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Abstract

Admission controllers are used to prevent overload in systems with dynamically ar-
riving tasks. Typically, these admission controllers are based on suÆcient (but not
necessary) capacity bounds in order to maintain a low computational complexity.
In this paper we present how exact admission-control for aperiodic tasks can be
eÆciently obtained. Our �rst result is an admission controller for purely aperiodic
task sets where the test has the same runtime complexity as utilization-based tests.
Our second result is an extension of the previous controller for a baseload of peri-
odic tasks. The runtime complexity of this test is lower than for any known exact
admission-controller. In addition to presenting our main algorithm and evaluating
its performance, we also discuss some general issues concerning admission controllers
and their implementation.

Key words: real-time systems, schedulability analysis, operating systems, online
scheduling, earliest-deadline-�rst, AVL tree, lazy evaluation

1 Introduction

In systems with dynamically arriving tasks, for example web servers or real-
time databases, it is typically not known when a task will arrive. If too many
tasks arrive simultaneously, the system will become overloaded and tasks will
miss their deadlines. The purpose of the admission controller is to accept or re-
ject arriving tasks based on the amount of available (remaining) capacity such
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that, once a task is accepted, it will be guaranteed to meet its deadline. The
term capacity usually translates to utilization which is a well-de�ned concept
for periodic tasks [1]. For aperiodic tasks, the de�nition of utilization is less
intuitive [2] although previous work on admission controllers use the so called
synthetic utilization [3]. The main di�erence between the utilization of peri-
odic and aperiodic tasks is that for periodic tasks, the utilization represents
the exact amount of requested capacity while for aperiodic tasks the capacity
is overestimated. The reason is that the concept of utilization assumes that
a task will never leave the system. This implies that capacity bounds used
in admission controllers for aperiodic tasks are unnecessarily pessimistic. This
pessimism is increased further by the fact that admission controllers tend to of-
fer only a suÆcient admission test [4]. The reason for this is that it is generally
believed that an exact admission-controller would have a too high computa-
tional complexity. Since running the admission-control algorithm takes time
from running the tasks, it is crucial that its runtime complexity be low. Admis-
sion controllers based on capacity bounds are claimed to run in constant time
(O(1)) [3]. These admission controllers need to decrement a counter when the
deadline of a task expires. In the restricted case when tasks can be partitioned
into service classes, such that all tasks in a service class has the same relative
deadline, and the number of service classes is bounded then the computational
complexity is indeed O(1). But in the general case the complexity is O(log n)
(where n is the number of tasks) [5] because a data structure of accepted tasks
must be maintained so that the task with the minimum absolute deadline can
be retrieved. Clearly, it is desirable to design exact O(log n) admission tests
since the real processor utilization would then be higher compared to suÆ-
cient tests while the overall complexity remains unchanged. In this paper, we
propose such an exact admission-controller for aperiodic tasks.

So far we have assumed that all tasks are aperiodic. However, many real-time
systems consist of a baseload of hard periodic tasks where aperiodic tasks may
be executed as long as they do not cause any periodic task to miss its deadline.
Although the m periodic tasks can be treated as a number of aperiodic ones {
by unrolling their executions within some time frame p { this typically results
in a runtime complexity of O(p) where p >> m. Instead, we propose an exact
admission-controller with complexity O(m + log p + log n). In addition to
performing exact admission-control, our approach also exhibits a number of
interesting features:

(1) In the extreme case, the cumulative value (total execution time of accepted
tasks) of our admission controller approaches in�nity while it approaches
zero for utilization-based controllers.

(2) The run-time complexity of our admission controller becomes smaller as the
load in the system increases.

(3) If a task executes for a time shorter than its declared execution-time, the
unused capacity is available again for the admission controller.
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(4) If a task exceeds its given execution-time, the scheduler has information to
decide whether this will a�ect the other tasks or not.

By generating tasks randomly and scheduling them by our exact admission-
controller and the utilization-based controller proposed in [6] we �nd that the
utilization-based controller indeed is wasteful compared to our exact admission-
controller.

The rest of this paper is organized as follows. Section 2 de�nes the system
model. Section 3 describes our admission-control algorithm (for purely aperi-
odic task sets) and in particular the data structure it uses. Section 4 discusses
some properties of that admission controller. Section 5 contains our experi-
mental results. In Section 6 we show how our admission-control algorithm can
be extended to handle a baseload of periodic tasks. In Section 7 we discuss
related and future work while Section 8 summarizes our current work.

2 System Model

We will begin by considering the problem of scheduling a task set T of n
aperiodically-arriving real-time tasks on a single processor. An aperiodic task
�i has an arrival time Ai, an execution time Ci and a relative deadline Di,
that is, the task requests to execute Ci time units during the time interval
[Ai; Ai + Di). For convenience, we de�ne the absolute deadline di as di =
Ai + Di. We assume that Ci and Di are positive real numbers such that
Ci � Di and Ai is a real number. Without loss of generality we will assume
0 � A1 � A2 � ::: � An.

We will then extend the problem to also include a task set Tper consisting of m
periodically-arriving real-time tasks that are known a priori. A periodic task
�i is characterized by a release time Ri, an execution time Ci, a period Ti and
a deadline Di. An invocation � ki of a periodic task is supposed to execute once
within the interval [Ri + Ti � (k � 1); Ri + Ti � (k � 1) + Di]. We will assume
that Ri = 0 and Di = Ti. Thus, A

k
i = Ti � (k� 1) and dki = Ak

i + Ti. Moreover,
we assume that Uper =

Pm
i=1

Ci

Ti
� 1.

We study EDF (earliest-deadline-�rst) [1] scheduling which (without admis-
sion controller) behaves as follows. Tasks that have arrived and are awaiting
execution are kept in a queue, called ready queue, sorted ascendingly by their
absolute deadlines. When the processor becomes idle, the �rst task in the
queue is selected for execution. When a task arrives it is inserted in the queue
(breaking ties arbitrarily). If the deadline of this newly arrived task is shorter
than the deadline of the currently running task, the latter is preempted and
the new task starts to execute instead. We assume that a task always can be
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preempted and there is no cost of preemption.

An admission controller acts as a �lter for arriving tasks such that a task is
only allowed into the system if it is guaranteed that all tasks in the ready
queue and future arrivals of periodic tasks will still meet their deadlines with
the given scheduling algorithm. It is assumed that the admission controller (or
scheduling algorithm) is not allowed to use information about future aperiodic
tasks, that is, at time t it is not allowed to use Ai; Di or Ci of �i 2 T with
Ai > t. Thus, the admission-control problem is as follows:

Given the task set Tper of periodic tasks and the task set Taper of previously
admitted aperiodic tasks, can aperiodic task �i be admitted?

In Section 3 we will propose an admission controller under the assumption
that Tper = ; while an algorithm for the general case will be proposed in
Section 6.

3 The Admission Controller

Instead of using an aggregate of the task properties, such as the utilization,
we base our admission controller on the actual properties which contain more
information and thus enable an exact analysis. The drawback is that data
structures used to maintain these properties become harder to implement
and possibly time-consuming to update. Therefore, when devising an exact
admission-controller it is not only the idea of the algorithm that is important
but also how to implement it eÆciently. In the description of our admission
controller we will treat these two aspects separately to simplify the understand-
ing. Furthermore, as a start, we will assume that 0 = A1 = A2 = ::: = An

(which implies that Di = di) and that no di are the same.

3.1 Algorithm Description

It is known [7], that if and only if the following condition holds, all tasks (in
the ready queue) will meet their deadlines:

Schedulability condition: 8�i :
X
dj�di

Cj � di

The basic idea of our algorithm is to use this condition as the admission
test. That is, if an arriving task would cause the condition to be violated,
the task is rejected, otherwise it is accepted. Unfortunately, to check whether
the condition is satis�ed, all tasks in the queue may have to be traversed,
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Fig. 1. Illustration of the ready queue and resulting schedule.

resulting in a run-time complexity of O(n). However, it is possible to make
the test in O(log n) by introducing some additional task parameters. We will
use the notation �pos(k) to denote the task at position k in the queue. Thus,
�pos(k�1) and �pos(k+1) indicate the immediately preceding and succeeding tasks
respectively. Note that, for l < k, dpos(l) < dpos(k) and for l > k, dpos(l) > dpos(k).
For each task �i at position k in the queue we de�ne the following two task
parameters:

� The accumulated execution-time of preceding tasks.

ei =
k�1X
l=1

Cpos(l)

� The minimum slack of succeeding tasks.
si = minfdpos(l) � epos(l) � Cpos(l) : 8l > kg 1

An illustration of these parameters can be found in Figure 1. Note that
epos(1) = 0 and spos(n) = 1. The admission test then works as follows. When
a new task �i arrives, its potential position

2 k in the queue is looked up, that
is, the information for tasks �pos(k+1) and �pos(k�1) is collected.

3 This lookup
procedure can be done in O(log n) if the queue is implemented as a balanced
tree with di as keys. The task is then accepted if the following conditions are
met:

Condition 1 The new task �i will meet its deadline.
epos(k+1) + Ci � di
Condition 2 The succeeding tasks will continue to meet their deadlines.
spos(k�1) � Ci

Note that the schedulability of preceding tasks cannot be a�ected. Also note
that these two conditions are equivalent to the schedulability condition im-
plying that the admission test still is exact. If the admission test succeeds,
the task is inserted in the already retrieved position with ei = epos(k+1) and
si = spos(k�1) � Ci. This also results in that the information for the other
tasks in the queue must be updated. For all succeeding tasks (l > k) epos(l) :=

1 It is assumed that minfg =1.
2 This means the position after a speculative insert.
3 If there is no succeeding/preceding task, data for the preceding/succeeding
task is used instead. That is, epos(k+1) = epos(k�1) + Cpos(k�1) and spos(k�1) =
minfspos(k+1); dpos(k+1) � epos(k+1) � Cpos(k+1)g.
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epos(l) + Ci and spos(l) := spos(l) � Ci while for all preceding tasks (l < k)
spos(l) := minfspos(l); di � ei � Ci; sig.

Clearly, although the admission test now can be done in O(log n), the overall
run-time complexity is still O(n) since on accept we may have to update all
tasks in the queue. However, as we will show in the next section, we can use
an AVL-tree and a form of lazy evaluation to obtain an O(log n) algorithm. It
is important to note that the overall O(log n) complexity cannot be achieved
simply by using an AVL-tree since the tree by itself only provides O(log n)
complexity for �nd/insert/delete operations concerning a single entry. In our
case we may have to update all n entries. Thus a major contribution of this
paper is showing how these n updates can be performed in O(log n).

Task �1 �2 �3 �4 �5 �6 �7 �8 �9 �10

Ci 5 15 10 5 50 10 1 2 1 1

Di 10 30 20 50 100 40 80 60 45 65

Fig. 2. Example 1 task set.

Example 1 Consider the task set in Figure 2. When �1 arrives (to the ad-
mission controller) the queue is empty which means that the admission test
is C1 � d1, i.e., 5 � 10 which holds. Hence, the task is accepted and inserted
with e1 = 0; s1 = 1. �2 should be after �1 since d2 > d1 so the admission
test becomes e1 + C1 + C2 � d2, i.e., 0 + 5 + 15 � 30 which holds and �2
is inserted with e2 = 0 + 5 = 5; s2 = 1� 5 = 1. �1 is then updated with
s1 := minf1; 30 � 5 � 15;1g = 10. �3 is to be inserted between �1 and �2
implying that both Condition 1 and 2 must be met, that is, 5 + 10 � 20 and
10 � 10 which holds so the task is accepted with e3 = 5; s3 = 10 � 10 = 0.
�2 is updated with e2 := 5 + 10 = 15 (s2 := 1 � 10 = 1) and for �1,
s1 := minf10; 20� 5� 10; 0g = 0. The next task, �4, is to be last, yielding the
test 15+15+5 � 50 which holds and results in e4 = 15+15 = 30; s4 =1. �2
is updated as s2 := minf1; 50� 30� 5;1g = 15 whereas for �3 we see that
s3(= 0) < 50� 30� 5 which means that no more preceding tasks (�1) need to
be updated 4 .

The insertion of �1; �2 and �3 and the corresponding schedule are illustrated
in Figure 1. In the end, all ten tasks will be accepted and have a minimum
slack of zero (except �5). This tells us that the utilization is 100% and that no
task with di � 100 can be accepted. This performance can be compared with
a utilization-based admission-controller which would have rejected all tasks
but �1 and �2 since their combined synthetic-utilization is 5

10
+ 15

30
= 1. (The

admission test is Usynthetic =
Pn

i=1
Ci

Di
� 1.) Thus, the real utilization would

only be 5+15
100

= 0:2.

4 The reason is that spos(l) � spos(k) holds for l < k.
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3.2 Data Structure

We use an AVL-tree [8] as the basic data-structure for the ready queue (al-
though our idea is likely to work for any balanced tree-structure). An AVL-
tree is a binary tree, ordered such that for an entry Ei, entries Ej with
key(Ej) < key(Ei) (key(Ej) > key(Ei)) are found in the left (right) sub-
tree of Ei. Each entry records the balance as -,+ or 0 representing a skew to
the left, right or none in the height of its subtrees. If an insert or delete opera-
tion results in a skew of more than one, rotations of subtrees are performed to
reestablish the balance. An AVL-tree guarantees that operations such as �nd,
insert and delete are done in O(log n) steps. Now, what we want to do is to
also update the e and s values for all n entries in the tree in O(log n) steps.
This may sound impossible but is actually achievable in our case since (i) an
update is the same for all preceding/succeeding entries (ii) an entry need only
be fully up-to-date when requested. This works as follows.

When a task arrives, the admission controller will look up its potential position
in the AVL-tree (which is ordered by the task deadlines). This is done by
starting at the root entry and traversing the tree by selecting either the left or
right subtrees. This means that there will be a path from the root to the leaf
containing those entries that are traversed. If the admission controller then
accepts the task, its entry is simply added at the end of the path. However,
we must now make the necessary updates of the e and s values for succeeding
and preceding tasks. Due to the constitution of the tree, we know that, for
all entries in the path, the deadlines in the left (right) subtrees are shorter
(longer) than for the new task. Hence, a subtree either contains only preceding
or succeeding tasks. (In contrast, the path may contain both preceding and
succeeding tasks.) This means that it is enough to update the values for the
entries on the path, since when doing so we can make a note for each entry
saying that the next time the left (or right) subtree is traversed, the e and s

values should be set/increased/decreased by a certain amount. The next time
the admission controller uses the look-up procedure the latter will perform the
updates for those entries that it traverses. This includes moving the notes to
the subtrees. The updates that can occur are as mentioned (i) sj := minfdi�
ei � Ci; sig (for tasks preceding the new task �i) and (ii) sj := sj � Ci; ej :=
ej +Ci (for tasks succeeding �i). Hence, an update note contains two entities:

� The new minimum slack of succeeding tasks.

sset =

8><
>:
�1; if only relative change

� 0; if absolute (and possibly relative) change

� The increase in accumulated execution-time.
einc � 0
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Fig. 3. Illustration of how the update notes are a�ected by the AVL-rotations.

When the task �i is inserted the note for succeeding tasks is sset = �1; einc =
Ci since the new task pushes the tasks backwards. Thus, the accumulated
execution-time increase while the minimum slack decrease uniformly for all
succeeding tasks. For preceding tasks the note is sset = minfdi�ei�Ci; sig; einc =
0 since the new task may cause a change in the minimum slack depending on
the previous values but the accumulated execution-time is una�ected. When
a note is to be posted or moved to the subtrees it may be the case that the
subtree already has a previous note. We must then merge the information in
the notes. For the accumulated execution-time the values should always be
added since this value always increase, that is, enewinc := einc + eoldinc. For the
slack information we have four di�erent cases:

Case 1 sset < 0 and soldset < 0
No change, i.e., snewset := soldset .
Case 2 sset < 0 and soldset � 0
All values have been uniformly a�ected including the slack information in
the old note. Thus, we update the note as snewset := soldset � einc.
Case 3 sset � 0 and soldset < 0
New information on the minimum slack, i.e., snewset := sset .
Case 4 sset � 0 and soldset � 0
The least of the minimum slacks should be used. Note that the change in
the accumulated execution-time a�ects the old slack information. That is,
snewset := minfsoldset � einc; ssetg.

When moving a note we must also remember not to update the slack for
an entry if its minimum slack already is less than stated in the note since
this indicates that the note is obsolete. That is, sj := minfsj � einc; ssetg for
sset � 0.

This data structure implies that an entry is only updated when it is re-
quested which is in fact the only time its information is required to be correct.
Hence, the computational complexity of keeping the tree up-to-date is indeed
O(log n).
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It should be mentioned that when a new entry is inserted (or deleted) the
possible rotations in the tree will cause subtrees to be moved. That is, left
subtrees may become right subtrees and vice versa. However, this does not
a�ect the validity of the update notes since these concern the relationship
between tasks which is independent of the tree representation. (When the
rotations are performed the notes also move along.) Furthermore, since seeing
an entry means updating it, the actual rotations will only be performed on
entries that are up-to-date which guarantees that consistency among notes is
maintained.

As a proof sketch we show one case of the rotations in Figure 3. In the �gure
the tree is �rst shown before the insertion of an entry C. As can be seen there
are several update notes present. However, as C is inserted the update notes
along its path will be carried out such that after the insertion all entries on
the path will be completely updated. That is, entry B is updated with note
1 and the entries on the path in subtree B1 are updated with the merged
notes of 1 and 3. Furthermore, subtrees that are not traversed receive new
or merged update notes. For example, note 4 is merged with note 1. As can
then be seen, the rotation only move subtrees between entries on the path.
Since these entries and subtrees are bound to be updated due to the insert
operation, the rotation does not cause inconsistency in the update notes. The
same reasoning can be applied and validated for all cases of rotations that can
occur during insert and delete.

The pseudo-code for our admission controller can be seen in Figure 4.

Example 2We will use the task set in Figure 2 again but this time we will also
consider that the ready queue is implemented as an AVL-tree. After inserting
�1 � �5 the tree will look like in Figure 5(a). �6 should now be inserted to the
right of �2. We get e6 = 30; s6 = 15� 10 = 5 and have to update the tasks on
the path, namely �3; �4 and �2. For �3 we have s3 := minf0; 40�30�10; 5g = 0
and since 0 � 40 � 30 � 10 we do not have to update any entries left of �3
(�1). For �4 we have s4 := 15 � 10 = 5; e4 := 30 + 10 = 40 and for the
right subtree we add the note sset = �1; einc = 10. For �2 we have s2 :=
minf15; 40 � 30 � 10; 5g = 0. The resulting tree can be seen in Figure 5(b)
including an AVL-rotation to keep the tree balanced. When the position for
�7 is looked up (left of �5), the note on the path is moved along to the entry
for �5 which then is updated as e5 := 35 + 10 = 45 (s5 :=1� 10 =1). �7 is
inserted with e7 = 45; s7 = 5� 1 = 4. The tasks �2; �4 and �5 on the path are
updated. Again, as s2 < minfd7 � e7 � C7; s7g no update (note) is necessary
for tasks left of �2. However, for �4 we have s4 := minf5; 80� 45 � 1; 4g = 4
which means that the left subtree needs a note. That is, sset = 4; einc = 0. �5
is updated as e5 := 45 + 1 = 46 (s5 := 1� 1 = 1). This is all illustrated in
Figure 5(c). When �8 is inserted the updates are similar to those for �7. The
di�erence is that now a note already exist and have to be updated. In this
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PROCEDURE: admission-control

Input: AVL-tree implementation of the ready queue and the parameters for �i
Output: Accept/Reject (and a possibly modi�ed ready queue)

(1) Lookup the potential position k for �i in the tree (ordered by deadlines) and store the path. At the
same time, perform postponed updates and move update notes to subtrees.
FOR all tasks �j on the path DO

IF the link to �j contains an update note THEN
ej := ej + einc
IF sset � 0 AND sj � einc > sset THEN

sj := sset
ELSE

sj := sj � einc
END IF
Move and merge update notes to left and right subtrees of �j

END IF
END FOR

(2) Perform the admission test.

IF epos(k+1) + Ci � di AND spos(k�1) � Ci THEN
Accept

ELSE
Reject

END IF

(3) Insert the task, update path entries and create update notes.
IF Accept THEN

Insert �i with ei = epos(k+1); si = spos(k�1) � Ci

FOR all tasks �j on the path DO
IF dj < di THEN

IF sj > minfdi � ei � Ci; sig THEN
Merge note on left subtree with the note
sset = minfdi � ei � Ci; sig; einc = 0

END IF
sj := minfsj ; di � ei � Ci; sig

ELSE
ej := ej + Ci; sj := sj � Ci

Merge note on right subtree with the note sset = �1; einc = Ci

END IF
END FOR

END IF

(4) Perform any AVL-rotations to keep the tree balanced.

Merging of update notes

IF no previous update note exists THEN
eold
inc

:= 0; soldset := �1
END IF
enew
inc

:= eold
inc

+ einc
IF sset < 0 THEN

IF soldset < 0 THEN
snewset := soldset

ELSE
snewset := soldset � einc

END IF
ELSE

IF soldset < 0 OR sset < soldset � einc THEN
snewset := sset

ELSE
snewset := soldset � einc

END IF
END IF

Fig. 4. Pseudo-code for our admission controller.
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Fig. 6. Illustration of the AVL-tree.

case, (a Case 4 update) the slack information should be replaced. When �9 is
inserted the update is performed and instead a new note is added to the right
of �4. This tree is shown in Figure 6(a). When �10 is to be inserted (to the
right of �8) the note will be pushed down to the right of �7 while the entry for
�8 is updated. The insertion will also cause the note to be updated and since
it is a Case 1 update, the slack information will not change. We also get a new
note to the left of �4. However, as the tree becomes unbalanced we have to do
an AVL-rotation which will make this left note a right note as can be seen in
Figure 6(b). As mentioned, this will not a�ect the validity of the note since
its information applies to all entries in a particular subtree regardless of the
position of the subtree.

3.3 Scheduler Interaction

We will now remove the assumption that 0 = A1 = A2 = ::: = An, that is, we
will consider how the ready queue (AVL-tree) is updated due to interaction
with the EDF scheduler over time. First of all, the parameter e no longer
represents the accumulated execution-time of preceding tasks but rather the
scheduled start-time. For instance, when the ready queue is empty, epos(1) =
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A1.

When the processor is idle and there are tasks in the ready queue, the scheduler
selects the �rst task �pos(1) for execution. However, the task is not removed
from the queue until it is �nished. Instead, the scheduler keeps a pointer to
its entry in the AVL-tree. When a new task �i arrives, the entry for �pos(1) is
updated to indicate what portion of its code it has executed. That is, Cpos(1) :=
Cpos(1) � cpos(1) and epos(1) := epos(1) + cpos(1) where cpos(1) is the time the task
has executed from its (last) dispatch. If �i is accepted, the scheduler has to
redo the selection of which task to run. This selection also has to be done
whenever a task is �nished (even if there are preempted tasks). The removal
of a task, when �nished, requires at most O(log n) AVL-rotations to keep the
tree balanced. Removal also includes performing any update notes encountered
during the operation.

Non-unique di can be quite easily handled by being consistent in the deadline
comparisons and keeping track of whether the entries on the path are to the
left or right of their parent. That is, this is no di�erent from an ordinary
AVL-tree where entries may have similar keys.

Example 3 Consider a ready queue that contains two tasks �1 and �2 as in
Figure 1. If at t = 2 a new task arrives, the scheduler updates the entry for �1
with C1 := 5 � 2 = 3 and e1 := 0 + 2 = 2 before the admission controller is
invoked. If the new task is accepted and has a shorter deadline than �1 (which
is currently running), the new task will be the one to run and it will preempt
�1. However, due to the previous update, this preemption is transparent to the
admission controller since the amount of requested capacity still is accurate.
(Of course, the management of the actual context-switch is handled by the
processor/scheduler.)

4 Algorithm Properties

Here we will discuss some properties of our admission controller and its im-
plementation.

4.1 An In�nite Improvement

As mentioned, utilization-based admission-controllers su�er from overestima-
tion of the required capacity. This means that the cumulative value � for such
admission controllers typically is much lower than for ours. The cumulative
value is (in our case) de�ned as � =

Pn
i=1 bi � Ci where bi = 1 if �i is accepted
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and zero otherwise. It can happen that, �exact = 1 while �util = � where � is
arbitrarily close to zero. This is shown in the following example.

Consider two tasks �1 and �2 where 0 < C1 < D1 and the execution time of �2
is C2 = 2 �D1 �C1 and its deadline D2 = 2 �D1. Let A1 = A2 = 0. Clearly, �1
can be accepted since C1 < D1 and there are no tasks in the ready queue. Since
C1
D1

< 1 an admission controller based on utilization bounds will also accept the
task. For �2 the test e1+C1+C2 � D2 succeeds since 0+C1+2�D1�C1 � 2�D1

holds. However, the utilization is C1
D1

+ 2�D1�C1
2�D1

= 2�D1+C1
2�D1

> 1 which means
that �2 will be rejected. If D1 !1 and C1 ! 0, �exact !1 while �util ! 0.

4.2 Overhead becomes Lower as Load Increases

In Condition 2 in the admission test, it can be seen that if spos(k+1) < Ci the
task cannot be accepted. In fact, since spos(k+1) � spos(k+x) (where x > 1) we
know that, as soon as we have seen an entry with task �j where dj > di and sj <
Ci the task �i will have to be rejected. This is particularly useful if the system
is heavily loaded since the admission controller will be able to reject tasks
without traversing the entire path. Thus, as the load increases the number of
entries on the path decreases until ultimately only the root entry needs to be
checked. (This reasoning assumes that deadlines of arriving tasks follow the
same distribution as the tasks in the ready queue.) It is also in severe overload
situations that the run-time overhead of the admission controller matters the
most since a lot of time will have to be spent on admission decisions.

4.3 QoS Negotiation

In quality-of-service negotiations a task interacts with the admission con-
troller/scheduler to establish how much capacity it may request and in what
time this capacity can be delivered. That is, the task suggests an execution
time and deadline but may be willing to relax these demands if it cannot be
scheduled. In utilization-based admission-controllers this kind of negotiation
is simply done by executing a schedulability test on the suggested parameters
and then report success or failure. Hence, it is the responsibility of the task
to change the parameters as it sees �t. Since the task does not know anything
about the tasks in the ready queue, it would be more e�ective if the admission
controller could suggest suitable modi�cations. In our case, this is possible
due to the information maintained for each task. For example, if the task only
suggests a deadline, the maximum allowed execution-time for the task sim-
ply is spos(k�1) which is obtained from the look-up procedure. Moreover, if an
execution time is suggested, the shortest allowed deadline can be returned.
This is done by traversing the tree, turning left (right) whenever sj � Ci
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(sj < Ci). The deadline will then be ej � Ai + Ci where Ej is the stopping
entry. Although these suggestions can be made also with an utilization-based
admission-controller, ours also has the ability to produce a list of schedula-
ble execution-time, deadline combinations. That is, for each task in the ready
queue, sj equals the maximum Ci of a new task with Di = dj�ej. The gather-
ing of such a list requires O(n) steps but may be useful for tasks with exible
demands.

4.4 Optimal Admission-Control

To compare the performance of on-line scheduling algorithms the concept of
competitive factor ' is used [9]. This parameter is given by the relationship
� � ' ��opt where 0 � ' � 1. It is usually assumed that �opt is the cumulative
value for an clairvoyant scheduler. That is, if the scheduler/admission con-
troller had knowledge about the future, it would have the freedom to reject a
task although the admission test succeeds, in order to accommodate \better"
future arrivals. It is always possible to construct a task set such that it is
bene�cial to reject schedulable tasks implying that no optimal admission con-
troller can exist for this de�nition of optimality. However, clairvoyance is not
available in reality, making this de�nition useless for performance comparison
since most admission controllers will have ' = 0. Instead, it is more reason-
able to assume that, if a task can be scheduled, the admission controller must

accept the task. With this additional requirement, our admission controller
has ' = 1 since it performs exact schedulability analysis. Thus, our admission
controller is optimal.

4.5 Capacity Overestimation

Our system model assumes that a task executes exactly Ci time units. How-
ever, in reality, the execution time of a task typically varies with the input
and the state of the processor. Therefore, Ci often represents the worst-case
execution time of a task in order to make the schedulability analysis safe. Un-
fortunately, this means that the average execution-time of a task typically is
much shorter than assumed by the admission controller which causes tasks to
be rejected although there is enough capacity. In our case, the unused capac-
ity can be made available again by keeping track of the spare capacity. If the
task only executed for c < Cpos(1) time units, this means that the scheduled
start-times have been moved forward and the minimum slack has increased.
Thus, for all tasks ej := ej �Cpos(1)+ c and sj := sj +Cpos(1)� c. This update
can be done in O(1) by using a global variable x := x + c � Cpos(1) that is
introduced in the tests. That is, e and s are replaced by e+x and s�x. (When
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the processor becomes idle x is reset to zero.)

4.6 Overrun Protection

Aperiodic tasks are often handled by using so called servers such as the
constant-bandwidth server [10]. The advantage of such servers over utilization-
based admission-control is claimed to be task isolation. That is, if a task ex-
ecutes for longer than anticipated, it will be terminated (or postponed) and
the schedulability of the other tasks will not be a�ected. This is the case since
aperiodic tasks are only allowed to use a certain total amount of execution
time that is dictated by the server budget. Thus, when the capacity of the
budget is ended so are the tasks. The same kind of protection is not avail-
able in ordinary EDF where a task is executed until it is �nished. This means
that an overrun may cause all other accepted tasks to miss their deadlines.
However, in our case, the ready queue contains the estimate of the execution
time that was used for the schedulability decision. It is then possible, when
a task is dispatched, to start a timer that will generate an interrupt at the
time when the task would be �nished. If the task is not �nished at this time,
the scheduler may look at (update) the minimum slack for this task. If it is
zero, the task is to be terminated but if it is above zero, the scheduler may
prolong the execution with at most spos(1) time units. It must also be remem-
bered to update the ready queue as if a new task with Ai = t;Di = dpos(1) � t

and Ci = spos(1) has arrived. Hence, our admission controller o�ers not only
overrun protection but also enables less pessimistic estimates of the execution
time.

5 Simulations

The purpose of our simulations is to show how much better our exact admission-
controller is compared to the utilization-based admission-controller in [6] in
terms of average real-utilization. 5 To make the comparison fair, we have
not only considered the result of the admission decision but also the time
to make the decision. This is done by assuming that the utilization-based
admission-controller takes no time at all while the exact admission-controller
uses dlog jqueueje + 1 time units in the worst case. That is, in the admis-
sion test this time must be accounted for. If CA is the worst-case execution
time of the admission controller, the test becomes epos(k+1)+Ci+CA � di and
spos(k�1)�CA � Ci. Furthermore, if CA > minfspos(1); dpos(1)�epos(1)�Cpos(1)g

5 We have chosen not to compare with server-based approaches because they require
tuning of server task parameters which is beyond the scope of this paper.
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the admission controller cannot run at all since it may cause accepted tasks
to miss deadlines. In this case all arriving task are rejected. During admission
control the actual run-time cA = jpathj will be measured and added to the
global variable x which is also introduced in the tests as epos(k+1)+Ci+CA+x �
di; spos(k�1)�CA�x � Ci and CA > minfspos(1); dpos(1)� epos(1)�Cpos(1)g�x.
When the processor becomes idle x is reset to zero. No overhead is assumed
for removing tasks since this is more or less the same for the two approaches. 6

ExampleWith this kind of overhead tasks, �3; �7; �8; �9 and �10 from Figure 2
will be rejected, resulting in a utilization of 85%. If the overhead is increased by
a factor of �ve, only �1 and �2 will be accepted, similar to the utilization-based
test.

5.1 Experimental Setup

We have used randomly generated tasks sets with varying parameters. The

experiments are performed for di�erent o�ered load, Uo�ered =
Pn

i=1
Ci

T
where

T is the length of the experiment. We selected T such that the number of tasks
in each task set is in the order of 1000 for Uo�ered = 1:0. Thus, the overhead CA

(and cA) will be approximately 10 units in the worst case. We then measure
the real utilization of a task set as Ureal =

�
T
. (Recall that � =

P
Ci for all

accepted tasks.) The o�ered load is generated in steps of 0:1 and each value
for the real utilization is the average over 100 task sets. The arrival times of
the tasks are exponentially distributed while the execution times and relative
deadlines are generated with uniform distribution. If Ci > Di new values are
generated.

5.2 Experimental Results

The resulting average utilization for the di�erent admission controllers for
varying values on Di and Ci is shown for liquid tasks in Figure 7 and non-
liquid tasks in Figure 8. (We say, based on [11], that a set of aperiodic tasks
is liquid if Ci << Di.) As can be seen, when overhead is neglected, our exact
admission-controller signi�cantly increases the utilization over the suÆcient
admission-controller. The most drastic improvement occurs when tasks are
small and have long deadlines (Figure 7(b)). The reason is that it is then easy
to �t many tasks on the processor but since the utilization-based controller
requires that �nished tasks remain in the system until their deadlines are
expired, these tasks will require a large part of the capacity although they no

6 The simulator code (in C) is available at
http://www.ce.chalmers.se/~cekelin/avl.c
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Fig. 7. Liquid tasks. Ci 2 [5::15)

longer need it. However, when we add overhead, the exact admission-controller
actually performs worse than the utilization based (Figure 7). This is because
the inter-arrival times in this case are rather short, causing the admission
controller to run very frequently which results in that accepted tasks get very
little processing time. Thus, the ready queue constantly grows (since new tasks
are being admitted faster than old ones get executed) which further increases
the run-time of the admission controller. Eventually, when there is not enough
slack to run the admission controller, arriving tasks will be rejected regardless
of their parameters. (In this context it is worth remembering that no overhead
is assumed for the utilization-based approach which makes it favored towards
the exact admission-controller with overhead.) As expected, when tasks are
larger (Figure 8) and inter-arrival times longer, we see that the overhead does
not degrade the performance of the exact admission-controller at all. From
the plots it can also be seen that, when the tasks have a high utilization, the
exact admission-controller performs comparably better and the e�ect of the
overhead is decreased.

In summary, our experiments have shown that, if tasks are not too small, the
exact admission-controller outperforms the utilization based even when rather
pessimistic overhead is assumed. Hence, the overestimation of the requested
capacity by the simpler approach, has a much larger negative impact on the
performance than the extra overhead required by the exact method.

6 Extension to Periodic Tasks

We will now remove the assumption that Tper = ;. When the synthetic utiliza-
tion is used for admission control, extension to periodic tasks is trivial since in
fact the aperiodic tasks are treated as periodic. Similarly, in our case it is easy
to believe that periodic tasks simply can be treated as a number of aperiodic
ones. However, this is not the case since we must ensure that all future invo-
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Fig. 8. Non-liquid tasks. Ci 2 [250::750)

cations of the periodic tasks will meet their deadlines. That is, the admission
controller for aperiodic tasks must ensure that there is enough capacity left for
safe execution of the periodic ones. Therefore, in an exact admission controller
we must distinguish aperiodic tasks from periodic ones.

6.1 Basic Idea

The fact that the utilization of the periodic tasks is Uper means that over the
hyperperiod (lcm(T1; :::; Tm)) they require lcm(T1; :::; Tm) � Uper = Cper time
units of computation. This means that there are lcm(T1; :::; Tm)�Cper = Cslack

time units remaining to be used by aperiodic tasks. However, to guarantee the
deadlines of the periodic tasks, this slack cannot be arbitrarily distributed. To
�nd the exact slack distribution we can examine the EDF schedule produced
by the periodic task and record the slack appearances. Now, since we do EDF
scheduling, we know that, if the processor is idle at time t this means that
all tasks with Ak

i < t has �nished. But this also means that (due to Di = Ti)
some of these tasks could have been safely delayed. (We know that dki > t

since if dki � t invocation � k+1i would claim the processor.) Thus, slack (or
processor idle) indicates that tasks have �nished sooner than necessary. In
[12], Chetto-Chetto exploit this property in the earliest-deadline-late (EDL)
algorithm which schedules tasks as late as possible. Chetto-Chetto then pro-
pose an algorithm for calculating a table (or list) containing the location and
duration of slack, over the hyperperiod, when EDL is used. We can then recog-
nize that, if we execute a periodic task during a time interval that according to
this table contain idle time (slack), the task is executed sooner than necessary
and thus the slack will be postponed but not consumed. (It will appear after
the task instead of before as the table dictates.) In contrast, if the processor is
idle, slack is consumed. Thus, by keeping track of when slack is used compared
to when it is available it is possible to know whether aperiodic tasks can be
admitted or not with respect to the periodic tasks.

18



Our admission controller will be divided into two parts. First we check that
the aperiodic tasks, as a whole, will not use more slack than available. Here
we will use the slack table from Chetto-Chetto. When the periodic tasks are
known to be safe, we check whether the (already admitted) aperiodic tasks
also will be safe. Here we will use our previous admission controller with some
extensions.

6.2 Admission Control: Periodic Tasks

The slack table generated by the algorithm proposed by Chetto-Chetto con-
tains p entries representing the time intervals in the EDL schedule which begin
with idle times. An entry contains ti, the start time of the interval, and �i,
the duration of the slack, that is, during [ti; ti +�i] the processor will be idle
under EDL. According to [12] this table can be computed in O(N) where N
is the number of distinct arrivals within the hyperperiod. However, since the
table is computed o�-line this complexity does not a�ect our admission con-
troller. Of course, there must be enough space to store the table. The table
size depends on p which is bounded by lcm(T1;:::;Tm)

2
[12]. To speed up the ac-

cess of the table information, we introduce an additional �eld 
i =
Pi�1

j=1�j

which holds the total amount of idle times in [0; ti]. Furthermore, we assume
that the table is represented as an AVL-tree ordered on ti which enables entry
access in O(log p). In particular, we will use the operation 
(t) which com-
putes the amount of slack in [0; t]. Since all table values are restricted to the
hyperperiod, we use that,

tlcm =

8<
:

t mod lcm(T1; :::; Tm); if t mod lcm(T1; :::; Tm) 6= 0

lcm(T1; :::; Tm); if t mod lcm(T1; :::; Tm) = 0

and �lcm = (t div lcm(T1; :::; Tm)) � Cslack. That is, tlcm is the value to use
when looking up in the slack table and �lcm is the amount of slack for previous
hyperperiods. We then have that 
(t) = 
i +�lcm +min(tlcm � ti;�i) where
ti �max ti tlcm. Due to the tree implementation, the entry i can be located in
O(log p) and thus 
(t) can be computed with the same complexity. Note that
the table only contains static information.

In order to record the actual use of the slack we use the counter ! (initially
zero) which represents the total amount of consumed (or allocated) slack.
Whenever the processor has been idle for some amount of time, ! is increased
by the same amount. We also use dmax to represent the largest deadline of the
admitted aperiodic tasks. When an aperiodic task �i arrives, the admission
control regarding periodic tasks consists of the following test:
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Fig. 9. Example 4 task set.

Periodic condition 
(max (dmax; di))� ! � Ci

Thus the test considers all aperiodic tasks as one big task and checks whether
there is enough processing capacity to allow it to meet its deadline. Our next
admission test will determine whether also the individual deadlines of the
aperiodic tasks will be met. If the task also passes the aperiodic test, dmax :=
max (dmax; di) and ! := ! + Ci.

Example 4 Consider the task set Tper = f�1; �2; �3g where T1 = 12; C1 =
3; T2 = 4; C2 = 1; T3 = 8; C3 = 2. The EDL schedule and the location of the
slack for this task set is shown in Figure 9(a). The EDF schedule for the same
task set is shown in Figure 9(b). The slack table contains four entries:

i 0 1 2 3
ti 0 4 12 16
�i 3 1 1 1

i 0 3 4 5

Now assume that at t = 5 �4 arrives with d4 = 15 and C4 = 4. The admission
test then becomes 
(15)�0 � 4 and since 
(15) = 4+0+min(15�12; 1) = 5
the task is accepted and dmax = 15; ! = 4. If then at t = 6 �5 arrives with
d5 = 12 and C5 = 2 we see that 
(15)� ! = 5� 4 = 1 which means that this
task is rejected. If instead C5 = 1 the task passes this periodic and we must
turn to the aperiodic admission test for a complete decision.

6.3 Admission Control: Aperiodic Tasks

Here we use our previously proposed admission controller based on the AVL-
tree. We will assume that the ready queue contains both admitted aperiodic
tasks and released invocations of periodic tasks. To make the admission test
correct also in the presence of periodic tasks, we must consider the processing
capacity required by future periodic task invocations. Hence, for a task �j
potentially located at position k in the queue, we use the following term to
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denote this entity:

� Required processing capacity of future periodic arrivals preceding �pos(k).

C(k � 1; k) =
X

8�i2T k
not me

(b
dpos(k)

Ti
c � b

dpos(k�1)

Ti
c) � Ci where T

k
not me is de�ned in

the following way:

If �pos(k) is a released invocation of a periodic task then

let �p
pos(k) be the periodic task corresponding to the

aperiodic task �pos(k)
T k
not me = Tper n f�

p

pos(k)g

otherwise �p
pos(k) is not an instance of a periodic task then

T k
not me = Tper

Comment: If k = 1 then dpos(k�1) is replaced with Aj

This rather complicated de�nition of C(k � 1; k) is due to that it, together
with the e and s values, is used for both aperiodic and periodic tasks while the
admission test is only performed for aperiodic tasks. Informally, C(k � 1; k)
represents those periodic tasks that will execute between �j and its preceding
task. Note that it is not necessarily the case that all these tasks actually do

execute before �j since it may �nish before they are invoked. In the worst
case, the total amount of computation that must take place before �j is ej =Pk�1

l=1 (Cpos(l) + C(l � 1; l)). Thus the minimum slack is computed as sj =
minfdpos(l) � epos(l) � Cpos(l) � C(l � 1; l) : 8l > kg. This implies that in
Condition 1 we cannot use the value epos(k+1) since it includes periodic tasks
that will execute after the task considered for admission control. Instead we
have:

Aperiodic condition 1 epos(k�1) + Cpos(k�1) + Cj + C(k � 1; k) � dj
Aperiodic condition 2 spos(k�1) � Cj

Note that Condition 2 is una�ected since the periodic tasks that was added
for Condition 1 are accounted for already. The inserted task gets the values
ej = epos(k�1) + Cpos(k�1) + C(k � 1; k) and sj = spos(k�1) � Cj. If �j is an
aperiodic task the procedure for updating the values for succeeding tasks does
not change, i.e., the update note is still sset = �1; einc = Cj. For preceding
tasks the note becomes sset = minfdj � ej � Cj � C(k � 1; k); sjg; einc = 0.
However, if �j is a released invocation of a periodic task then its computation
demand has been accounted for already and hence no updates of succeeding
tasks are required. For preceding tasks, an update of the minimum slack is
required if the new task also is the one with the minimum slack.

As mentioned, the scheduled start time e may now be greater than the actual
start time. However, this poses no problem since when the processor becomes
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idle the scheduler simply picks the �rst task in the ready queue. The total
amount of computation, as accounted for by succeeding tasks, will be the
same regardless of the task order.

The computation of C(k � 1; k) requires that all periodic tasks are examined
and thus the complexity of this second admission test (and insertion in the
ready queue) becomes O(m+ log n).

Example 5 We consider example 4 again. We assume that � 11 is the �rst
to arrive. Then its accumulated execution-time of preceding tasks would be:
e11 = C(0; 1) = (b12

4
c� b0

4
c) � 1+ (b12

8
c� b0

8
c) � 2 = 3+2 = 5 since there are no

preceding tasks in the queue. We assume � 12 to be the next task to arrive. Since
d12 < d11 it will be the �rst in the queue with e12 = C(0; 1) = (b 4

12
c� b 0

12
c) � 3+

(b4
8
c � b0

8
c) � 2 = 0+ 0 = 0 and s21 = 4. Since d12 < d13 < d11, �

1
3 will be inserted

between � 12 and � 11 with C(1; 2) = (b 8
12
c�b 4

12
c) �3+(b8

4
c�b4

4
c) �1 = 0+1 = 1

which gives e13 = 0 + 1 + 1 = 2 and s13 = 4. Note that all e and s values will
be the same regardless of the order in which the tasks are handled.

When � 22 arrives at t = 4 only � 11 remains in the queue. The values for � 11 are
updated as e11 := 5 + 1 = 6 and C1

1 := 3� 1 = 2 and � 22 is inserted at position
1 with e22 = 4 and s22 = 4. At t = 5, � 11 again will be the only task in the
queue and �4 will be located at position 2 in the queue since d4 > d11. Thus
C(1; 2) = (b15

12
c� b12

12
c) � 3+ (b15

4
c� b12

4
c) � 1+ (b15

8
c� b12

8
c) � 2 = 0 which gives

e4 = 6 + 2 + 0 = 8 and s11 = 15 � 8 � 4 � 0 = 3. Hence, for �5 at t = 6 we
have that C1

1 := 2 � 1 = 1 and e11 := 6 + 1 = 7 and since d11 = d5 < d4, �5
will be located at position 2 in the queue. Thus C(1; 2) = 0 again and both
Condition 1 and 2 succeed since 7 + 1 + 1 + 0 � 12 and 3 � 1. Which means
that �5 is added with e5 = 7 + 1 + 0 = 8 and s5 = 3 � 1 = 2. The update
notes result in e4 = 9 and s11 = 2. Note that the minimum slack now appears
to be 2 although in reality it is zero due to the periodic tasks that not yet has
arrived but later on will be postponed by the aperiodic tasks.

6.4 Overall Admission Control

By combining the computational complexity of the admission test for the
periodic tasks (O(log p)) with the complexity of the test for already admitted
aperiodic tasks (O(m + log n)) the overall computational complexity of the
admission controller becomes O(m+ log n+ log p). Although this complexity
may appear discouragingly high, it should be remembered that on rejection the
complexity may be much lower. Furthermore, since previous exact admission-
controllers require O(p) steps and typically p >> m our method provides a
clear improvement.
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7 Related and Future Work

We have already mentioned the work on utilization-based admission control [6]
which provides suÆcient tests for task sets with purely aperiodic tasks as well
as for a mixture of periodic and aperiodic tasks. Our algorithms assumed that
R1 = R2 = : : : = Rm but utilization-based admission did not, so clearly if the
task set does not satisfy R1 = R2 = : : : = Rm then utilization-based admission
control is superior. Exact tests for joint scheduling of periodic and aperiodic
have been proposed in [13,12]. However, the runtime complexity of these tests
is O(N) where N is the number of slots or arrivals within the hyperperiod. (In
addition, [12] assumes that Taper = ; whenever an aperiodic task arrives.) The
admission controller in [14] solves a problem very similar to the problem we
address. They study exact admission control of aperiodic tasks (called sporadic
tasks in [14]) in the presence of a periodic baseload. However, the computa-
tional complexity of their solution is worse. Another popular approach for this
joint scheduling is aperiodic servers, e.g., [10]. However, these servers typically
assume that aperiodic tasks have no deadlines but rather that their response
times are to be minimized. Furthermore, the server parameters must be set
according to some anticipated workload which can be hard to predict [15].
Nevertheless, a popular property of aperiodic servers is their ability to pro-
vide task isolation through policing. That is, a subset of tasks (constituting an
application) is prevented from requesting more than its predetermined share.
In this line of work, [16] proposes the BSS algorithm which uses an AVL-tree
with lazy updates resembling our approach. The proposed algorithmmaintains
budgets { similar to our minimum slacks { to decide whether an application
may execute or not. (When a budget becomes zero any remaining tasks will
not be allowed to execute.) However, the budget calculation does not consider
the task execution-times until after some task's execution. This means that,
in an overload situation, there will still be tasks awaiting execution when the
budget is zero. In particular, it is not possible to know when a task arrives

whether it will be executed or not.

As an example, consider the tasks �1 with d1 = 10, C1 = 5 and �2 with d2 = 9,
C2 = 6. It is assumed that A1 = A2 = 0. With our admission controller �2
will be rejected at arrival which is the expected result. However, using the
BSS algorithm both tasks will be admitted with budgets Bi equaling their
deadlines. �2 will then be the �rst to execute and when it �nishes, the budget
of �1 will be decreased by C2 such that B1 = 10�6 = 4. �1 will then be allowed
to execute until its budget is exhausted. Thus, since C1 > B1 the task will
not �nish within its deadline. From this example we can note two things: (i)
an admitted task is not guaranteed to meet its deadline and (ii) the budget
information is not enough to make a correct admission decision. Hence, the
proposed data structure and update scheme of BSS cannot trivially be applied
to admission control.
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The on-line scheduling algorithm D* [9] also resembles our admission con-
troller in the data structure it uses. However, in D* an (accepted) task is
never guaranteed to �nish since it may be rejected later on due to \better"
tasks coming in, i.e., tasks which contribute more to the cumulative value. As
with BSS, D* is not trivially extended to an admission controller since the
information that it maintains is not suÆcient to perform an admission test.

Our admission controller is straightforward to extend to multiprocessor sys-
tems. Given some order of the processors, when a task arrives, it is simply
shipped to the �rst processor, if this processor cannot accept the task, it is
instead shipped to processor two and so on until the task is either accepted
or all processors have been considered. Hence, the admission controller would
run in O(m � log n). If response time of the task is not an issue, it is generally
best to select processors in a �rst-�t order [17] since this prevents the so called
Dhall's e�ect [18].

An issue that has not been considered in previous research is in what order
tasks with the same arrival time should be passed to the admission test. In
this paper we have assumed that the order is given, i.e., if Ai = Aj the
cumulative value may di�er substantially depending on how the choice is made.
If the deadlines di�er it may seem reasonable to consider tasks with shorter
deadlines �rst although this is not necessarily optimal. For example, if many
such tasks with short deadlines are rejected, the time spent by the admission
controller on these tasks may cause a task with longer deadline to be rejected
as well. Hence, in this situation it can be fruitful to use the QoS information to
allow rejection/acceptance of several tasks simultaneously. In particular, if the
deadlines are equal, this information enables us to make the optimal choice by
solving the corresponding so called subset-sum problem. Unfortunately this
problem is NP-hard but a pseudo-polynomial algorithm exists that runs in
O(nsim � c2) where nsim is the number of tasks that arrive simultaneously and
c is the available capacity [19].

8 Conclusions

In this paper we propose an exact admission-control algorithm for aperiodic
tasks and EDF. For purely aperiodic task sets our algorithm runs in O(log n).
This is the same run-time complexity as for utilization-based admission con-
trollers that only provide a suÆcient admission test. Although our algorithm
has a larger (constant) overhead, our experiments show that, if tasks are not
too small, the average utilization is yet higher than for simpler approaches.
In addition, the information maintained by our admission controller can be
used to achieve a number of other features such as task isolation and capacity
reclamation. For applications with a mix of aperiodic and periodic tasks, our
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admission controller runs in O(m+ log n+ log p) which is considerably faster
than previous approaches that run in O(p) since typically p >> m.
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