure 3: Measured data and fitted model (data < 47°C not visible)

4 Measurement processing

This section covers how to process the thermobench‐generated CSV files to get useful and
reproducible results. We also aim to evaluate the precision achievable with our testbed. The
goal of themobench is to run certainworkload and get ameasure of the heat flow (with physical
dimension W = J · s–1) it produces. In the following, we will denote the heat flow as Q̇. We
want to be able to precisely compare different workloads and say with high certainty which
produces smaller heat flow, i.e., which one is more thermal efficient and how much.

4.1 Thermal model fitting

Figure 3 shows temperature measurements collected with Thermobench in a 60‐minutes ex‐
periment, where the CPU fan was switched off. It is a well known fact [Bro06] that the heat
flow produced by the chip is proportional to the difference of steady state chip temperature
(denoted as T∞ in the following) and ambient temperature Tamb:

Q̇ ∝ T∞ – Tamb = T′∞. (1)

Therefore, to compare the heat flows of different workloads, it is sufficient to compare steady
state temperatures T∞ of thoseworkloads. As themeasured temperature is noisy, we estimate
T∞ by fitting a thermal model to the measured data and compute T∞ from the model. Our
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Figure 4: Evolution of ambient temperature over a week

thermal model describes evolution of the temperature as a function of time:

T(t) = T∞ +
n∑
i=1

kie
– t
τi , (2)

where n is the order of the model and τi are so called time constants of the model, which
determine “how fast” the temperature reacts to changes of the heat flow. We selected such a
model becausemost thermal systems can bemodeledwith a set of linear differential equations
and the solution of these equations has the same form as (2). Note that this model has the
same form as the model derived in D3.1 [YR20].

By fitting the model (2) to the data measured with thermobench, we find the constants T∞, ki
and τi. We select the order of the model manually.

In Figure 3, we see how models of different orders fit the data. First and second order models
do not fit well – see their root‐mean‐square errors (RMSE). Third and fourth order models fit
the best. The difference between them is negligible so we conclude that 3rd order model is
sufficient. We see that for n = 3 the T∞ = 54.795 ± 0.075 °C (95% confidence intervals are
the output of the fitting algorithm). Depending on model order, the estimated T∞ differ by
almost one degree. For the 3rd order model, time constants are τ1 = 0.916 ± 0.079, τ2 =
4.11±0.3 and τ3 = 20.1±2.1 minutes. The highest time constant τ3 is particularly important,
because it determines how long we have to wait for temperature to reach the steady state –
the exponential term reaches 95% of its contribution ki in 3 · τi. In case of τ3, this gives≈ 60
minutes. In Section 4.3, we examine how this time can be reduced.

4.2 Suppression of ambient temperature changes

Ambient temperature influences the temperature of the chip. Since experiments can run for
long time, ambient temperature can easily change between different experiments or even dur‐
ing a single experiment, resulting in non‐reproducible results. Figure 4 shows the evolution of
ambient temperature of our testbed over a week. The testbed is located in an air‐conditioned
room with no possibility of opening windows.
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Figure 5: Comparison of model fitting with (right) and without (left) ambient temperature com‐
pensation. Fit error (RMSE) is given after ± sign in parentheses.

To suppress the effect of changes in ambient temperature, it would be best have a model of
how ambient temperature influences the on‐chip temperature. It should model the delays of
the heat propagation from outside to the chip. Such a model is called a transfer function and
can be estimated from measured by system identification methods based on models like OE,
ARX or ARMAX10. We used these methods to estimate the transfer function, but the results
were not satisfactory. It is a well know fact, that for these methods to give good results, it is
necessary to excite the system a lot. Small changes in ambient temperature over long time (as
in Fig. 4), together with relatively high measurement noise, rendered those methods ineffec‐
tive.

Due to the lack of a better model, we compensate for the ambient temperature changes by
simply subtracting ambient temperature from other measured temperatures. We call the re‐
sulting temperature as relative temperature. Figure 5 shows the results of fitting thermal mod‐
els with and without ambient temperature compensation. The graphs show data from two
kinds of experiments (hot and cold), each repeated 6 times. On the left, where uncompen‐
sated absolute temperatures were fitted, it can be seen that experiment hot.6 is an outlier,
but after the compensation (right) it no longer stands out. Also, the difference between cold
experiments is higher on the left than on the right.

This simple compensation for ambient temperature changes also helps with model fitting.
Mean value of the fit errors (RMSE) from the mentioned experiments is 2% lower after com‐
pensation and maximum fit error is even 12% lower.

In the following text, we always fit thermalmodels to ambient temperature‐compensated data.
Hence, it can be assumed that

T∞ = T′∞. (3)

10https://www.mathworks.com/help/ident/ug/what‐are‐polynomial‐models.html
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Figure 6: Relation between the length of the experiment and estimation of T∞. Vertical axis shows
the difference between T∞ estimated from data of length x (T∞|x) and from full 60 minutes of
data (T∞|60). Error bars represent 95% confidence intervals.

4.3 Reduction of experiment time

Running the experiments for one hour, as in Fig. 3, is very time consuming. We now investigate
the possibility of fitting the thermal model from shorter experiments and estimating T∞ from
them. The difference of estimates from shorter and full 60minutes experiments can be seen
in Figure 6.

We compare three ways of model fitting:

• 3rd order model with known time constant, i.e. τi are constrained to±1% of the values
estimated from 60 minutes of data.

• 3rd order model with unconstrained time constants, i.e., time constraints are fully esti‐
mated from the data,

• 2nd order model with unconstrained time constants.

For the 3rd order model and constrained τ, we see from line (A) in Fig. 6 that the model is
able to predict the final temperature with good precision (< 0.5°C) from roughly 20 minutes
of data. Unfortunately, time constants vary – see Fig. 5. We attribute this to the fact the our
model represents a lumped‐parameter system, where spacial distribution of heat production
and transfer is ignored, whereas the real system is a distributed‐parameter system where spa‐
cial dimension matters. Line (B) shows the results of the same method applied to ambient
temperature‐compensated data from the same workload but executed 2 hours later (hot.3
from Fig. 5). It can be seen that the difference follows the opposite trend than line A and good
estimate is reached for 30 minutes experiment or longer.

Line (C) shows the results of fitting the “shortened” data without constraining the time con‐
stants close to the correct value. We see a lot of outliers and convergence to the constrained
case roughly after 50 minutes.
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data are caused by compensation for ambient temperature.

Finally, line (D) shows results of fitting 2nd order model. We can observe a systematic estima‐
tion error.

To conclude, it is not possible to reliably estimate T∞ when experiment time is shorter than
1.5maxi(τi) ≈ 30 minutes. To have good estimations from experiments running for shorter
time, it is necessary to decrease the time constants of the system.

4.4 Using fan to decrease time constants

In thermal systems, the time constant τ can be computed as τ = RC, where R is thermal resis‐
tance between two objects with different temperature and C is thermal capacity of the object,
whose temperature is being measured – in our case of the chip. If we want to reduce the time
constant, we have two options:

• Reduce the capacity C, e.g., by removing the heat sink from the chip, or
• Reduce the thermal resistance R. This can achieved by a fan – the higher fan speed, the
lower thermal resistance between the heat sink and the surrounding environment.

Removing the heat sink is a bit risky, especially for expensive boards like our i.MX8 so we de‐
cided to pursue the latter alternative with the fan. Figure 7 shows the temperatures from the
sameworkload as in Fig. 3, but with the fan rotating at full speed. It can be seen that the steady
state temperature is only 6.2 °C above ambient temperature and that the time constants are
much smaller: 0.3 and 2.4 minutes. Also note that 3rd order model not necessary in this case
as it is the same as 2nd order model.

Whenwe try to estimate the T∞ from shorter data, we can see (Fig. 8) that good results are ob‐
tained for experiments longer than 13 minutes with unconstrained‐τ estimations. Constrain‐
ing τ constants leads to systematic errors (line B). The 1st order model is slightly off even for
x → 30 (line D). The 3rd order model (line E) gives the same results as 2nd order model, but
with few outliers.

It can happen, that for less intensive workloads, the T∞ is even smaller than 6°C. In that case,
the resolution of the temperature sensors might not be sufficient to give precise estimates.
This problem can be mitigated by setting the fan to smaller than full speed. The results of 2nd
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order thermal model fitting with different fan speeds are in Fig. 9. The T∞ temperature clearly
decreases with increasing fan speed and the same trend can be observed for time constants
τ1 and τ2 except for few outliers (0.35 and 0.8). For some experiments, mostly with higher
fan speeds (in the figure, it is visible for speed 0.8) the fitting algorithm is not able to precisely
estimate τ2, because the slowmode is almost not visible in themeasured data. From the other
experiments, we see that τ2 drops from 6 to about 0.8 minute. The outliers in τ estimates are
the reason why constraining the time constants to “correct” values during model fitting, as
described in Section 4.3, does not always give good results.

4.5 Conclusion

Processing the data from thermobench measurements is not fully automatic and requires a
few manual steps. These are mainly selection of model order, experiment duration and ap‐
propriate fan speed. Additionally, after fitting the thermal model, one has to check that the
model fitting algorithm did not end up in a local minimum, which results in imprecise estima‐
tions of T∞. After these manual steps, the methods described in this section give reasonably
precise estimate of T∞, which is proportional to the heat flow Q̇ generated by the executed
workload.
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Figure 10: Comparison of relative steady state temperature T∞ and performance ofmultiplication
instructions on different CPUs.

5 Benchmarks

Thermobench repository also contains a few benchmarks that are used to assess thermal and
performance characteristics of the i.MX8 platform and will be used to measure the perfor‐
mance of temperature reduction techniques. These benchmarks are described in the following
subsections.

5.1 CPU instructions

The directory benchmarks/CPU/instr contains various micro‐benchmarks that perform dif‐
ferent (mostly) arithmetic instructions. With these benchmarks, we can compare performance
and thermal efficiency of different CPUs and CPU clusters. For example, in Figure 10, we can
compare multiplication operations.

The top row of Fig. 10 allows to compare single‐core performance of A53 and A72 CPUs. A72
offers higher performance for non‐SIMD and floating‐point SIMD instructions. Surprisingly,
integer SIMD instructions are faster on A53. CPU temperature does not depend significantly
on particular type of instruction. In average, A72 produces 51.1 ± 5.7% more heat than A53,
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Figure 11: Performance of a compute‐bound GPU benchmark

while delivering only 92.9± 1.6% of A53 performance.

The bottom row compares multi‐core performance, where the benchmark was running on
all CPUs in the cluster. For A53 we see that compared to single‐core case, the performance
increases 4 times but temperature rises only by 31.9±8.0%. For A72, performance rises 2× and
temperature by 27.8 ± 4.4%. A53 cluster is always faster than A72, but A72 cluster produces
46.4± 8.6% more heat.

5.2 GPUworkload

To evaluate performance of the GPU, we use several benchmarks:

• Graphics performance is assessedwith benchmarks from gtec‐demo‐framework11 avail‐
able from imx‐gpu‐sdk Yocto package.

• OpenCL performance is evaluatedby customdevelopedprogramsmandelbrot andcl-mem,
executing compute‐bound and memory‐bound GPU workloads respectively.

For the future, we expect to usemore OpenCL (e.g., https://www.iwocl.org/resources/opencl‐
benchmarks/) and Vulkan compute benchmarks.

Later in this section, we present some results of our OpenCL benchmarks. In OpenCL, compute
work is divided into so called work items. The total number of work items is called global size.
The work items are being worked on by kernel code running in so called work groups. Each
work group processes a certain number (called local size) of work items in parallel. The work
groups execute on the GPU either sequentially or in parallel, depending on their (local) size
and size of the GPU.

The results from the OpenCL mandelbrot (compute‐bound) benchmark can be seen in Fig‐
ure 11. We run the benchmark kernel with different parameters and compare the results. The
total work of the benchmark is divided into global size of work items and these are executed
in work groups of different local size. The left graphs shows the results from experiments with
different global size and same local size. It can be seen that maximum performance can be

11https://github.com/nxpmicro/gtec‐demo‐framework.git
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Figure 12: Performance of a memory‐bound GPU benchmark

reached for global size of 512 or more (with small performance drop for size of 1024). Smaller
global sizes cannot utilize the full GPU parallelism and hence the computation takes longer
time. The steady state temperature T∞ decreases with decreasing performance.

The right hand side graph in Fig. 11 shows that there is no significant difference in both perfor‐
mance and temperature when the same amount of work items is divided into differently sized
work groups.

Figure 12 shows the results of the memory‐bound benchmark, which just reads memory. In
the left, we can see that higher parallelism (global size) leads to lower performance, because
the memory bandwidth is the limiting factor. The temperature slightly decreases with the
decreasing performance. The right graphs again shows that different work division makes no
difference.

5.3 CPUmemory subsystem

The thermobench repository also contains a program called membench. It can stress various
parts of the CPU memory subsystem and measures achievable memory bandwidth.
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Figure 14: Memory performance and temperature (measured with the fan switched off)

The memory bandwidth achieved by various numbers of CPUs can be seen in Figure 13. The
bandwidth of L1 cache memory, i.e., for working set size (WSS) ≤ 32 KiB, is the highest, fol‐
lowed by L2 cache bandwidth (32 < WSS < 1 MiB) and the lowest bandwidth is, unsurprisingly,
available for DRAM accesses (WSS > 1MiB). One can observe, that DRAM bandwidth available
to 2 A72 cores is slightly lower than bandwidth available to 4 A53 cores.

The temperature effect of accessing different parts of the memory subsystem can be seen in
Figure 14. Clearly, L1 cache accesses are the most thermal efficient, whereas DRAM accesses
are the lest efficient.

5.4 Other benchmarks

It is planned that the performance of our scheduling mechanisms will be further assessed with
the following benchmarks:

• CoreMark® (https://www.eembc.org/coremark/),

• AutoBench™ (https://www.eembc.org/autobench/), and

• 3D software renderers: https://github.com/ssloy/tinyrenderer,
https://github.com/GeekyMoose/3d‐cpu‐engine.
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6 Conclusions

We demonstrated the functionality of our testbed and of the toolchain for processing the data
gathered with the testbed. In the next project phase, we will concentrate on development of
various scheduling techniques and the developed testbed will be used for assessing perfor‐
mance of the proposed techniques.

Version 1.0 Page 21



D5.1 – Benchmark suite and evaluation techniques Grant Agreement nº832011

References

[Bro06] Brown, F. T. Engineering System Dynamics: A Unified Graph‐Centered Approach, Sec‐
ond Edition. 2 edition. Boca Raton, FL: CRC Press, Aug. 15, 2006. 1059 pp. ISBN: 978‐
0‐8493‐9648‐9.

[YR20] Yomsi, P. M. and Rodríguez, J. P. Preliminary Implementation of a Thermal‐Aware
Resource Management Policy. THERMAC project deliverable D3.1. June 2020.

Version 1.0 Page 22


	1 Introduction
	2 Testbed setup
	2.1 i.MX8 board
	2.1.1 Network boot
	2.1.2 Debian root file system
	2.1.3 Board sharing and automated boot
	2.1.4 Controlling the CPU fan
	2.1.5 Reading ambient temperature
	2.1.6 Thermal camera measurements

	2.2 Minnowboard Turbot
	2.2.1 Ambient temperature sensor
	2.2.2 Fan motor controller
	2.2.3 NFS booting


	3 Thermobench tool
	4 Measurement processing
	4.1 Thermal model fitting
	4.2 Suppression of ambient temperature changes
	4.3 Reduction of experiment time
	4.4 Using fan to decrease time constants
	4.5 Conclusion

	5 Benchmarks
	5.1 CPU instructions
	5.2 GPU workload
	5.3 CPU memory subsystem
	5.4 Other benchmarks

	6 Conclusions

