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Abstract—Research on mixed-criticality scheduling has flour-
ished since Vestal’s seminal 2007 paper, but more efforts are
needed in order to make these results more suitable for industrial
adoption and robust and versatile enough to influence the
evolution of future certification standards in keeping up with
the times. With this in mind, we introduce a more refined
task model, in line with the fundamental principles of Vestal’s
mode-based adaptive mixed-criticality model, which allows a
task’s criticality and its importance to be specified independently
from each other. A task’s importance is the criterion that
determines its presence in different system modes. Meanwhile,
the task’s criticality (reflected in its Safety Integrity Level (SIL)
and defining the rules for its software development process),
prescribes the degree of conservativeness for the task’s estimated
WCET during schedulability testing. We indicate how such a task
model can help resolve some of the perceived weaknesses of the
Vestal model, in terms of how it is interpreted, and demonstrate
how the existing scheduling tests for the classic variant’s of
Vestal’s model can be mapped to the new task model essentially
without changes.

I. BACKGROUND

A. Introduction

Mixed-criticality systems are an important niche of real-

time embedded systems, their defining characteristic being the

fact that computing tasks of different criticalities execute on

the same hardware and share system resources1. The criticality

of a task is a measure of the severity of the consequences of

a task failing (which, in the context of real-time scheduling

means missing its deadline). Indeed, some tasks missing their

deadline can have catastrophic consequences, whereas other

tasks occasionally missing their deadlines might only have a

minor effect. For this reason, the higher a task’s criticality,

the more conservative (and costlier, in terms of effort, time

and money) the approach employed to upper-bound that task’s

worst-case execution time2.

The sharing of system resources among tasks of different

criticalities, unless carefully managed, can give rise to unde-

sirable interactions that compromise safety. For this reason,

Work partially supported by National Funds through FCT (Portuguese Foundation for

Science and Technology) within the CISTER Research Unit (CEC/04234).
1When tasks of different criticalities exist but are completely isolated,

such systems are multiple-criticality, as opposed to mixed-criticality, and they
constitute a different class of systems. See Footnote 1 in [1] and in [2].

2In Steve Vestal’s words: “ . . . the more confidence one needs in a task
execution time bound (the less tolerant one is of missed deadlines), the larger
and more conservative that bound tends to become in practice.” [3]

and before getting to specific scheduling arrangements, the

various certification authorities generally prescribe that (i) ap-

plications of lower criticality should not be able to cause the

failure of tasks of higher criticality, and (ii) when tasks of

different criticality share the same resources, they must all be

engineered to the same strict standard of safety as the highest-

criticality task thereamong. Clearly, this is inefficient. For this

reason the certification authorities, in their guidelines [4], do

not insist in zero interference among mixed-criticality appli-

cations, but instead expect such interference to be carefully

accounted for and adequately mitigated3. In the context of

the WCET problem, also analysing low-criticality tasks using

highly conservative and pessimistic static WCET analysis

techniques, as in the case of highly-critical components, would

be wasteful of processing capacity. In fact, it would defeat the

purpose behind the strong industrial shift to mixed-criticality

scheduling, which is to efficiently utilise today’s powerful

multicores and reduce costs, size, weight and power.

B. Vestal’s model and its evolution

This reality motivated Vestal to propose the use of differ-

ent WCET estimates with different corresponding degrees of

assurance, for the same task, in different scenarios, in order

to ensure a priori the correct temporal behavior of the system

at run-time [3]. To illustrate the principle, consider a fixed-

priority-scheduled system and assume that each task has both

a (i) “reasonable” but, not conclusively safe, WCET estimate

and (ii) a highly pessimistic, but demonstrably safe, WCET

estimate. Then, when testing the schedulability of a low-

criticality task, one would only need to use the “reasonable”

estimates, for all higher-priority tasks, irrespectively of their

criticality, as inputs to the familiar Worst-Case Response

Time (WCRT) analysis [5] for the task under consideration.

Conversely, testing the schedulability of a high-criticality task,

one would use the respective pessimistic estimates. This initial

model, coupled with a fixed task priority scheduling policy,

was termed Static Mixed Criticality (SMC).

Baruah and Burns extended Vestal’s initial model [6] by

adding modes and the notion of run-time system criticality lev-

3For example, the CAST-32A guidelines [4], clarify that “it is therefore
important to identify the interference channels that could cause interference
between the software applications hosted by their MCP platform, to mitigate
the effects of each of those interference channels and to verify the selected
means of mitigation”.



el. We will henceforth refer to their model as the Mode-based

Vestal model. In this variant model, each task has a (design)

criticality level and a set of WCET estimates – one for every

criticality level not exceeding its own and non-decreasing with

respect to the latter. At startup, the “system criticality level”

(in reality, an index of the system mode) is initialised to the

lowest task criticality. If a task exceeds its WCET for the

system’s current criticality level, the system stops all tasks

with criticality equal to that level and increments its criticality

level. This constitutes a mode change, upon which, all tasks

with criticalities lower than the current system criticality, are

idled. Coupled with fixed-priority scheduling, the mode-based

Vestal model is known as Adaptive Mixed Criticality (AMC),

but the model itself is orthogonal to the scheduling policy. For

example, it can be coupled with EDF [7], [8].

The execution time monitoring and dropping of lower-

criticality tasks that exceed their WCET estimate for a given

mode was a clever idea for the following reason: If a task

cannot execute for more than a certain time (corresponding

to that WCET estimate) without getting dropped, then that

estimate (which could even be an underestimation of its

true WCET), becomes a provably safe, unexceedable WCET

estimate for the task – it will never execute for more than

that. This solves the problem of unpredictable interference on

higher-criticality tasks, assuming that it is acceptable to drop

lower-criticality tasks, during the mode change, in the first

place. This assumption in AMC may, however, not always

hold, as we will discuss later, in Section I-D.

C. Terminological issues

On a related observation, and to quell some long-standing

terminology-related confusion, we note what were above re-

ferred to as “WCET estimates” (or often simply “WCETs”)

for a given task in different modes, are in reality execution

time thresholds for triggering a switch to the next-higher

mode. Except for the estimates used in the top-most mode

(which need to provably upper-bound the true, but unknown

WCETs), the estimates (i.e., thresholds) used in other modes

are reasonably expected, but not required, to upper-bound the

true WCET. However, too low a value increases the probability

of a mode change (undesirable, due to the degradation of

functionality entailed by dropping tasks) while a value that is

too high wastes processing resources. In any case, the selection

of these thresholds is up to the designer. Another terminology-

related source of confusion is the use of the term “system

criticality” to denote what is, essentially, an indicator of the

mode. Strictly speaking, “criticality” characterises applications

and their tasks. This is discussed more in Section IV.

D. Other criticisms

Criticisms are sometimes voiced about the mode-based

Vestal model [9], [10], [11], [12], [13] and its compatibility

with the safety standards (e.g., IEC61508, ISO26262 or DO-

178C) on which system certification is based. This is partially

due to Vestal’s use of the term “criticality” in a looser sense

than the meaning it has in the standards (and the precedent

that this set in the use of the term in the acadamic literature)

and partially due to more legitimate concerns.

One of the more legitimate concerns, is that dropping tasks

upon a mode change simply on the basis of their criticality, is

not necessarily acceptable course of action in the general case.

More generally, a task’s criticality is not synonymous with its

importance, which is a different attribute – and important tasks

should not be discarded.

In response to such concerns, in this work we introduce

an extension of the mode-based Vestal model, whereby

the importance of a task is decoupled from its criticality,

and is specified separately. The participation of a task in

different modes follows from its importance, not its criticality.

Meanwhile, its criticality, which determines the degree of

conservativeness in its development process, also determines

(in our model, just as in the standard mode-based Vestal), the

degree of conservativeness in the estimation of its WCET in

the different modes that it forms part of.

Note that this use of the term “importance” is different from

that employed in [14] where it is simply used as a means of

differentiating between tasks of the same criticality.

E. Outline of this paper

The rest of this paper is structured as follows. In Section II,

we describe this new model. In Section III, we describe how

the schedulability analyses developed for the standard mode-

based Vestal model can be mapped to the new decoupled

model, essentially without changes. Subsequently, in Sec-

tion IV, we discuss some of the existing criticisms to the

standard mode-based Vestal model, and how our new task

models addresses those. Section V offers concluding remarks.

II. THE DECOUPLED TASK MODEL

Consider a set τ
def
= {τ1, . . . τn} of n mixed-criticality

sporadic tasks. Each task τi has a minimum inter-arrival time

Ti and a relative deadline Di ≤ Ti. It also has a worst-

case execution time (WCET), whose exact value is in practice

unknowable, and can only be estimated. Different estimates

can be obtained for the same task by the use of different

techniques:

1) Provably safe WCET estimates, which are obtained by

formal analysis and/or static path analysis, with rigorous

pessimistic assumptions. They tend to be excessively

pessimistic and costly to derive, in terms of time, effort

and money.

2) Potentially unsafe WCET estimates, i.e., probably but

not provably safe. These may be derived by simplistic

path analysis, or via measurements and perhaps proba-

bilistic techniques.

Although Vestal’s model has been generalised to an arbitrary

number of criticality levels (denoted numerically), in this

work, for simplicity we assume just two criticality levels,

high (H) and low (L) – which suffice in order to illustrate

the principle. A task’s criticality is denoted by κi.

Under the variant of Vestal’s model introduced with AMC,

there would be two modes (L and H), with all tasks executing



in the L-mode and only the H-tasks executing in the H-

mode. Instead, in our model, in addition to its criticality κi,

each task is also characterised by (what we conventionally

call) its importance λi, which in the general case is indicated

numerically. In this work, however, we assume that it can be

high (H) or low (L), for simplicity. This attribute, input by the

designer, reflects the design and application requirements and

the implication is that, if needed, a low-importance task can

be “dropped” (i.e., idled, at mode change) whereas a high-

importance task cannot. Therefore, under our model, which

tasks execute in which mode is determined on the basis of their

importance, not their criticality4. This is a more general model

than that by Baruah and Burns [6], which can be described as

a special case (namely, λi = κi, ∀i).

In accordance with the above principles, there exist 4
possible classes of tasks, corresponding to the possible com-

binations of criticality (κi ∈ {L, H}) and importance (λi ∈
{L, H}).

Tasks of high importance (irrespective of their criticality)

can also sub-categorised into (i) tasks that are present in

the system already at start-up and (ii) tasks that are only

introduced after the mode change (e.g., as fail-safes for one

or more tasks that were dropped). Figure 1 illustrates this

model, with one task for each kind. Initially (i.e., in L-

mode), there exist 4 tasks in the system (τ1, τ2, τ4 and τ5,

encircled in green). All of those have different combinations

of criticality and importance. In L-mode, the system must be

provably schedulable as long as no task executes for more

than its corresponding WCET estimate for that mode (CL
i ).

However, if any of those 4 tasks exceeds its CL
i , then a

mode change is triggered. The low-importance tasks τ1 and

τ4 are then immediately dispensed with; the high importance

tasks τ2 and τ5 persist in the new mode. Additionally, high-

importance tasks τ3 and τ6 are added to the system, possibly

to compensate for the functionality of the dropped tasks. In

the H-mode, it has to be offline-provable that no task among

those present (τ2, τ3, τ5 and τ6, encircled in red), can miss

a deadline, assuming that these tasks execute for up to their

corresponding WCET estimate for the new mode (Ci). This

requirement also applies to jobs caught in the mode transition

(i.e., released before the mode change, but completing after

the mode change).

Note that our model imposes no constraint between the

number of (low-importance) tasks dropped at mode change

and the number of new (high-importance) tasks added to

the system after the mode change (e.g., to compensate for

their functionality). Neither is there any constraint on how

the attributes of those tasks (Di, Ti, Ci) can be related.

For convenience, a task present only in the H-mode can be

equivalently modelled, for schedulability analysis purposes,

as a task present in both modes, with CL
i = 0. Meanwhile,

for low-criticality but high-importance tasks (i.e., for which

a WCET estimate CH
i for H-mode execution needs to be

4In [11], Esper et al. discuss examples of abstract systems where a task’s
criticality does not reflect its importance.

Fig. 1: A Venn diagram illustrating the different types of tasks

in our task model, the modes that they can be part of and the

WCET estimates used for schedulability-testing purposes.

defined), we think that it is reasonable to use CH
i = CL

i . The

reason is that rare jobs that exceed this execution time can be

dropped, even in the H-mode (because the job is not critical)

but the task overall cannot be dropped (because it is important)

and its next job will arrive and be executed as normal. Still,

there is nothing in our model that prevents the designer from

specifying some other CH
i > CL

i for a low-criticality, but

high-importance, task τi. As for important tasks (λi = H)

that cannot tolerate even a single dropped job, this implies

that they are in fact high-criticality and need to be specified

as such by the designer (i.e., κi = H); their WCET estimates

for the H-mode would accordingly also need to be provably

safe.

Ultimately, CH
i ≥ CL

i , for every task that is part of the

H-mode.

III. UNIPROCESSOR ANALYSIS

Having introduced the task model, we proceed with showing

how schedulability analysis formulated for the standard mode-

based Vestal model can be mapped to it. The only change to

the equations is that the task selector for the different modes is

now the task importance. For illustration purposes, we assume

a uniprocessor system and a fixed priority scheduling policy.

For this case, and for the standard mode-based Vestal model,

the literature offers the well-known AMC-rtb and AMC-max

tests (both formulated in [15]). For schedulability testing in L-

mode, for both AMC-rtb and AMC-max, a task’s worst-case

response time (WCRT) is upper-bounded by

RL
i = CL

i +
∑

τj∈hp(i)

⌈

RL
i

Tj

⌉

CL
j (1)



where hp(i) is the set of higher-priority tasks and CL
j is the

WCET estimate for τj in L-mode.

For the schedulability testing in H-mode, the WCRT equa-

tions, for AMC-rtb and AMC-max, respectively, are

RH
i = CH

i +
∑

τj∈hp(i)

κj=H

⌈

RH
i

Tj

⌉

CH
j +

∑

τℓ∈hp(i)

κℓ=L

⌈

RL
i

Tℓ

⌉

CL
ℓ (2)

and

RH
i = max(Rs

i ), ∀s ∈ {0, RL
i } (3)

where

Rs
i = CH

i +
∑

τℓ∈hp(i)

κℓ=L

(⌊

s

Tℓ

⌋

+ 1

)

CL
ℓ

+
∑

τj∈hp(i)

κj=H

{

M(j, s, Rs
i )C

H
j +

(⌈

t

Tj

⌉

−M(j, s, Rs
i )

)

CL
j

}

(4)

where

M(j, s, t) = min

{⌈

t− s− (Tj −Dj)

Tj

⌉

+ 1,

⌈

t

Tj

⌉}

(5)

Under the new model, what changes is that, in the degraded

mode, the subset of tasks executing consists of all tasks

with λj = H (high importance) instead of κj = H (high

criticality). However, it still holds that CH
i ≥ CL

i , for every

task that is part of the H-mode. Correspondingly, Equation (1)

need not be modified at all, whereas Equation (2) (AMC-rtb)

is slightly modified to

RH
i = CH

i +
∑

τj∈hp(i)

λj = H

⌈

RH
i

Tj

⌉

CH
j +

∑

τℓ∈hp(i)

λℓ = L

⌈

RL
i

Tℓ

⌉

CL
ℓ (6)

and Equation (4) is changed to

Rs
i = CH

i +
∑

τℓ∈hp(i)

λℓ = L

(⌊

s

Tℓ

⌋

+ 1

)

CL
ℓ

+
∑

τj∈hp(i)

λj = H

{

M(j, s, Rs
i )C

H
j +

(⌈

t

Tj

⌉

−M(j, s, Rs
i )

)

CL
j

}

(7)

with Equations (3) and (5) entirely unaffected. We typeset

the modified Equations (6) and (7) with the affected terms

in oversized red, in order to highlight how minimal and how

straightforward the changes are. Note that the schedulability

test for AMC-max is still safe even when it has to be

guaranteed that jobs caught in the mode transition of tasks

that are to be dropped shall not be terminated if they do not

exceed their L-mode WCETs5. This property of AMC-max

also holds under our model, if, due to design requirements,

such semantics need to be enforced.

Adapting other schedulability tests for the standard mode-

based Vestal model (e.g., for an EDF scheduling policy, with

uniform [7] or per-task [8] deadline scaling), is analogous.

IV. MAJOR MISCONCEPTIONS ABOUT THE VESTAL MODEL

Having introduced our task model and shown how its

schedulability analysis is available “for free” from the liter-

ature on the standard mode-based Vestal model, we are going

to briefly examine to what extent its adoption settles some

criticisms voiced (e.g., in [9], [10], [11], [12], [13]) at the

standard mode-based Vestal model that inspired it. We also

use the opportunity to highlight why some other criticisms

are misframed.

A. Conflating the software assurance level of a task with the

notion of importance

In systems with criticality concerns, tasks are part of one

or more system components or functions, which in turn are

assigned assurance levels. In the automotive domain, these

are called Safety Integrity Levels (SILs) whereas in avionics,

Development Assurance Levels (DALs) are the equivalent

concept. Each task associated to a system component inherits

the latter’s SIL (DAL), with tasks belonging to multiple

components (or components that are not partitioned) inheriting

the highest SIL (DAL) thereof (see p. 10 in [16]). Tasks must

be developed in accordance with the rules defined for their

SIL/DAL.

As already mentioned, a major legitimate criticism (e.g.,

in [9]) on the mode-based Vestal model is that all tasks of

a higher-criticality system component (i.e., higher SIL) are

always given higher importance than the tasks of any lower-

criticality system component (lower SIL). In other words,

the importance of a task is treated as depending entirely on

its criticality level. In reality though, as the critics correctly

point out, some tasks of a higher-criticality component may

be unimportant tasks that simply “inherited” their higher

SIL due to their interaction/communication with other tasks,

whose failure would be catastrophic. Conversely, there may

be tasks in a lower-criticality component whose failure can be

catastrophic.

As explained, our proposed model decouples the concept of

criticality from that of importance. The system designer has

the flexibility to specify the importance of different tasks, in

accordance with the nature of the system, and decide on their

placement into the different modes of operation. Hence we

believe that this fully resolves the particular criticism.

5Quoting from the original AMC-max paper [15]: “For a possible alterna-
tive system model (in which all low criticality tasks, that have been released
but not yet completed, are allowed to consume up to C(L) before being
descheduled) this bound is tight.”



B. Graceful degradation

Graceful degradation of the system has been recommended

in safety standards (e.g., IEC61508), whereby the system is

allowed to enter in a degraded mode with limited services

without compromising its safety. The conventional techniques

for the mode-based Vestal model aim for graceful degradation

by dropping the low-criticality tasks, under the implicit as-

sumption that these are the less important tasks. However, as

explained, importance is not just a function of the criticality

level, as it may also depend on the mode of operation and

application context. Hence, one valid criticism is that this is a

flawed attempt at graceful degradation.

Our proposed model allows the system designer to define

a degradation policy based on the importance of each task,

irrespective of its criticality and mode of operation. The system

designer can thereby specify which tasks are to be dropped,

kept or added at each mode transition.

C. WCET estimates

It has been noted (e.g., in [10], [17], [11] that nowhere do

the safety standards foresee the existence of multiple WCET

estimates for the same task, and that this would bring into

question the compatibility of the mode-based Vestal model

with these standards. To this observation, we counter that (as

also noted in Section I) this is a terminological issue, even

for the standard mode-based Vestal model [15]. What in the

literature of the Vestal model are refered to as additional, non-

provably-safe “WCET estimates”, are in fact execution time

thresholds whose excedance triggers the switch to the next

mode. The consequence of setting such a threshold too high

or too low (by using an execution time estimation technique

that is, correspondingly, more/less conservative) is, respec-

tively, inefficient platform utilisation vs. greater likelihood

of triggering a mode change (which is also undesirable). It

is a design tradeoff, and both in the standard mode-based

Vestal model [15] and ours, nothing prevents the designer

from specifying a provably safe WCET estimate for a task

in all modes that it is part of. The fact that these estimates

tend to be conventionally called (simply) “WCETs” by the

people in the real-time scheduling community, obscures their

true nature. However, this usage simply follows from the fact

that they do behave like WCETs, when they are input into the

schedulability tests that the researchers construct.

As Baruah already noted [18], even if the standards do not

explicitly foresee the use of multiple execution time estimates

per task, they offer no technical arguments precluding their use

either, as part of a technique devised for proving the desired

safety guarantees for the system. Which is why he surmises

that objections to the use of multiple execution time estimates

“seem in large part to be a social and cultural problem, rather

than a technical one” [18].

D. Temporal and spatial isolation

The mixed criticality applications hosted on the same mul-

ticore platform can (in the absence of mechanisms preventing

this) interfere with each other on multiple shared channels, in-

cluding CPU, caches, memory buses, memory controllers and

I/O devices [19]. Many mitigation and prevention techniques

are proposed in the literature to eliminate or predictably reduce

the interference among applications of different criticality.

Several works already exist [20], [21], [22], [23], [24], [25],

[24], [26], [27], [28], [29], [30], [31], [32], [13], [33] on

ensuring temporal and spatial isolation. Some of these works

already explicitly assume the mode-based Vestal model while

the others can still work in its context. For instance, server-

based techniques can be used to ensure temporal isolation

at the CPU level [23]. The Cache Lockdown approach [34],

[35] proposed in the context of the SCE framework [22]

allows spatial isolation at the cache level. Similarly, the use

of MemGuard [20] (and memory access regulation in general)

allows for upper-bounding memory-access-related stalls and

integrating them into the scehedulablity analysis.

Recently, a concern has been raised [11] that a misbehaviour

in the minimum interarrival time of a task can affect the

temporal isolation of a mixed-criticality system. We believe

that further study is required within the context of the mode-

based Vestal model to address this challenge of variation in

the minimum interarrival time of a task. One way to deal with

this, entirely in accordance with the spirit of the mode-based

Vestal model, would be for such an inter-arrival time violation

to trigger a mode change, analogously as done with execution

times. Certainly, the literature contains works which consider

the change of interarrival time parameters in mixed-criticality

systems in different modes (e.g, [36]). Baruah also shares

our view that, rather than just execution times, the theory

pertaining to the Vestal model “could be used to deal with any

form of inherent uncertainty and nondeterminism with regard

to the run-time behavior of systems” [18].

E. Mode switch

In an industrial context, the term “criticality” refers to the

level of assurance (SIL, DAL or ASIL) applied in the software

development process of the safety-critical application. In the

standard mode-based Vestal model, the term is “overloaded” to

represent two additional concepts: the mode of operation and

importance of a task. The latter comes from the (contested)

assumption, in that work [15] that a task’s importance is

solely determined by its criticality. With respect to the former

“overloaded” meaning, when a system switches from mode

n to mode n + 1, this does not really mean that the tasks

change their criticality from criticality n to criticality n + 1;

it just refers to the transition in mode of operation. Despite

the confusing terminology, the criticality of any application or

task is not changed due to the mode transition.

Nevertheless, we recommend to other researchers in a-

cademia to use that term “mode of operation” rather than, e.g.,

“low system criticality” when refering to the mode, to avoid

any confusion. Moreover, the decoupling of criticality from

importance in our proposed model eliminates the concerns

about the misuse of the term “criticality” to indicate the

importance. Finally, it is worth emphasising that, in any case,



this misuse of the term has no impact on the validity of the

existing analyses for the mode-based Vestal model.

V. CONCLUSION

We introduced a variant of the mode-based Vestal task

model for mixed-criticality systems, in order to address some

criticisms about the model and bridge the gap with current

industrial practice. Its main feature is the decoupling of

task criticality from task importance. The new model retains

the essence of its predecessor (run-time robustness and effi-

cient processor utilisation via flexible mode transition), and

it remains fully backwards compatible with all its existing

analyses. We also pointed out how this new model settles

the concerns voiced about Vestal’s mode-based model and its

terminology.

To conclude, although we have no intention of discouraging

anyone from exploring other techniques and paradigms, we

believe that any issues or points of concern pertaining to the

Vestal model, can be resolved in accordance with its spirit,

and do not necessitate a break from it. We intend to work

with others in the community in order to further refine the

Vestal model, to not only make it more nuanced with respect to

the current incarnations of the safety standards, but ultimately

also to influence the drafting of future standards. Remote as

this may seem today, it would not be that dissimilar to what

happened with fixed-priority scheduling, which took many

years and enormous effort by many people until it became

endorsed by the standards and established industrial practice.
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