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Abstract

In recent years, the demand for the use of embedded multiprocessor systems in everyday pritglaad in critical
systems has grown exponentially, forcing the real-time community to follow this tteRor this, the development
and adaptation of RTOS (Real-Time Operating System) to multiprocessor platforms became critiiegnwhile, a
new case of multiprocessor platforms appeared, SMP (Symmetric Multiprocessor)case that affected the
community and make most of the RTOS to be adapted to this new kind of platform.RTEMS (Reed-Executive
for Multiprocessor Systems), a free open source real-time operating system designiedsupport embedded
applications with the most stringent real-time requirements while being compatible with opstandards such as
POSIX, was one of those RTOS who was recently adapted to SMP platforms by the comrunfidstunately, this
adaptation is still not perfect, and for the work already done, a lot of testing musé performed, to verify the
correct implementation and behaviour of the protocols and mechanisms that had been adapted tgnfnetric
Multiprocessing.So, the aim is therefore to do investigation on RTEMS, making use of QEMU to emal&®IP
platform. On an earlier phase, this work contemplates studying and understanding the innenkirigs of RTEMS,
followed with the creation of a new feature to help on the understanding of the operating system, the development
of samples tests (RTEMS applications) to test the directives implemented for SMP emvitents, and finally the
implementation of a famous case study.
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Abstiact

In recent years, the demand for the use of embedded multiprocessor systems in
everyday products and in critical systems has grown exponentially, for@ngahtime
community to follow this trend. For this, the development and adaptabf RTOS (Real-
Time Operating System) to multiprocessor platforms became critical. Mabmamew

case of multiprocessor platforms appeared, SMP (Symmetric Multiprocessor), a case
that affected the community and make most of the RTOS to be adaptdustoew kind

of platform.

RTEMS (Real-Time Executive for Multiprocessor Systems), a free open source real-time
operating system designed to support embedded applications with thst simingent
real-time requirements while being compatible with open standards such as R@SIX,

one of those RTOS who was recently adapted to SMP platforms by the cotyxmuni

Unfortunately, this adaptation is still not perfect, and for the waiready done, a lot of
testing must be performed, to verify the correct implementation arhéviour of the
protocols and mechanisms that had been adapted to Symmetric Multiprocessing.

So, the aim is therefore to do investigation on RTEMS, making use of QEMU to emulate
a SMP platform. On an earlier phase, this work contemplates studying and
understanding the innerworkings of RTEMS, followed with the meatf a new feature

to help on the understanding of the operating system, the developmé&samples tests
(RTEMS applications) to test the directives implemented for SMP envirdsjreerd

finally the implementation of a famous case study.

Keywords (Theme)Embedded systems, Real-Time systems, Real-time operating
systems.

Keywords (Technologies, RTEMS, QEMU.
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Resuno

Nos ultimos anos, o uso de sistemas embebidos em plataformas multiprocessadores
para produtos do dia a dia e sistemas criticos tem vindo a crescer exponemt&alme
forcando a comunidade ligada aos sistemas de tempo real a seguir essa tendéacia. Pa
isso, o0 desenvolvimento e adaptacdo de sistemas operativos de tempo real (Real Time
Operating System) para plataformas de multiprocessador tornou-se critico.

Enquanto isso, surgiu um novo caso de plataformas multiprocessador, o
multiprocessamento simétrico (Symmetric Multiprocessing), um caso especificnale
abordagem que pode ser tomada para multiprocessadores e que representa o principal
foco de adaptacdo dos RTOS a esta plataforma.

O RTEMS (Real Time Executive for Multiprocessor Systems), um sistema operativo de
tempo real, de codigo fonte aberto, projetado para suportar aplicacbes embarcadas
com 0s requisitos mais rigorosos em tempo real e compativel com padrdes abertos
como o POSIX, foi um desses RTOS que foi recentemente adaptado para Plataformas
SMP pela comunidade.

Infelizmente, esta adaptacdo encontra-se longe da perfeicdo, e para o trabalho ja
realizado, muitos testes devem ser realizados, para verificar a correta irapilagéio e
comportamento dos protocolos e mecanismos que foram adaptados para o
multiprocessamento simétrico.

Assim, o objetivo €, portanto, fazer uma investigagdo sobre o RTEMS, fazendo uso do
QEMU para emular uma plataforma SMP. Numa fase inicial, este trabalho gatem
estudo e compreensao do funcionamento interno do RTEMS, seguido da criacdo de uma
nova funcionalidade para ao seu estudo, o desenvolvimento de test-suitesa(&eisc
RTEMS) para testar as diretivas implementadas para funcionar em ambientes SMP e,
finalmente, a implementagédo de um famoso caso de uso.

Keywords (Thee): Sistemas embebidos, Sistemas de tempo real, Sistema operativo
de tempo real.

Keywords (Technologies, RTEMS, QEMU.






This Section shows all the referenced concepts, symbols and acronyms.

Glossay

Expression Meaning
CISTER Research Centre in Real-Time and Embedded Computing Syste
RTEMS Real-Time Executive for Multiprocessor Systems
RTOS Real-Time Operating Systems
POSIX Portable Operating System Interface
SMP Symmetric Multiprocessing
AMP Asymmetric Multiprocessing
CPS Cyber Physical Systems
CPU Central Processing Unit
BSP Board Support Package
EDF Earliest Deadline First
DP Deterministic priority
ISR Interrupt Service Routine
SP Simple Priority
FP Fixed Priority
ASR Asynchronous Signal Routine
APA Arbitrary Processor Affinity
NOP No Operation
MrsP Multiprocessor Resource Sharing Protocol
OMiP O(m) Independence Preserving Protocol
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1. Introdudion

This chapter begins by presenting the project and the reason fdeitslopment, giving
also an insight of its work field, real-time and embedded systems.

1.1 Project Context

With the aim of fulfilling the development of the students on a lasademic context

ISEP (Instituto Superior de Engenharia do Porto) presents the opggrtanealize an
internship in the third and last year of Computer Engineering bachelegsee for the

curricular unit of PESTI. This curricular unit aims to applkrbe/ledge learned during
the bachelor's degree, as well as personal, interpersonal and socialfekittse design

of engineering solutions.

The internship was developed by a team of two students, achieveddperation with
the Research Centre in Real/Time & Embedded Computing Systems (CISTER) and
focused on the research area of Real-Time and Embedded Systems.

This research field is responsible for studying real-time systems. A real tireenggsa

system that is developed and analyzed to guarargesorst-case response time to
critical events, as well as acceptable average-case response time to nahevents

[1]. To control those devices, Real-Time Operating Systems (RTOS) may be used. The
difference between an Operating System and a RTOS lays in the natoogv ithey
approach each task. Standard operating system focus on doing as much cooputati

the shortest span of time, while RTOS emphasize on having a predictablesespoe,

offering accuracy to real-time events, allowing a higher deterministic r@act
external events [2].

A multitude of everyday products use computing devices, making the defoatitbse
devices to grow exponentially and always requiring more and more performance. With
this, the industry tried to develop better processor chips, but they faced viarel
physical limitations, since the increase in frequency reached thermaiggrbounds. So,

the transition to multiprocessor systems to amplify computing times and awverthe
physical limitations seemed as the next logical step [3].

A special case of multiprocessor systems is the SMP, Symmetric Multiprocassing,
computing architecture where two or more processors are attached by the same



access mechanism to a single, shared memory and controlled by a single operating
system instance. The processors share the memory device through a common high-
speed bus and have to contend to access it.

— ]
1 - i
|
Shared
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|
ecoeecodboooROOD |
M twark

As the real-time systems community started to slowly integrate symmetric
multiprocessing systems in their products, many problems appeared, naimekgrown

of the synchronization overhead, expensive costs of thread migration, tlireads
moving from and to other cores (processor)), the technical troubles fodéivelopment

of appropriate locking protocols and scheduling mechanisms for multiproceswut

an exponential gain of overhead, hence an extremely slow and disquirdimsgjtion [4].

Despite the slow change, multiple Real-Time Operating Systems already offer Symmetric
Multiprocessing support, though some of them do not have the expected arrdat
behaviour regarding some mechanisms, therefore they must be tightly studied and
tested.

1.2 Project Presentation

Following the context presented on subsection 1.1, this project hatkas goal to study

and test RTEMS (Real-Time Executive for Multiprocessor Systems) on a SMP platform,
an ARMV7-A architecture. An extensive, methodological study of RTEMS was imposed
to fully understand it.

The team focused on two critical mechanisms that bring an enormous anebtraiuble
when being developed to SMP architectures, the scheduling and
synchronization/communication mechanisms.



The scheduling mechanisms can provide immediate response to speaficadvents,
particularly the necessity of scheduling tasks, this means assign resources|thos wi
able to complete the work, doing it within a specified time tiafter the appearance of
such tasks.

Besides this, the synchronization mechanisms are one of the most criticed, ai
fundamental part of the work that OS practises is controlling which tes&szes what,
at which time. Synchronization also allows to modify the schedullmgwthe control is
taken away from a process when it was not necessarily prepared to give up control.

To acquire a higher comprehension of the operating system, samples were dedelope
those samples helped to fully understand the behaviour of the mechanisms. Also, t
verify the correct behaviour, a buffer was implemented in RTEMS kernegistesed

all the preemptions in all CPUs, this is, a higher priority task gatsot of the CPU and
the lower priority task will wait again (goes back to the ready queue),

And finally, with an integral awareness of the operating system, airealcase study
was suggested to be implemented on top of the RTEMS OS, allowing thetdeam
evaluate their knowledge and to go through the adversity of developing a ireal t
application for SMP.

1.3 Organization presentation

CISTER (Research Centre in Real-Time and Embedded Computing Systems) [5] is a
research unit created in 1997 based at the School of Engineering (ISERg of
Polytechnic Institute of Porto.

Since the beginning, CISTER has grown to become one of the best European research
units, it has well-established roots in Real-Time and Embedded QCimg@systems
scientific community and works in a number of subjects such as:

Real-Time communication networks and protocols.
Distributed embedded systems.

Wireless sensor networks (WSN).

Cyber-Physical systems (CPS).

Real-Time programming paradigms and operating systems.
Scheduling and schedulability analysis.

Cooperative computing and QoS-aware applications.

No abkownhRE

As its strategic vision, the unit has been consistently able to ideatiy
contribute to emerging topic in the area and continues to do so with a gttoadition
of developing foundational work with a vision for the futureaeas such as:



Next generation of computing systems programming paradigms.

Modelling and analysing temporal behaviour.

Handling the requirements of mixed-criticalities.

Resource management in energy-aware computation.

Real-Time communication protocols that provides mobility, ubiquity and
pervasiveness.

x New demands at all layers of complex systems for better resource QoS
management.

X X X X X

It is important to highlight that CISTER was, in 2004 and 2007 awarilecdthe
classification of Excellent in the FCT evaluations.

1.4 Document organization

This report is divided into eight main chapters, Context, Work Environnil€hEMS
explanation, the integration of the operating system, Samples description, ittt ar
buffer, case study and for last, conclusions.

Chapter 2, Context. In this case we start with the description of tlublem and
elaborate onto state of the art and business opportunities.

Chapter 3, Working Environment, explains the methodologies and techeslaged in
this project, also showing the planning of the project and the nmggtito demonstrate
the evolution of the project during his lifetime.

Chapter 4, RTEMS, this chapter explains all the pertinent point of thémeabperating
system.

Chapter 5, Integration on an emulator, this section will explain how ty@etvisor
QEMU supports and boots the operating system RTEMS.

Chapter 6, Circular buffer implementation, contains the analysis, designjocsohnd
results of the kernel buffer.

Chapter 7, Scheduling and Synchronization Samples, starts by expkirhas been
tested and the purpose, then presenting the analysis, implementaiahresults of the
developed samples.

Chapter 8, Mine Control case study, presents the case study implementedllaihe
related information,

Chapter 9, Conclusions, summarize the conclusions regarding all aspe@sodjdct.
In a first section, it recaps the work done, enumerating the strengtlospasitive side
of the work developed and finishing with the future work.



2. Contex

On this chapter, the problem of incorporating multi-core processorsafety-critical
systems is presented, followed by an exposition on how the very differarties
involved have been dealing with this process and what is the direaitowled. Ending
the chapter with the business opportunities and what benefitsf these studies.

The Context is thereby split in 3 sub-sections:

Sub-section 2.1 The Problem, where we address the specific tasksattkidowsks to
tackle. This chapter is subdivided in 3 sub-sub-chapters. Theseiendetail on the
problems introduced right before.

Sub-section 2.2 State of the art, where we introduce the state of developmeRT &S
to support SMP environments. Following an analysis on the state ofrtloé RTEMS.

Sub-section 2.3 Business Areas/Opportunities introduces the reader to chisical
systems and explains the opportunities these devices have on current industries.

2.1 The problem

Even though the concept of a multiprocessor system has been around foretecady
recently it attained commercial viability as demand for more resources amckpsing
power grows.

The introduction of SMP platforms brought fundamental changes from tiigrocessor
environments, specifically the scheduling and synchronization processes. It appeared
new dimension on the scheduling process. Now the scheduler, besides havirgptec
which tasks to run, it has to decide where to run them, wisiid maintaining the
efficiency requirements the same. Adding to this, the resource sharing happeni
between tasks gain a, perhaps even critical role due to the appearantteeotask
concurrency.

The real-time operating system RTEMS support for multiprocessing is a veryoaeent

as available processor platforms for real-time systems have been single-corepidy

very recently. This means the solutions found and implemented to sedwmsus
problems can still be not very well documented or even present some unexpected
behaviours. By being an open-source RTOS, the RTEMS Projects encourages developers
to help and report bugs or different problems that they might come across.



The lack of test suites targeting the scheduler algorithms implemerted the
synchronization and messaging managers of the RTOS seemed therefore a pertinent
problem to tackle, moreover, the team saw the fitness to develop a featurevibatd

allow them to check the entrance and leaving threads from the processocsnpare

with the established expected results of the new samples.

Since the leap between the development of uniprocegsemultiprocessor-based
architectures, and even the development of operating systems to run on them, is not as
trivial as some would think, the emergence of multiprocessor solutionstinat real-

time systems is yet in an embryonic state. This fermented the suggestion to imgleme

the ratherf u}peU Jv §Z ul] }vs ASU Mu]v }VvSE}o *Ce*S u_

came to be as a mean of showing a multiprocessor architecture running,awisial-
time operating system and put to practise all the research made in this layethe

group.

The problems approached with this work, required a broad unaarding of C,
RTEMS operating system, and an in-depth knowledge on the processes of creating and
configuring an RTEMS application. The research on the innerworkings ofSR$EM
exposed in section 4.

2.1.1 Circular Buffer

With the plan of understanding the behaviour of RTEMS on an SMReatahe, the
idea of developing a feature that would register the preemptioppeared, easing the
verification of the new test-suites and help the team to understtrabehaviour of the
tested mechanisms.

This feature turn to be a circular buffer that saves the last one thoupageimptions, it

is initiated when a RTEMS application is executed, being supporteshyoscheduling
algorithm that supports Symmetric Multiprocessing. A new RTEMS directive was also
developed to present the content when requested by the application.

For the development of this buffer, an extensive comprehension of RTEMS wamel
required.

2.1.2 RTEMS Test Suites

RTEMS, having his code publicly available allows for everybody with interest and
capabilities to be able to study and learn about RTOS, RTEMS, antsalf sechniques
involved in designing and implementing such a specific system l&kertll



The test suites that are also publicly available, found on the RTEMBbGpage
together with the rest of the source code, are a set of RTEMS applicaticreted
usually by people that were either involved in the development of RII©S or that are
in some way related with this field of work and revealed int&seis learning and
developing an application that targeted a specific part/functionalitytre operating
system.

The development of RTEMS in SMP in an ongoing project and as mentioned tvajore,
of the most important parts the RTEMS operating system (scheduling and
synchronization) lacked the presence of SMP test suites that targeteehtsvoour.

This tests not only attest the behaviours expected or documented bualsanbe used
as example applications for future developments.

2.1.3 Real-Time Case Study

dZ "~u]v }V3E}o *C+*3 u_ ]+ EPp oC -suiied casqustudy( A EC
in an ARMV7-A multiprocessor platform. With the multiprocessor platformsgoso

fresh on the embedded world, its expected not to find many implementation
thoroughly analysed. We look to address this with the mine control egyst
implementation which is a case study that represents exquisitelya typical real-time

system environment.

This case study addresses the supervision of a water pump placed éfigideine. The
purpose of this pump is to keep the water level on the mine msictertain threshold.
Besides the water level, there are also certain values regarding the quality afrtthat

are being monitored and that interfere with the functioniongthe pump (e.g. if the CO
level is above a certain level, the pump cannot be turned on). The whole system is
developed with the intention to correctly operate the water pupmespecting all the
restrictions that one might suffer and meeting all the deadlimegased.



2.2 State of the art

On the last few years, several real-time operating systems (RTOS) developers have been
working on bringing SMP support to their software. However, taking into ceraidn

the number of active RTOS, those that support Symmetric Multiprocessing (SMi®) are

a clear numerical disadvantage.

In 2011 it was presented the multicore edition of &T-Ev oU v KA-gen@atiortrv A S
embedded systems with multij&® —U ~/ o (}& Z]PZ % E(}E&uU Vv u
such as digital home appliancegtd}u} ]o Al U v u} ]o Al « MEfieX

As of the beginning of 2018 there are a few open source operating systents tlgght

this support for the embedded systems industry, like the one focused RTEMS, and
others (l.e., Nuttx, Nucleus RTOS and eCOS). When it comes to non-open-source
software, VxWorks and QnxNeutrin. These are two of the most used RTOS and the ones
with longest history, so it seems natural these were also one of the firgicgive SMP
support. (A full list of all depleted RTOS, and those still in ussgy/tzdavailable at [7]).

There are currently some RTOS in beta phase. These are all open-source with the main
purpose and characteristics of each varying:

X Simba
X SlmpleAVROS
X SOOS Project
x Mark3

This work was meant to be developed on an ARMv7 based board, the nextdbcus
analysis here is the RTOS RTEMS, which was the chosen operating system to run ove
this architecture. It is important to notice what changes the adaptatm8MP brings to

the RTOS.

2.2.1 RTEMS

Before standing for Real-Time Executive for Multiprocessor Systems [8], RTEMS meant
Real-Time Executive for Missile Systems, and before, Real-Time Executive for Military
Systems when it started its activity working for the US Army in 1988, avakiin the
beginning, like all RTOS developed until now, meant to be deployed omooessor
systems.

The constant demand by applications for processing power along with ligsiqal
limitations faced by the semiconductor industries, fermented the appearahceooe
than one CPU and that was transposed to the domains of embedded systems.



Embedded Brains GmbH, one of the companies that is actively involvedheon t
development of RTEMS, in the years before 2017 started working on the extension of
the OS to support SMP configurations and on May, the same year, the softwaiteetrch
Sebastian Huber presented it for the first time at DASIA (Data Systeéxasaspace). As

is it found on the RTEMS documentatichdZ Zd D7 JvS & % Etide i BMP( E o0
is the support for clustered scheduling with priority-based scheduteisadequate

0} IJVP % EH} }oX _

The drive to develop the RTEMS support for SMP was laid on top of fattaithiéibnal
software implemented and designed with a uniprocessor architecture ird rdoynot
scale and the trend towards the adoption of multicore processor platfosnesidentn
embedded systems, and even in the broader cyber-physical systems doniean.
support for Symmetric Multiprocessing (SMP) came to solidify RTEMS as afdtate-
art RTOS with the possibility to be implemented in hardware systemstrughparallel
processing capabilities.

The increased software and hardware complexity and the presence of true parallel
(which does not occur in uniprocessor) leads to the application degelogving to be

even more careful about mutual exclusion and shared data access. Problems that are
rarely or never found on uniprocessor now appear and must be dealt with.



2.2.2 (New) SMP capabilities brought to RTEMS

o Partitioned/Clustered Scheduling

In clustered scheduling the set of processors that constitutesystem is partitioned
into non-empty disjoint subsets, called clusters. Clusters that only ooatee processor
are called partitions and each cluster is owned by one schedul&nices. Unlike
Asymmetric multiprocessing, in SMP there is no physical barrier separatidgfgrent
subsets. There is only a logical barrier, but sometimes, in specific situgashks,can
run on processor subsets that do not belong to it scheduler instance.

Clustered scheduling helps to control the worst-case latencies of a systdmeduces
the amount of shared data in the system. Also, it was implemented for RBENPS0
best use the cache topology of a system.

0 Scheduler Helping Protocol (helping hand mechanism)

The schedulers implemented (not all) provide a helping mechanism to sufpert
necessary locking protocols.

RTEMS is implemented in a way which each task has its own scheduleren$iaec
scheduler instance can be running several scheduler nodes (CPUSs), canlsedbe
scheduler instance the task is attributed to determines the CPUs thisctaskun on.

This is a clever mechanism but in a multiprocessor platform this meatec some
problems. The way RTEMS implementation bypasses these technical hurdles is ¢y havin
a helping protocol, which allow for tasks to gain access to CPUs of other scheduler
instances.

For the scheduler helping protocol to be available the following opamatimust be
implemented by an SMP scheduler:

1. ask a scheduler node for help,
2. reconsider the help request of a scheduler node,
3. withdraw a schedule node.

Even though this helping protocol is necessary due to the locking mechanisms, th
deployment details involve changing the scheduler kernel code, asdghine of the
main reasons why locking protocols are still complex to adapt in diffe@st
Furthermore, this is precisely the reason why having locking protocols implemgaed
even in use) causes an overhead on the main scheduling procedures [10].

N oo WEE v§o C -aNajeoschedueds\Wse a framework which is customized via
Jvo]v (pv S]}vBhis is @iwaxto allow an easier implementation of scheduler
variants.
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o Profiling

The support for profiling of low-level synchronization was added towafor the
identification of bottlenecks in the system and it is a tialt can be accessed by a build-
time configuration flag. Profiling reports are generated in XML for resitprograms
of the RTEMS test-suite and were implemented with an acceptabléeadr

The number of tests already developed give a good sample set for statGie can
know for example the maximum interrupt latency, or the lock contentioariay.

o Fine grained locking

Fine grained locking allows for a much less resource contention ist@nsypecause
each object has its own lock to protect the object state. With a gk, lwe can have
our example thread performing a certain job that requires mutual exclusawe ltheir

execution time affected by other thread who is on the same criticaézmir thread is

trying to access and yet in the end represent no real concurrency. This ceeates

bottleneck in a system and its a problem that is addressed by desigsyggeam of fine-
grained locks, since the more fine-grained the less likely one threadegilest a lock
held by other.

In RTEMS fine grained locking was first implemented for events, semaphores and
message queues and it was proven that this implementation scales welthgittount
of active tasks even outperforming the old implementation.

o Time keeping (redesigned)

A solid, high performance timestamp implementation is crucial for therall system
performance, and specially for safety-critical real-time systems whoaodegendent
of time constraints. The extension used to get timestamps was brokdadign on SMP,
so a whole new implementation was necessary.

The possible solutions were equated, and the FreeBSD time counterselected to
achieve the desired solution, as they presented excellent results and are #&deck-
solution.

The aim of development of RTEMS SMP was to maintain a low-overhead operating
system suitable for safety-critical activities. Currently, the en@ntation presents
some limitations, i.e., lack of support for locking mechanisms in dynamic priasiydb
schedulers, (even though is not a problem of the RTEMS SMP development, per se)
nevertheless it presents a solid low-level implementation whewihes to:

X Low-level synchronization,
x thread migration and processor assignment,

11



X SMP scheduler framework,

X partitioned/clustered scheduling,

x thread queues (building block for objects which may block a thread), and
x thread-local storage.

Making it ready for production systems.
2.3 Business Areas

In very few words, cyber-physical systems are the systems that connect the physical

world with the information processing world of the computer. Buidif [E SEC]vP 3§}
accurate, what a cyber-physical system really is, is the set of camgpeiements which

are responsible for or are related to the process of supervising physicabrseand

actuators with the goal of retrieving information from the environment they iarand

respond with certain actions. The wide success of CPS in today's wold a¢inbuted

to the very own embedded device, or embedded system. In fact, these two terms are

almost glued together since in reality, cyber-physical syste pJo p%}v $Z "}o €& _
technology of embedded systems.

One of the first uses of a modern embedded system with the properties\wleatre

(ulJo] & A]S8Z ~+u 00 ]I U "Z]PZ_ % E} e*+]vP @0 ]lo]&] U Y-
1961. This year marked the launch of the famous Apollo program, carridaydWASA,

and it was when Charles Stark Draper started working on the riskiest piegaipment

of the entire program, the Apollo Guidance Computer.

Embedded safety-critical systems are usually designed to be very small, to have real-
time capabilities and are often incorporated within a largemputer system. The
economic and societal potential of these systems is enormous. The marketsdiriti

of devices was estimated to be already over 120 billion euros in 2013 ajpoF m
investments are constantly being made worldwide to develop the teduyol

CPS has been identified as a core enabling and disruptive technoldfg Berman
National Academy of Science and Engineering (acatech) and the impagptsssitallities
these systems bring to our lives are still subject of thorough studies.

12



Cyber-Physical Systems — a Concept Map  see authors and contributors.
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Perhaps the impact these systems have can be better understood by giving out some
examples of the application of these systems in different fields of work:

2.3.1 Manufacturing

CPS are used to improve processes by sharing real-time information
among all different levels of machinery and people working. Furthermore,
CPS can improve these processes by self-monitoring and controlling the
entire production processes and by allowing it to adjust production we
achieve a higher degrev cxjgc,e of visibility and control on supply chains.

2.3.2 Healthcare

CPS are used in real-time and remote monitoring of the physicaltaamior to
help disabled and elderly patients. Besides, CPS are widely used in heiseifue

13



neuroscience field to better understand human functions. (for e.g. with the
support of brain-machine interfaces and therapeutic robotics.)

2.3.3 Energy

CPS are used to monitor energy expenses. In a smart grid, for example, this
technology is put into practise to allow for a more efficient use of tr&l

and to make it overall more transparent and sustainable. The smart cities
are very closely related to this and extend even more the domain of action

of these systems. With CPS you can enable energy monitoring and control
systems usage, or you can determine the extent of damage that buildings
suffer after unexpected events and help prevent structural failures.

2.3.4 Automotive

Individual vehicles can communicate with each other, sharingtnea information
about traffic, location, or other issues and have the main reason behind ieteept
accidents or congestion, improve safety, and ultimately save money and time.
Nowadays, the automotive industry actually consumes more embedded devices
than any other industry. This is because modern cars dispose of a disttipygtem

of devices that are used internally to manage all kinds of elements tregriaite the
vehicle.

2.3.5Agriculture

CPS can be used to gather information about different aspeetsHi climate, the
ground, and such, allowing for an accurate application of agricultural igabs. A
CPS can also be constantly monitoring different resources, such as waterin
humidity, plant health and others, through sensors and, thus, kdep iteal
environmental values without the help a supervisor.

2.3.6 Computer Networks

CPS can boost cyber environments to better understand systems and users'
behaviours, which can help improve performances and resource management.
Moreover, popular social networks and e-commerce websites store users'
navigation information and users' web content, analyses that informatad,then

tries to predict interests and make recommendation for friends, postksJipages,
events, or products.

14



There are many more subtle ways CPS are present in our lives and businesdesadse
developing or contributing towards CPS even sometimes without realising it.

There are many parts that constitute a cyber-physical system, thiglesthe software
needed to run the system(s), the set of sensor and actuators, the commumsati
technology used. And a CPS often includes components from many different
manufacturers or service providers.

CPS presents a collection of challenges not always found in a classigabtign or
embedded system. Mastering the engineering of complex and trustwoctyer-
physical systems is important for allowing our industries to implemeP$-Based
business models which could bring unprecedent benefits for companiggonsumers.
Current CPS, however, are still very expensive to develop and maintain andreemeti
with unknown repercussions.
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Experimental analysis of RTEMS in a multi-core platform
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3. Working Environment

This chapter relates the timeline and how the project developers workegdaexng the
work methodologies and the technologies used. For a better support the plgrarid
a Gantt diagram will also be included in this chapter.

3.1 Work Methods

Since the beginning it was considered that the best work method, ifooWwn nature,

should be a linear sequential design approach, specifically watertalel, being less
iterative and flexible.

The Waterfall Model

Code-and-fix Final Deadline

The project was divided in three development phases, in which the water&ihod

was used on the last two. The first one consisted in a deep irtitidy ®f the operating
system and in the integration of the same on a hypervisor, QEMU, tbateal the team
to have a total hardware abstraction, the second phase to develop the sarupdethe

buffer, the third development phase was dedicated to the real-time case siliaky.
team was unable to make use of, maybe, more modern or flexible approachiessas
put an emphasis on the use of model artefacts (visual representationsylmydéleof

testing phases, that do not fit well with the working of this prajec

For the first one, as the waterfall method purposes, the timeline was devdlopthe
following steps:

1. Analysis: This phase consisted on an extensive studying of the operatiamsy
2. Design: During this phase the domain analysis was developed, suehsystbm
architecture of the circular buffer.
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3. Implementation: In this phase all requirements both for the buffer &rdthe
samples were implemented.
4. Verification: End of the first development state, the studying and comprsioa
of RTEMS, in this phase the team verified if both the design and ireptation
were correct and functional, as well as notify the anomalies of the operatin
system.
As this was a research phase and full of unknown technologies and suthjeasalysis
and design steps had a much more meaningful part than in typical s&ftwar
development.

And for the case study:

1. Requirements Analysis: Comprehension of the case study and all is
requirements.

2. Design: In this phase the physical and logical architecture design were
developed.

3. Implementation: Implementation of the requirements.

4. Testing: End of the project, testing and conclusion of the case study.

For this project it was used bitbucket to manage the source code andegmg
concerning the tasks/issues, the team used Trello as it can be seen in appehdhese
work methods allowed to see what each member of the team was doingdbad and
what was going to do.

3.2Work Planning

The project was divided in 9 phases: Studying and the Comprehensios lod tiaviour

of RTEMS, integration on an emulator, kernel and samples analysis/design, kernel
development, samples development, case study analysis and design, case study
development and Documentation. It was decided to not include the mgstisince they
occurred almosbn a daily basis or when doubts appeared, these meetings occurred
with the senior engineers of CISTER.

The most important phases were the comprehension of RTEMS and the kernel and
samples analysis, the first one allowed to almost fully understaedt#haviour of the
operating system and in a following phase, the kernel and samples analggiscilus

to study the code of RTEMS, which gave an overview for a later development of the
circular buffer on the Kernel and the samples. This allowed the teamdet the
established goals for the comprehension of RTEMS.

The shortest phase was the integration phase, that consisted on plden@perating
System working on an emulator and to enable certain configurations to sienalat

18



embedded environment, for that, a couple of technologies were used, the Q&MU
RTEMS Source Builder.

And for last, the case study allowed the team to evaluate their knogdexhd to gain a
practical overview. In both development phases the team implemented all previous
requirements.

The documentation phase contemplates the writing of the report for PESITd @aper
for CISTER.

TASK DURATION START FINISH
RTEMS STUDY 4 Weeks 26 February 26 March
INTEGRATION 2 Weeks 26 March 9 April

KERNEL/SAMPLEY 4 Weeks 9 April 7 May
ANALYSIS/DESIGN
KERNEL 4 Weeks 30 April 21 May
DEVELOPMENT
SAMPLES 4 Weeks 21 May 18 June
DEVELOPMENT
CASE STUDY 3 Weeks 18 June 9July
ANALYSIS
CASE STUDY 2 Weeks 2 July 16 July
DESIGN
CASE STUDY 5 Weeks 16 July 20 August
DEVELOPMENT
DOCUMENTATION 26 Weeks 19 March 14 September
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Table 1 reveals the project timeline for the 9 phases of the work, Agigd 1.1 shows

a complete overview of the Gantt Diagram.

3.3 Technologies

A multitude of technologies were used to develop the current work, withbose it

(0]

Alpo v[s3 %}ee] 0 8} ¢ §]«(C 00 E <pu]E& u vs.U §
technologies.
TECHNOLOGY USE
C RTEMS Kernel and Samples
QEMU Emulator

SOURCETRAIL

GNOME COMMANDER

RSB

RTEMS

Indexation of the code
NdAY% v _ PE % Z]
Build RTEMS compiler and OS

Operating System

o (]

The following subsections will be a small briefing on what eachesft technologies
consists and how they served a use for the project.
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3.3.1 C (Programming Language)

C [12] is a general-purpose, imperative computer programming language faoleal
developing firmware, operating systems, language compilers, assemblers, network
drivers and portable applications, supporting structured programmingcadéxiariable
scope and recursion. It was originally developed by Dennis Ritchie betweerat869
1973 at Bell Labs and used to re/implement the Unix operating system.

C has several important features such as:

Fixed number of keywords, including a set of control primitives.

Multiple logical and mathematical operators, including bit manipulators.
Multiple assignments may be applied in a single statement.

Function return values are not always required and may be ignored if
unneeded.

x All data has type but may be implicitly converted.

x Basic form of modularity. And control of function and objectoisy to
other file via extern and static attributes.

X X X X

In this project C was used to develop both the RTEMS Kernel and Samplesg, takin
advantage of his features and properties.

3.3.2 QEMU

QEMU (Quick Emulator) [13] is a hosted hypervisor that performs hardware
virtualization, it simulates CPUs through dynamic binary translation andde®wa set

of devices models, enabling it to run a variety of unmodified guest operatingrsgst
QEMU has two operating modes, the full system emulation and the user mode.

In the full system emulation, QEMU emulates a full system (such as a R@nipcine
or several processors and various peripherals, this mode can be used to lafiedndi
operating system without rebooting the PC or to debug system code, it alsother
features such as: a full software MMU for maximum portability rakernel accelerator
and a symmetric multiprocessing support.

And finally, the user mode emulation allows to launch processes cainfjpiteone CPU
on another CPU or to ease the cross-compilation and cross-debudigimgnode also
allows features such as: a generic Linux system call converter antahsgdling by
remapping host signals to target signals.

In this work QEMU was used to virtualize the hardware allowing to beobperating
systems RTEMS, the following figure represents the QEMU architecture us@d in
project, that is, a guest operating system working on a host opeyaystem.
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3.3.3 SOURCETRAIL

Sourcetrail [14] is an interactive source explorer that simplifies navigatiexigting
source code, supporting several languages such as C/C++ and Java, itefxess e
code and gathers data about its structures and then provides a sinmpérface
consisting of three interactive views, each of one plays a key role in gettorghation.

seash,

oo
%5

ﬁmplﬁ

'H'|I|'|ll|

/7

code

x Search allows to quickly find and select indexed symbols in the source code,
instantly providing an overview of all matching results.

x Graph displays the structure of the source code, focusing in the selectatay
and directly showing all incoming and outgoing dependencies to other sgmbol
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x Code displays all the source location of the selected symbol in aflisbde
shippets.

This technology was used to clarify the source code and the deperdeotRTEMS,
which allowed to a faster and better comprehension of the opagsystem.

3.3.4 GNOME Commander

GNOME Commandeg€ifie ]e N§A} % v o_ PE %Z] o (Jo uv P E (}JE
aims to fulfil the demands of more advanced users who like to focuseam@inagement
and has the following features:

MIME TYPES.

Network support through FTP, SFTP.
User defined context neu.

Plugin support.

Python scripting.

X X X X X

GNOME Commander was used to simplify the file management of this projeatingl
an easier navigation within the directories and files of RTEMS.

3.3.5 RSB (RTEMS SOURCE BUILDER)

RTEMS Source Builder [16] is a tool to build packages from source, it isyutdexl b
RTEMS project to build its compilers and OS, it helps consolidatethiés needed to
build a package from source in a controlled and verifiable way, RSBscdougt bare
metal development environments.

RSB has been tested on several OS, such as:

ArchLinux
CentOS
Fedora
Raspbian
Ubuntu
Linux Mint
openSUSE
FreeBSD
NetBSD

X X X X X X X X X
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X MacOS
X Windows.

The RTEMS Source Builder has two type of configuration data, thes fingt build set.

A build set describes a collection of packages that define a set of toola/guld use
when developing software for RTEMS, for example the basic GNU tool seitiksbgcc
and gdb. These are a typical base set of tools needed for an embeddss- cro
development type project.

The second type of configuration data is the configuration file and tledye how a
package is built, configuration files are scripts loosely based on the R#eMilsgformat
and they detail the steps needed to build a package.

As is it explain before, the RSB was used in this project to buiM Rd@&mpiler and OS.
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4. RTEM

As mentioned on chapter 2.2, RTEMS Real-Time Executive for Multiprocessor Systems
[8] is a Real-Time Operating System that supports open standard applications
programming interfaces (API) such as POSIX, ADA, native and ITRON. It is used in space,
flight, medical, networking and many more embedded devices using architecture
including ARM, PowerPC, Intel, Blackfin, MIPS, Microblaze, SPARC and many other

In POSIX terminology, RTEMS implements a single process, multithreaded environment.
With the existence of only one address space, all flows of control (threhdsg the

same address, turning it into a closed real-time system, where only oneaih is
started when the RTEMS is switched on. RTEMS closely corresponds to POSBRProfil
AZ] Z ]* "*]vPO % @E} *+U SZE U (]Jo *C*3 u_X

‘ - poess

Single Multi
| No 51 53
| Yes 52 54

Figure 6 POSIX Profiles
data soure http://www.opengroup.org/testing/testsuites/POSIXProfiles.htm

RTEMS can be considered as a set of layered components that provides services to a
real-time application. The interface presented to the applicatioroiséd by joining
directives into logical sets labelled resource managers. The following figure shews t
managers organization.

Initinlization Task

Fatal Error

Rate
Maomotonic  [Multiprocessing

Figure 7 RTEMS Organization
data source: https://docs.rtems.org/branches/master/c-user
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RTEMS Core depends on a small set of processor dependent routines, beioitipart
executive core functions such as scheduling, dispatching and objectgaarent, that
are used by several managers.

In the following sections, the layers, principal managers and functi@salif RTEMS
will be further explained.

4.1 RTEMS Layers

RTEMS is characterized by three layers: hardware support, kernel and APIs, the user
can develop his application by using available APIs, as it can be seendr8fig

The hardware support layer encompasses the processor and board dependerisfiles
well as a common hardware library. One aspect that can be noticed is thattheth
kernel and the API layers are part of the so called RTEMS executive. fidre afo
executive expresses the capability to run applications, implying the useAiPhset for
application development, however, from a conceptual level the kernel itselfladPls
are two distinct ideas.

The kernel layer is the heart of RTEMS and encompasses the super cosupéhe
API and several portable support libraries. The super core is organiadthimdlers and
provides a common infrastructure and a high degree of interoperalmétyveen APIs.
The super API contains the code for services that are beyond any stazademalj such
as APl initialization and extensions support.
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The API layer makes the bridge between the kernel and the applicafios.Classic,

POSIX and ITRON APIs are implemented in terms of super core services. Each API is
organized into managers (the right side of the image illustrates that) AblaeAPI is a

direct mapping of the Classic interface.

4.2 Floating Point

RTEMS provides software and hardware floating-point support, the preseatsence

of the RTEMS floating-point unit (FPU) attribute in the creatiba task determines
whether it is floating-point enabled or not. When creating a tagk whe FPU attribute

flag results in additional memory being allocated for the task cobiomk (TCB) to store
the state of the numeric coprocessor during task switches.

Saving and restoring the context of a task with FPU takes longer than th#isloes
not have FPU defined, mainly because of the relatively large amount of time required
for the numeric coprocessor to save and restore its computational state.

If the supported processor type does not have hardware floating cépedior a
standard numeric coprocessor, a FPU emulation software library must be utiticed f
floating-point operations, or else all the task will be defined a$loating-point.

4.3 Task Manager

This manager provides a comprehensive set of directives to create, delete and
administer tasks. But for the real understanding of this manager sevetfiaittbns must
be explained, for start, what is a RTEMS task?

A task, in RTEMS perspective, is the smallest thread of execution whiobnepete on

its own for system resources, moreover, each task is established by the existemce of
task control block (TCB). TCB is defined as a data structure whietnsoalt the proper
information to the execution of the task, it is allocated upon the amrabf the task and
released when the task is deleted.

The directives offered by this manager, allows the application to creates,tdsk
allocating the TCB, stack and floating-point context area. All creasdd tare initially

placed in the dormant state. The start operation places a dormant task into the ready

3 3 U ]JvP ]v]3] o]l SZ § el[e ¢S | U%o}v SZ Svelps JES] o
address, meanwhile the restart directive restarts a task at its initatisy address with

its original priority and execution mode, but with a possibly défgrargument. When
suspending a task, it is passed to a blocked state until the resumdiirés called,

placing it into the ready queue.
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To remove all references to the task, RTEMS provides a directive, this opdrags
§Z § «I[+ }v3@E}o ingjitirom@sauyde wait queues, and deallocates its stack
as well as the optional floating-point context.

All the states transition associated with the directives from this manager are shrown
figure 9.

For the creation of tasks with periodic fashion, l.e., jobs of a task appd¢lae system

with a regular interval, the Rate Monotonic Manager is used, it helpatiogetasks with

periodicity by defining a period with an operation from this manadgealso gathers
information about the execution of those periods and can provide stesigt the user
which can be used to analyse and tune the application. The services prowddks b
manager may be used by any application which requires periodic tasks.
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4.4 Timer Manager

A timer is an RTEMS object which allows the application to schepetatmns to occur

at specific times in the future. For the use of timers, it is requireduse of a clock tick.
User supplied timer service routines are invoked by either a clockdtrektive or a
special Timer Server task when the timer fires. Timer service routines may perform any
operations or directives which normally would be performed by the appbn code
which invoked a clock tick directive.

4.5 Interrupt/Signal Manager

RTEMS, as any other real-time operating system, provides mechanisms for response to
generated interrupts. For that, it offers the Interrupt Service Raut{iSR) and the
Asynchronous Signal Routine (ASR), both formats are extremely similar.

ISR represents hardware interruptions, a software process is invoked by adrardw

device, it allows the application to connect a function to a hardwateriupt vector,

when an interrupt occurs, the processor will automatically vector to RTEMS, sading an

restoring all registers which are not preserved by the C calling ctomegiving the

control to the ISR, meanwhile, ASR, represents software interrupts. &r odmmon

A}YE U +Cv ZE}Vv}Ipes ¢ ]Pv 0o E}pus]v ]+ 8} & SN1JAR 3 VM Z ] ¢
§ oleU AZ v ]Pv O ]e ¢ v3 8} &8 «lU 8Z & «I[wP £ QUEBV % 3Z
ASR.

There are several differences between those software and hardware interruptcis, su
as:

x While ASR are scheduled by RTEMS and can invoke any directive, ISR are
scheduled by the processor hardware and can invoke only a set of directives.

X ISR are immediately handled, while the ASR are only handled \wkeedeiver
task enters the processor.

4.6 RTEMS Scheduling

As mentioned before, for real-time systems, the scheduling dictates theyatwli
provide immediate response to external events. Scheduling functionsotidvave a
specific manager, belonging to the RTEMS core.
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RTEMS provides a plugin framework which allows it to support naul§gheduling
algorithms, both for uniprocessor and for SMP, the application carctsatdink-time
which of these to use, being more appropriated to the specific use case.

As the project focused on SMP, only SMP scheduling algorithms will riteerfu
explained. All SMP schedulers are priority based, the processors managed bghdesche
instance are allocated to the highest priority tasks allowed to rbe, $MP scheduler
are the followings:

x EDF, Earliest Deadline First.
x Deterministic Priority
x Simple Priority

X Arbitrary Processor Affinity Priority.

4.6.1 Earliest Deadline First (EDF) SMP

Earliest deadline First is a dynamic priority scheduling algorithm usedairtime
systems, where the priority of the threads can change during its executisnalgo the
default scheduler in SMP configuration if more than one processor igycoed.

The concept of a deadline shorter than the period, or explicit deadiido not exist
within RTEMS, only implicit deadline are admissible, so, when creapegodic task,
the given periodicity will correspond to its deadline, maximumetiwhere a response
must be guaranteed.

With EDF for RTEMS there is an attribution of two kind of prioridesgks, to the
background tasks, that is, tasks that do not have any periodicity, the maximumityri
isgiven ase<+:+06/#:4%F s; and its attributed by the application being a fixed
priority. Meanwhile, tasks with an active period have higher priorihant the
background tasks, being defined a higher priority to the tasks witbest deadlines,
that is, the priority is inversely proportional to its deadline.

EDF RTEMS supports task processors affinities afoeoee and ongo-all, in common
words, it associates the tasks with the processors, allowing a task to rumelyion one
processor or in all.
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4.6.1 Simple Priority SMP

Simple Priority SMP is a fixed-priority preemptive scheduler which useged chain
for the ready tasks, placing in the processor the task with the higpestity. This
scheduler and all the other fixed priority schedulers are more contreladoid
predictable than the EDF scheduler.

By convention, the maximum priority level is 255, but in RTEMS the imptetian
limitist'’ F s

4.6.2 Deterministic Priority SMP

The Deterministic Priority SMP is a fixed priority preemptive cglee commonly used
in real-time systems, it executes the highest priority task of all the tidwsitsare in the
ready state.

This scheduler is extremely similar to the Simple Priority SMP Schedulernybérged
with the chain that is used, while the Simple uses a unique ctrereterministic uses
table of chains, with one chain per priority level for the ready tasks) #plying FIFO
in each chain.

The maximum priority level is configurable, nevertheless, by default the maximum
priority level is 255.

4.6.3 Arbitrary Processor Affinity Priority SMP

Arbitrary Processor Affinity Priority SMP is just like the Deterministari§yriSMP, a
fixed-priority scheduler which uses a table of chains with one gbairpriority level, it
also as the same maximum priority level and configurability as the DetestiainThe
main difference between both, is that, this scheduler supportsteaty task processor
affinities, allowing a task to execute only on certain processors, dépgnon the
configuration.

The affinity is changed through the varialgleu set_tthat represents the affinity set,
each bit corresponds to a processor, a set bit means the task can executdson t
processor and a cleared bit means the opposite.
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4.7 RTEMS SMP Synchronization
Mechanisms

The capacity for synchronization and communication between thierdifit running
tasks in a system is a fundamental requirement to be able to conteokitecution of
said tasks, and thereby, the system.

In uniprocessor, RTEMS offers different mechanisms that have been thoroughly
analyzed and designed to allow an efficient way for thread syndhation and
communication. These are:

x Semaphore Manager
X Message Manager
x Event Manager

x Signal Manager

The semaphore manager supports mutual exclusion capabilities, involving the
synchronization of access to one or more shared user resources. The message manager
supports both communication (tasks can send messages to each other) and
synchronization (tasks can be put on hold, waiting for a message to arrive). The even
manager primarily provides a high-performance communication (through event
sending) and synchronization mechanism (through putting a task wading €ertain

event to arrive). The signal manager supports only asynchronous communicatié and
typically used for exception handling. The low-level synchronizationtprésiused on
RTEMS were implemented using C11 atomic operations.

The SMP lock, a ticket-lock, implemented in RTEMS uses FIFO ordering, since this is
meant for systems in which high predictability is a necessary qualign more than

high throughput. The RTEMS API is also capable of supporting MCS ldtkbewi
purpose of allowing the OS to support more than 32 cores (in thed

The following options are provided by:

X Events,
X message queues,
X semaphores
“ mutexes using OMIP,
mutexes using MrsP,
binary and counting semaphores.

The main differences in terms of synchronization from the uniprocedatiopms, are
centered around the use of semaphores. As memory is shared among the different CPUs
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of a system it is imperative to provide safe ways to do it (meaningonwpted data
provide mutual exclusion primitives). However, having the same semaphore being
accessed from different CPUs leads to a noticeable worst-case execution¢im@ent
when performing the schedulability analysis.

Not only that, when working in multitasking, preemptive environmentsl ahared
resources, there is the possibility of a problem called priority inversion. In
multiprocessor platforms this problem is exacerbat®dthe introduction of true task
parallelism.

So, the operating system must implement a mechanism to deal with(tfsit is known
as a locking protocol.)

4.7.1 Priority Inversion

Most real-time operating systems employ priority-based preemptive scheduling
algorithms as this is a good way to encode in a system the priority of ({@sksontrol

the order in which tasks must be ran). These schedulers attribupziaity level
(number) to each task, and the higher priority tasks expect to run as sodrepsate
made ready to run.

Priority Inversion is the name given to a famous problem, that happémsn the
execution of a high priority task is interrupted by the execution of a loweripyitask.
This is how the situation can happen in a multiprocessor environment:

Tasks need to share resources to communicate and process data, and oftenhames t
shared resource must have a mechanism to grant mutual exclusion, (usually a
semaphore) since the value of one variable cannot be changed aathe time, by two
different tasks. There is a possibility that a low priority taskaskl, running on one
processor, is made ready and accesses the shared resource used by a high priority task
t Task2, running on another processor, and so Task2 must now wait for the lowypriori
task to finish running (at least, on the critical zone). The timesjpethe critical zone

does not usually extend much in time, so it does not seem a very sdopdsskl to
interfere with Task2 (even though it can be)

But the real problem happens when Taskl is preempted by a mediumitpriask t
Task3, at this moment, a priority inversion problem is said to occurwbhikl leave the
higher-priority task in a pending state, waiting for other tasks Jatkier priority to run.
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Figure 10 illustrates the example of a typical priority inversion problem.aeee that
when Task2 is ready to run, Task1l is executing the critical section. Task3ithestlee
processor to run and since it does not make use of the resources sharetl sinwply
preempt the low priority task and run, leaving Taskl, and consequensly2Tahigh
priority- on hold. Which is an unanticipated behavior when ddsgthe system.

4.7.2 RTEMS Locking protocols

If priority inversion problems were to happen in real-time systems, as sbayetimes

do (a very notorious example was the 1997 Mars Pathfinder mission), the consequences
would be fatal. Having no mechanism to go around this problem, it woatdbe
possible to grant that higher priority tasks would run when they shokéeping up to

their deadlines. In critical real-time systems this might mean a total sy&éure.

Research on this problem has been made and the shared resource protocols (locking
protocols) are well studied and documented for uniprocessor solutions. For
multiprocessor platforms there have been a large variety of protocols proposed, but
most present serious setbacks. Besides the inherently high complexittheof
implementation, either the protocol would impose restrictions to the sywocization
primitive (i.e., Multiprocessor Priority Ceiling Protocol (MPCP) no plitgsibr nested
resources) and/or it would bring significant run-time overhead, to systeras dne
usually very latency-sensitivéq]. It is important to mention that currently, no locking
protocol was proposed that deals with dynamic priorities. The multiprocessor
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semaphore locking protocols are usually designed having in mind a specific sotpedul
policie.

One first approach taken was to stop tasks, that are running on critical sectmibe
preempted. However, this is not anywhere near an optimal solution,wsutd lead to
high priority tasks to be blocked more times than necessary (locket mechanisrbigvith
granularity).

During the RTEMS-SMP development only two locking protocols were found to have
optimal characteristics for real-time multiprocessor environmeri$].[ They were
developed for fixed-priority based schedulers and they are the Multipsmrdlesource
Sharing Protocol (MrsP) and O(m) Independece-preserving protocol (OMIP). These
protocols were published in 2013, the concept being generalizingriheiples adopted

by the Priority Ceiling Protocol (PCP) and Priority Inheritance Protocol (P$epdri
focuses in more detail on the earlier mentioned.

4.7.2.1 Priority Celling Protocol (PCP)

Priority Ceiling Protocol, also known as, Immediate Ceiling Priority Protocol (ICPP)
attributes a ceiling priority to a mutual exclusion semaphore at creatiiome.
Subsequent tasks that will acquire the mutex will have their priorite@sed to the
ceiling priority of the mutex. The ceiling priority must not be attrilbitandomly. This
value should be set to the highest priority of the task that will evéerapt to obtain

the mutex. Even though this protocol is beneficial for schedutglahalysis, the need

to identify the highest priority task that will ever attempt tubtain the mutex might
prove very difficult in a more complex system.

4.7.2.2 Priority Inheritance Protocol (PIP)

With the priority Inheritance Protocol, the task that holds the muit@xerits the priority
of the higher priority task that is trying to obtain the mutex. Thisemtance is transitive,
which means, if it happens to be a case where exists nested access hedatasks:
Taskl is waiting for Task2, and Task2 is waiting for Task3 and TaskE Imaghest
priority, then Task3 will inherit the priority of Taskl. This protocol dasshowever
prevent the appearance of deadlocks completely.
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4.7.2.3 Multiprocessor resource sharing protocol ®)rs

The MrsP (stylised with lower-case not to be confused with the othéey grotocol t

MRSP) was published on a paper from 2013. Even though the aim of the pleaple

AYEI }v 8Z]e % E}3} }o A « SPpur@Bse protdcoPthat iSapplicable to
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when published in July, their considerations were kept tyfodirtitioned systems using
fixed-priorities.

At the time of writing, there is no protocol as developed as the MrsP olPCibt the
EDF scheduler, hence the lack of protocol implementation for tHisuttescheduler in
RTEMS. This protocol takes some characteristics of MRSP and builds upon it.

MrsP was developed to not block tasks that wait for a resource, instead, réyrm a
busy wait, as the alternative (suspension-based waiting) could meagedonaiting
queues for tasks. Even though it is clear in the paper written that MrsRpposed to
have different ceiling priorities for each processor in the systerh wisks that access
the resource, currently RTEMS only allows for users to define a singtaypcieiling
(that is the same across all processors).

Imagell, taken from the RTEMS SMP final report depict how the connectidwait
mode of the tasks waiting for the primitive, from different partitionsgriade.

The research made lead to the following protocols characteristics: Vidms ask to
access a resource, they will have their priorities raised to the ceiling priofithe
synchronization primitive they were trying to obtain. If the resource is in ysabther
task, then tasks wait in a FIFO queue, spinning at local ceiling pridaty.the detail.
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At first glance it may seem to go against the good practices learnt to have tasks b

waiting for a resource, but, here lies the distinctive feature ofs®l - a helping

mechanism that allows for tasks to service the resource they are trying to use. This

means, while tasks are busy-waiting for, S{sCU d <li §} E o « §Z upusS AU SZ |
leave the processor, and if it happens for Taskl to be preempted by a tpgbety
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critical section and release the synchronization primitive. When returtandhe

processor, T1 will have their execution resumed after the mutex release part.

4.7.2.4 O(m) Independence Preserving protocol (OMIP)

OMIP is an Independence preserving protocol. This means tasks that are diogtém

e §Z upud £ % EJu]3]A A}v[s oC H 3} pVvE o 3
This is a very desirable feature for real-time systems. And is not granted for exampl
the MrsP protocol. This protocol is aimed at clustered job-level fixiedlity schedulers
and, again, unlike MrsP which as a spin base waiting discigtiisehas suspension-
based locking.

(7]
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This protocol aims at fulfilling the most desirable characteristics atial semaphore
protocol must have, (according to the algorithm developers):

x The delays brought to tasks regarding the locking mechanism to be kept as low
as possible

X keep high priority tasks unaffected by unrelated critical sections of Ig@nierity
ones.

The waiting queues that OMIP implements are more complex than tee btisP uses,
but on clustered scheduling the behavior of both protocols isegsimilar.

It is referenced on the RTEMS SMP final report that, even though Q@B promising
characteristics, it is a recent, complex protocol and most usually knohedsilability
tests do not support its analysis. Even though MrsP has a much simpler,disign
helping mechanism implemented has in practice some limitati@8% [
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On figurel2 we can better have an idea on how OMIP operates. Note that, when tasks
are waiting for the resource, they are suspended and put on a priorgyeu

The defining characteristic of OMIP, is based on other protocol, thitipracessor
bandwidth inheritance protocol (MBWI) and is that lock-holding tasks mayate
freely among other processors where other tasks are waiting for the lock. The argument
made on the paperdQ] is that priority boosting is not very well suited for latency-
sensitive systems, and they complement that with a small example. And sdeanot
mechanism is proposed. This was the way found to get around that problem.

Following this approach, it was proven, when developing GNHPIt is impossible for
a protocol to preserve the independence of the tasks, while still maiimgithe priority
inversion lock times acceptable and avoiding inter-cluster migrations.

This means the inheritance protocol is extended to clustered schedulimgrbgucing
the concept of migratory priority inheritance. This works by keeping preetdock-
holding tasks moving among clusters and leaving them in a clusterewdn task is
waiting to access the resource. The lock-holding task will then intmerptiority of the
waiting-task and run on the foreign cluster, releasing the lock. Héreaitility of the
FIFO queue present on the left side of the image.
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4 RTENSBuid, Confguration and
Installation

The initial project proposition contemplated, as mentioned before, ke of the RTEMS
operating system dressing a multiprocessor platform. For this end, the iB@aPBXA-
9 board, based on a ARMv7-A architecture, was chosen as this is a fast pleitoom
for multiprocessor software development.

The lack of a physical board where we could implement the solutiemsrnmepresented

a deterrent for this project, as the number of emulation tools nowadagsvgibigger as
time passes. By accepting the suggestions made by our guiding teachextearsbme
research the group chose the open-source QEMU as the emulation platforrhigor t
work. This is a very famous emulation software/project that is even used bgr oth
emulation apps like VirtualBox. Furthermore, it offers some interesting feafumaking

it a fast, robust application and offering support to a large number oriactures.

QEMU was used over 64 bits, Ubuntu 14L.040perating system, this means the host
machine is Linux. The targeted architecture, as stated before, is the ARM-V7 aelvelop
by the company Arm Holdings and licensed to a vast number of companies.

In order to run RTEMS we need to check out the source-code and eampib do this
we make use of a tool already touched upon earlier, called RTEMS SRuilder,that
downloads, builds and installs the compiler. Before that thowgh,needed to make
sure that the source builder dependencies were all present and thalydwel that we
will be using later is installed. All configurations and insti@ihs were made using a
Linux terminal.

To make way for an easier understanding of the code that will fodlod/that starts to
be more technical, the directory tree of our project is now presented:

Project Directory Tree

$HOME/dev The base directory used for software
development

$HOME/dev/rtems This project will be developed on the
rtems folder

$HOME/dev/rtems/src The rtems source code will be clone
here

$HOME/dev/rtems/compiler/5 Where the source builder source coc
will be checked out.
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$HOME/dev/rtems/realview_pbx_a9_sm Where the configuration for this
specific board will be

5.1 Environment Setup

We start by installing QEMU, which, being available in the defaplogitories of
Ubuntu, can be installed with:

$ sudo apt-get install gemu.

After that, it is necessary to make sure the system has a C/C++ comgliédieith

$ sudo apt-get install build-essential.

Next, git is used to check-out the RTEMS and source-builder source codd¢hizom
respective repositories, so we must guarantee that is installed. Pydlesrcontains the
header files needed to build Python extensions. And the last comnmatalls the basic
GNU tool set whicR?.

$ sudo apt-get install git

$ sudo apt-get install python-dev

$ sudo apt-get build-dep binutils gcc g++ gdb unzip qit

Besides this, as a final step it is necessary to cansult

$ software-properties-gtk

This command will open a window on Ubuntu and the Source Code checkboxenust b
checked.

At this point, the host machine has all the tools ready to downloadiastall the RTEMS
toolchain. So, from the command line, we move/tiev/rtems and clone the source
builder source code from the repository (this will put the source codehanfolder
/dev/rtems/rtems-source-builder

$ qit clone https://github.com/RTEMS/rtems-source-b uilder.qgit

Finally, we move to the folder that was just clonddv/rtems/rtems-source-buildeand
perform one last check, to see if the environment was correctly setup.

$ source-builder/sb-check

This should return the message:

RTEMS Source Builder environment is OK.
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5.2Source builder toolchain installation

After the environment is correctly set up and we have the sourceleudode checked
out, we can proceed to its build and installation.

3. /source-builder/sh-set-builder -- log=build-log.txt --
prefix=$HOME/dev/rtems/compiler/5 5/rtems-arm

We remember that we are working with the version 5 of RTEMS. After thisvstegh

is one of the longest parts of the process, (depending on the compuemsspan take
from 10 up to 30 mins) the toolchain is installed under /dev/rteamshpiler/5 and as a
final step the bin directory created must be added to our path befeeecan download
and build RTEMS. In linux this is done by editing f®file fle and adding
PATH=$HOME/dev/rtems/compiler/5/bin:$PATH to it. Or it can be done directly from
the terminal, by running:

$ export PATH=$HOME/dev/rtems/compiler/5/bin:$PA TH

5.3RTEMS configuration/installation

Since we now have the toolchain ready it's time to create the directigre the RTEMS
source code will be checked out.

$ mkdir /dev/rtems/src

$ cd src

$ git clone https://github.com/RTEMS/rtems.qit

The code will be found on /dev/rtems/src/rtems. The next step is to run thadirap
script to produce the automatically generated files by autoconf andmake (load the
operating system).

After the first clone of the RTEMS repository to run the bootstrap stmgtfollowing
commands are used:

$ ./bootstrap -p

$ ./bootstrap

(with the tp option, bootstrap generates preinstall.am files)
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makefile.in files, created by bootstrap, for a specific development host and target.
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We start by creating the configure folder. For reasons related with HROTWEMS
configuration script is made, this folder must have the same name astbet board
we are trying to configure, so:

$ mkdir realview pbx a9 gemu smp

$ cd realview pbx a9 gemu smp

The options passed to the configure script will determine which toolsbeiihcluded
on the installation of RTEMS. We use:

$ SHOME/dev/rtems/src/rtems/configure -- target=arm-rtems5  -- enable-
rtemsbsp=realview pbx a9 gemu smp -- enable-tests=yes -- enable-
networking -- enable-posix  -- enable-smp -- prefix=3HOME/dev/rtems/bsps/5

The command enables the testsuites frameworkr{able-tests=yes), the networking (-
-enable-networking), posix development supparefiable-posix), and the fundamental
smp support {-enable-smp). The prefix attribute is where the operating systemtfer t
configured target board will be installed. This process makes it dasidevelopers to
work on different target architectures on the same host, as you can easifigaomand
install different architectures on different directories.

At this point we have the RTEMS operating system configured tconuthe arm
architecture board, the RealView PBX-A9 baseboard. The only thing left theun
command:

$ make
inside the dev/rtems/realview_pbx_a9 smp directory and next:

$ make install.

This will call the Makefile scripts, compile and install the opegadiystem.

The code present on the RTEMS repository has the testsuites folder whichncthreai
set of sample applications already implemented and that can be rantbegestallation
is complete. At this moment we can use QEMU to run rtems applicatipnalling:

$ gemu-system-arm - no- re boot -nographic -M realview-pbx-a9 -m 256M -
kernel $HOME/dev/rtems/bsps/5-a/arm-
rtemsb/realview pbx a9 gemu smp/lib/rtems-5/tests/t icker.exe -smp 2

And this is our setup for the development of new test-suites andysiof the RTEMS
kernel.

(Note: we do not need graphical interfaces to run the samples so thatrop disabled.
The target board must also be specified and 256mb is the memory allotatete
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applications. What comes after the flag -kernel is the path of theiegibn that we
wish to run, followed by -smp X in which X is the number of coeewish to emulate.
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6 Crcular Buffer

As mentioned before, the team had the idea to develop a feature that wioellol verify
the correct behaviour of the scheduling mechanisms. It would register all th
preemptions, which allowed us to see if both the samples and the stdbedvere
correct, checking with the design of the samples established beforagtiementation.

After a deep research and study of RTEMS kernel, mainly the schedudmgwid
decided that the appropriated feature would be a circular buffer lenpented directly
on RTEMS kernel, with the capacity to store 1000 preemptions, when Wiyl store
the new preemption over the first one that was stored and so on. It runs aithSMP
scheduler, the buffer code was developed in the filgs)stats.hand cpustats.¢ both of
them stored directly with the other kernel files.

This circular buffer is represented by two structures as it can beisdegure 13, being
the first one,thread_cpu the information related to the preemption, storing the ids of
both threads, the moment and in which CPU it occurred. Cpa_buffeiis responsible
to manage the one thousand instancestbfead_cpuy its initialization with the flag
v o U 38Z § Aloo 8§ §Z P]vv]vP A}] /Fo %.3]9v3UE ¥} S¢o P
printing.

The analysis phase of the development of this kernel buffer consisted calressly
mentioned, the studying of the scheduling mechanism in the kernel, s al
comprehension of the initialization manager of RTEMS, due to the necessiitidlize
the structure. To ease the development of this buffer we decidedivadd it in tree
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steps: its creation and initialization, the storing of the preemptiamsl finally the
printing.

6.1 Creation and Initialization

In the first phase, we studied the RTEMS initialization mechanism,odilee theed to
initialize the buffer as soon as possible to register the firsts preemg, this
initialization would be call by the executive initialization, asait be seen in figures 14
and 15.
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First the structure is initialized by the functioBuffer_dispath_initializatiorallowing it

to handle the preemptions and the exceptions if the semaphore isvaiting to be
created. The semaphore cannot be created in this moment due to its mamagenot
been still initialized. The semaphore is used to synchronize tresado the buffer, this
synchronization is necessary, once thithreads can access it at the same time, being
N corresponded to the number of processors configured. It is crehyethe call of the
function _Init_ Sem_Buffein a moment where the semaphore manager has already
been initialized.

The figures 16 and 17 illustrates the sequence and class diagram of the
creation/initialization of the new feature.
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Figurel6 Buffer Initialization Sequence Diagram
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Figurel7 Buffer Initialization Class/File Diagram
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6.2 Preemptions

For the second phase, the registration of the preemptions, after a deep research w
decided that our code will be called when the operating systemasatihg a processor
to the entering thread, as it can be seen in figlige

The function_Scheduler_Node_get_ug$eallows to get thelThread_Contrglthat is, all
the pertinent information of the entering and leaving threads, followdy
_AddEvtThrea( that sends the information relative to the threads, time and the CPU
into the developed code to then store the preemption.

Once the information related to the preemption sent to the buffer codeemaphore
is acquired to guarantee synchronization, the information is storemltime structures
that represents the circular buffer, followed by the release of skenaphore.
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Figurel9 Add event sequence diagram
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6.3 Printing

For the final part, the printing, we decided to create a new RTEMS dgecti
print_Buffer CPU_Statthat would be called by the RTEMS application as it can be seen
in figure 20. The code has been developed in the fientbuffer.cand the header
test_supportis used by the RTEMS application to import the buffer printing fomct

When the printing of the buffer is called, a semaphore is acquired to avioét threads

8} u} 1(C 82 u(( € AZ]lo A [E JvP 18 8Z2}A %Z )% E
is released at the end of the printing, this sequence and relatiortstyween files and
directories is demonstrated in figures 22 and 23.

Figure21 shows an example of the buffer, with the ids of both threads,pteeessor
and the time in ticks since the boot of the operating system.
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Figure22 Sequence diagram of the buffer printing
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Figure 23 Class/File diagram of the buffer printing
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7 RTENbtestsutes
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depends not only on the results of the computations but also ortithe at which they
are made. One that is familiar with the design of software systems bauatvare, when
designing such systems, about the possibility of it being overwhelmed with large
numbers of interdependent, asynchronous or cyclical event streams.

The test suites implemented are not bounded by any temporal constrainkeuttie
case study implemented later in section 8, that has much more charaaterist a
safety-critical application system.

7.25cheduling

For the scheduling mechanisms, several new test suites were implemented to verify th
correct behaviour of the schedulers. For this verification we developed prayi@u
diagram of the scheduling according with our expectations, that avdtate the
development of the RTEMS application.

Then, with the use of the new feature that we developed (circuldfeby we compare
the preemptions with our diagram to check if the behaviour occurred has expected

7.1.1 SmpcistertestO1

In this new testsuite we developed a simple RTEMS application to undeystarer and
verify the behaviour of the SIMPLE SMP algorithm, a fixed priority schedtheomy

one chain for the ready tasks. We configured the scheduler to worl quad-core
platform.

We started by configuring the scheduler, as it can be seen in fRyyriadicating which
scheduler we were going to use, to calculate the per-thread overhetaddiuced.
Registering the scheduler in the system via the scheduler table andstoadaign the
processors to the scheduler.

55

} E ¢



In this sample four tasks were created besides the Init task, that was confitpustalt

the application. This init task is non-preemptable, so, it was alwdgsasd to a
processor

Task Priority
TAO 10
TA1 10
TA2 15
TA3 5

In table4 , we can see the four tasks created, the first three tasks were creatdueat
beginning of the application, so they were directly allocatecdhprocessors, later, TA3
task is created and should preempt TA2, that is the task with |gwerity. Figure25 is
the scheduling diagram that represents the expected scheduler behaviour.
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We also had to develop the code with the attention that during the akea receive
the identifier of the task, to later, when comparing with thesuét of our new feature,
be able to identify which task is which. It can be seenhiet& the identifiers attributed

by RTEMS.

Task Id

INIT 167837697

TAO 167837698

TA1l 1687837699
TA2 167837700

TA3 167837701

After executed the sample, we received the result of the buffer, figBeand we
verified that the scheduler ran has expected, since the first tree taskdineetly
allocated and TA3 preempts TA2, the task with lower priority.
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7.1.2 Smpcistertest02

With the sample smpcistertestO3 we wanted to test the core affinityhaf Arbitrary
Processor Affinity Priority SMP scheduler, this scheduler allows th&task on certain
processors, depending on the processor owned by the scheduler instance. Sattt
we configured the scheduler to own all processors configured, as iteeagdn in figure
27.

To change tasks affinity, it was used the diretiteans_task _set_affinitythis directive
receives the task id, the size of thpu_set_tand the variablepu_set_tthat indicates
with which core there's an affinity. Two functions were used tacland set bits,
CPU_ZERO was used to clear all the bitgpo _set tand CPU_SET to set the desired
bits.

We divided this sample in two phases, in the first one we playeld thie Init task,
moving it from processor to processor. Init begins in the fourth processoth@an move
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it to the first, second, third and for last to the fourth again consecutivdianwhile, in
the second phase we created three tasks with the same priority: TAO, TAlA&nd

The first two tasks were created at first, with core affinity to the tlust processors,
TAO with the first processor and TA1 with the second one. At thimeng we should
have our tasks distributed through the processors as shown in table 6.

Task Processor
TAO CPUO
TA1l CPU1
Init CPU 3

After both tasks were allocated, we created TA2 and set its affinityPtd @ CPU1 and
CPU 3. As those tree processors were already occupied by tasks with same &tt#or h
priority and we cleared the bit affinity for the only unoccup@wcessolCPLR2, TA2 was
not able to execute at its starting point. To execute TA2 we had to set dstprio a
higher one, after the priority changed, the task should preempt TA1 aathfirun.

In figure30 we can verify that the init task moved from processor to processorwand
can also check the that TA2 started on tick 31 and do not enteredribecupied CPU,
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it only enters on CPU 1 at time 71, that was when its priority charagetlit could
preempt TAL.

At the end we compared the expected behavior, fig@de with the results from our
buffer and we were able to conclude that the migrations frdra init task, the allocation
of TAO and TAL in the respective processors and the late preemption ofoTRA2t
occurred as expected.

Task Id

Init 167837697
TAO 167837698
TA1l 167837699
TA2 167837700

7.1.3 Smpcisterte6B

In our fourth sample, we wanted to work with EDF, a dynamic priority scheduler.
Verifying how the scheduler behaves when a background task and @jgetask are
executed in the same processor. We did not have the necessity to configare t
scheduler since EDF is the default scheduler for SMP configurations.

To create and use periodic tasks we had to resort to the rate monotoamager, we
created the period id using the directivdems_rate_monotonic_create,the task
periodicity was later attributed with the use atems_rate_monotonic_periodthis

directive initiates the period id with a length of period tickshie period id is running,
then the calling task will block for the remainder of the perimfore initiating.

In this sample the init task created both tasks with different piies, to the periodic
TAOwe attributed a priority of 10 and to the background taBRk1,2, and set their
affinity to processoiCPU 2meaning they only could be executed on this processor.
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Since the creation and period attribution must be done by the own pésitask, at the
beginning both tasks were saw by the scheduler as two background taskas anatl
had higher priority comparing with TAO, it would enter the CPU anddvooi free him
again.

So, to avoid it, we decided to synchronize the start of both taskstivéluse of RTEMS
events, we only started TA1 when TAO would have its periodicity actioejrad TAO to
enter the processor when the periodic task would block waitargté next period. With
that in mind we created the scheduling diagram, fig@& that would represent the
expected behaviour.

After executing the sample, we studied and compared the buffer resit$.would
always preempt the background task when its period id was unblocked, pers@ of
ticks, and when blocked, it was preempted by TA1L.
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7.1.4 Smpcistertest04

This sample is extremely similar to smpcistertest03 sample, described iars@cii.3

it also tests the dynamic scheduler, but it differs on the proprietiethe tasks. While
smpcistertest04 analysed the behaviour of a background task and periodicgtiiad

for one processor, this sample tests the behaviour of two periodic taskkeosame
processor.

Tasks priorities were attributed by the rate monotonic priority assignnpeticy, |.e.
they were inversely to the period, a shorter period has a higher prioNg created two
different periods, TAO with a 50 period ticks and TA1 with a peraks of 30. Our main
aim was to verify the priority assignment behaviour by checking who entered the
processor on critical monm.

The scheduling diagram would also be extremely similar to the one from
smpcistertest04, in figure84 we can see the buffer results and confirm that TAl
preempts TAO when its period became active.
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Figure33 Buffer result SMPCISTERTESTO05

63



7.1.5 Smpcistertest05

In this sample we only tested the clustered scheduling cordigen, defining a
processor to each SMP scheduler. We only executed the init task witmsiopctions
to check if a configuration error occurred.
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/.2 Communication and Synchronization

The set of test suites present in the repository already contemplated some
synchronization and communication mechanisms. §hbsection 7.2.1 presents the
names and a brief description of what the applications aim to test.

Images 3637 and 38 present the structure followed to develop the synchronization
test-suites (identical structurto the scheduling samples).
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Figure36 Example of Init task - 2

66



dZ /v]3 & «IU AZ] Z &+ «n stads hl othep taskd Yhat will interact in
the system.

We can have the code related with the different tasks on differeriles but to follow
the practises of the official samples on the RTEMS repository each of theukshad
synchronization samples where created on the same file (the Inttinm and task
routines are written on the same file). Tleystem.his the header file where the
configurations are stored.

67



(Note: The file is not fully printed due to the lack of necessity inj@giag more space
already. The point, as referred earlier, was to give a broad idea osttheture of this
test-suites)
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SMP test suites already Implemented

These samples can be found on the official RTEMS github page. Our teamtlnad n
to do with the development of such. Since they already test somehsgnization
mechanisms, it was important to make reference to them.

Semaphores

test name:smppsxmutex01
directives testedpthread _mutex_lock()
objectives:
x Ensure that priority ceiling mutexes work only in their dedicated scleedul
instance.

test name:smpmutex01
directives tested:
x Thread_queue_Priority_do_enqueue()
x Thread_queue_Priority_do_extract()
x Thread_queue_Priority_first()
objectives:
x Ensure that the thread queue priority discipline enforces FIFO fairnessgamon
the highest priority thread of each scheduler instance.

Locking protocols: MrsP

testname smpmrsp01
directives tested:
X _MRSP_Initialize()
X _MRSP_Obtain()
X _MRSP_Timeout()
X _MRSP_Release()
X _MRSP_Get_ceiling_priority()
X _MRSP_Set_ceiling_priority()
objectives:
x Ensure that rtems_semaphore_flush() returns an error status for MrsP
semaphores.
x Ensure that rtems_semaphore_create() for an initially locked semaphore
returns an error status for MrsP semaphores.
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x Ensure that a nested obtain rtems_semaphore_obtain() returns an error status
for MrsP semaphores.

x Ensure that a rtems_semaphore_obtain() leading to a deadlock returesran
status for MrsP semaphores.
Ensure that it is possible to obtain multiple MrsP semaphores.
Ensure that a timeout on MrsP semaphores works.
Ensure that heavy usage of multiple MrsP semaphores works.

test name:smpmutex02
directives testedrtems_semaphore_obtain()
rtems_semaphore_release()

objectives:
x Ensure that arbitrary mutex obtain sequences carried out by multiple threads

on multiple processors work.

Barriers:

Message Queues

test name:smpipiOl
directives tested: SMP_Send_message()
objectives:
x Ensure that SMP message delivery works in the context of an SMP message
handler.
x Ensure that a flood of inter-processor interrupts works as expected.

Bvents:
Sgnals

test name:smpsignal0l
directives tested: rtems_signal_catch()
rtems_signal_send()
objectives:
x Ensure that signal handlers are called with interrupts enabled.
x Ensure that Classic Signals work on SMP.

We can see above that, smpmutex02 already tests, in multiple processordiyéotive

used to obtain and release semaphores. And barriers and events have no sample
application implemented so this must be adressed. Focusing on the |guiotarols,

all the directives that are implemented on the kernel for MrsP are testetnpmrspO1.
Connected with the locking protocols is the helping hand protocol, weet discussed

on section 4, and involves the helping mechanism implemented to délalpsiority
inversion. Since there was no sample regarding the latter, we created it.
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After gathering the information about the directives that werkeady tested, what
those that were not, we startedhe design of our own

7.2 SMP test-suites to Implement

The following subsections presents the details of the test-suites implementeatget

the synchronization and communication mechanisms of RTEMS.

These tests focus mainly on the Semaphore Manager, Barrier Manager and Message
Manager.

7.2.1 Semaphores (with MrsP and OMIP protocol)

test name:smptestdevOl
directives tested: -
objectives:
x Ensure that the task in ownership of the mutex migrates to another sdeedu
instance in case it is preempted. (helping protocol)

The purpose of this sample was to test the helping mechanism the lockitgcpls
provide when a task that currently owns a mutex is preemptisicissed on section).
This simulates an environment where the system has tasks running, or readyttat
can preempt the locked-holding task.

The application was developed by configuring two instances of the

§ Eu]v]eS] WE]}E]SC "DW " Z po EX ~ [ 8CHED A Z po]vP
and SCHED_B. SCHED_A is responsible for scheduling tasks on CPU 1 andEDaBd SCH
on CPU 2 and 3.

X On SCHEIA we have the Task Init, Task 1 (T1) and Task 2 (T2) scheduled.
(Preemption is disabled for the Init task.)

X

X On SCHEBwe have Task 3 (T3) that has the highest priority of all the tasks in
the system and will be contending to obtain the mutex.

Task Priority

Priority Ceiling - 9

Init 5
Task 3 10
Task 2 8
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Task 1 20

Table 8 gives a visual representation on how the tasks are running on CPW3.1 and
T3 arrives at the processor when T1 is already running the criticabseaftihe code,
so T3 will have to wait.

At time B, T1 is preempted by T2, which is not a contendant to oliv@rsemaphore
and has a higher priority than the priority ceiling. At this ppoirg gives the possibility of
the job of T1 to be ran on the CPU 3, where T3 is on, on anothedsler instance.

At instance C, T1 finished running the critical section, anti3scan start its execution,
which otherwise would only begin sometime later.

T2 finishes on instant D, where T1 returns to the processor. At thisamiyriil starts its
execution_right after the critical section.

The configuration information on system.h is visible on the following images.

The names of the different schedulers are defined here (indflyeln this case we will
configure two.
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Everything on RTEMS must be defined. On this case we used an MRSP semaphore first
so we must declare how many we will use (red arrow on figure 40). Alsothete
priorities defined, as mentioned before.
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The scheduler assignments are made on the following manner (as seen on fjure 4

The numbers 0 and 1 correspond to the entrances on the table designated
RTEMS_SCHEDULER_TABLE_PRIORITY_SMP. And each entrance on the table named
CONFIGURE_SCHEDULER_ASSIGNMENTS correspond to one processor in the system.
Since we have 4 processors we will have 4 lines on the table. (typical example of
clustered scheduling configuration).

The challenge here was to make the tasks enter at the right times to sieraufatoblem

like the one described. Task3 must be scheduled to enter right dftek1 obtained the
semaphore.

74



Sq while Task1 is running tHer loop seen on figure 43, Init will start Task3 and Task2.
Task3 will start by calling rtems_semaphore_obtain() directive to staetxiecution on
the critical section and will have to wait. Task2 will preempt Tasktlisgiit to another
scheduler instance (thanks to the helping protocol).

The output supports this expected behavior.

To test the OMIP protocol the only changes made to this sample tesirasent on the
rtems_semaphore_create() directive.
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Instead of using the attribute set:

RTEMS_BINARY_SEMPAHORE | RTEMS_MULTIPROCESSOR_RESOURCE_SHARING
we used:

RTEMS_BINARY_SEMPAHORE | RTEMS_INHERIT PRIORITY

The OMIP protocol is not at all addressed on the semaphore manager G TEMS
documentation. Also, on the entire documentation there is not one exangbléhis
protocol in use even though it is clear it is implemented. The way RTEMS makilable
the two different protocols and even the table of available attribséts that is present
on the semaphore manager web-page are quite misleating €& [+ AZCW

Locking protocol Flag

Priority Ceiling (uniprocessor) RTEMS_PRIORITY_CEILING

Priority Inheritance (uniprocessor) | RTEMS INHERIT_PRIORITY

MrsP (multiprocessing) RTEMS_MULTIPROCESSOR_RESOURCE_SHARI
OMIP (multiprocessing) RTEMS_INHERIT_PRIORITY

So, the RTEMS user is left to guess that the same flag used for agspo0
configurations is re-used on the multiprocessor ones. This promambrought up on
an e-mail sent to the RTEMS users mailing lists and Sebastian tiubheembedded
brains acknowledged the documentations should be made clearer.

7.2.2 Barriers

test name:smptestdev02
directives tested:
X rtems_barrier_create()
X rtems_barrier_wait()
objectives:
x Ensure that classic barrier configuration works properly on SMP.

design/Implementation:

This small sample represents a classic RTEMS configuration of a barrier that
automatically opens when a certain number of tasks are blocked at itd&8gned a
simple application with 3 tasks that will call rtems_barrier_wait() divecto wait at the
barrier.

The configuration settings on the header file must specify the maximum nuaiber
barriers used (1). There are 2 semaphores declared, one is used for the
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locked_print_f() function, in order to synchronize the console ngitbetween tasks,
and the other is the barrier.

It is on the Init task that the barrier is created, right before theatian of the other
tasks, that will wait at it. RTEMS directive rtems_barrier_wait() receives the
configuration parameters. In this case, we will have a barrier that opetmsratically
when the third task arrives.

The Barrier Manager section of the RTEMS official documentation provides a good
description on the configuration details of said mechanism.
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The three tasks have roughly the same code. The fund®ontTaskinfo(const char
*task_name prints the information on the console. Each task prints the IDreefalling
rtems_barrier_waif), and after being released.

It is visible on the output on imagks, each task printing they have arrived at the barrier,
and only after the three printed, they all finalize. It is importdaatnote the barrier
implementation on RTEMS offers only a FIFO blocking order on thegwvgiteue. This
is because the tasks are released as a set, and it is expected for thempetedor the
processors based upon their priority levels.

7.2.3 Message Queues
test name:smptestdev03

directives tested:
X rtems_message_queue_create()
X rtems_message_queue_receive()
X rtems_message_queue_send()
objectives:
x Ensure message queue synchronization mechanisms work correctly on an SMP
configuration. (FIFO and priority ordering)

design/Implementation:

The configuration part of this sample contemplates the definitionaf imany message
gueues the application will require and the size of those queues.
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The macros seen on figud® configure two message queues (one with FIFO ordering,
other with priority order) that can hold 50 messages each.

The size of one message is equal to the size of the Task_message variables &hich
structure that holds a char array of size 40. This means the applicatilorequire 2 *

50 * 40 = 4000 bytes of memory to be allocated for this message queue confoyurati
The message queues are identified by their ids, that are returned whemwdhs the
rtems_message_queue_createéfjective.

There are 4 intervening tasks. (counting with Init) Task3 isthe%. | E_X d li v
d «lT E "0]*3 v Ee+_X dZ]e u ve d «li Aloo §Z }voC }v AG
queues. Taskl is the higher priority task between the two:

X Priority of Taskl1: 10
x Priority of Task2: 20

We create two message queues. On MSG_QUEUE_1 tasks wait on a first-in-first-out
manner. On MSG_QUEUE_2, The first task serviced is the higher priority one, henong t
tasks waiting.

Task3 will be sending messages where Taskl and 2 are waiting to proceed.
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When thedirective rtems_message_queue_receivg(@alled, we specify the behavior

of the task when waiting for a message. This is visible on figure 40. Sinceinsddef
RTEMS_WAIT and RTEMS_NO_TIMEOUT the tasks will wait forever on a message to
arrive on the message queue specified by ctx->msqgl_id (a structure whevatiable

| [+ & *S}E X

Taskl and 2 have approximately the same code. They execute with the same behavior.
First wait for a message on3G QUEUE_2 (priority-based waiting), print the message
received and then wait on MSG_QUEUE_1.

Task3 must send 2 messages for each message queue as each message will unblock each
of the tasks waiting.
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Since Task1 has a higher priority than Task?2, it will unblock &esthing the second call
of rtems_message_queue_receivé(t too. So, at end we will see that Taskl always
prints the messages first (as it should).

7.2.4 Events

test name:smptestdev04
directives tested:

X rtems_event_sen

X rtems_event_receive()

objectives:

x Ensure that classic events work properly on an SMP configuration

x Ensure that RTEMS_EVENT_ALL works.
design/Implementation:
In SMP events can be pretty much kept without a complete re-designtso
implementation, and they are developed to be used as simple synchronization
mechanisms.
In RTEMS tasks can wait on more than one event simultaneously and event flags are
used to manage event sets. The set of valid events goes from the macro
RTEMS_EVENT_Oto RTEMS_EVENT_31.
On this sample, we have 3 tasks that will be using events, the follaygsign was
implemented:

x Task 3 will be sending events to Task 1 and 2.

x Task 1 is waiting on events 6 and 7.

x Task 2 is waiting on event 7.

In order to build the event set, on Task 3 we call the direatiems_event_send() and
pass the configurations by parameter.
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Task 3, before waking Task 2 which is waiting to receive EVENT_7, sengsato
Task 1, only with the flag RTEMS_EVENT _6. This is expected not to wakea§ahle
latter is waiting on both event 6 AND 7. The first parameter on rtems_event(send
the task ID to which the event is meant to be sent.

The imageé4 is the directive Task 1 callsems_event_receivg(in order to wait for the
specified events. We can choose if the task waits or not for the evenspdxifying
RTEMS_WAIT or RTEMS_NO_WAIT. We also decide if we want to wait for any one of the
events or if both are required. We require both to proceed by using the
RTEMS_EVENT_ALL flag. Last, the task will wait forever since we defined the macro
RTEMS_NO_TIMEOUT on the parameter used to specify the time Task 1 will be waiting
for the events.
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Task 2 will have pretty much the same configuration, as it isleisiib image55. The
only difference being the event this task is waiting for.
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8 Mine ControlCaseStudy

At the end, we wanted to develop a real-time system on a dual-core SMRa@iion

to evaluate our knowledge, test the behaviour and analyse the performahBI BEMS
with a complex system, and as there are not many available case studiesxfiiare

the capabilities of SMPs, it was proposed to adapt the academic casg, d¥lide

Control. It is concerned with the development of an embedded system softtirate
controls and monitors a simplified pump system for a mining enviemtrwith several
safety requirements.

8.1Analysis

The first aspect was to understand the point and all the specific requiresmathis
case study. The system controls the water level in a sump, if the water reacbdaia c
level, a sensor will inform the system and if the safety requirements all@raltles the
pump motor to pump water out of the sump.

A device will also verify if the water is flowing, allowing to chedleipump is correctly
working. The motor can be stopped in two situations, if the water drgpa certain
limit, or when a failure exists within the safety requirements.

Since it is not safe to cut coal or operate the pump with certain lexfetsethane and
carbon monoxide in the air, safety requirements must be guaranteed. Theachreved
by the environment monitoring that is responsible for detecting theelesf methane,
carbon monoxide in the air and the air flow. the values are gathered from resaihg
external sensors.

In case of a reading from the methane level that exceeds a critical threshelgump

must be disabled to avoid explosions, to this pump shutdown, a deadhust be
respected. It is described by the relationship of the methane period T, tleeatathich
methane can accumulate R, the safety margin between the level of methane regarded
as critical M and the level at which it explodes D, being expressed bfolibeing
inequality:

‘6 E&O
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So, until now, five external devices were identified, three of themrtonainitoring table
10, and the other two to the water control tabl&l.

Device
Methane Sensor Device
Carbon Monoxide Sensor High-Low Water Sensor
Air-Flow Sensor Water-Flow Sensor

The devices have a legislated period to cap the information from the outsidd vear|
all of them have a defined periodicity, worst case execution time (WCET)fypanda

constrained deadline. As the methane was the most critical readitagically has the
shortest period and deadline, while the High-Low Water has the longastg and

deadline.

The priorities are assigned with a deadline-monotonic priority assignmeidypdhat
is, the priorities are assigned inversely to the deadline, tasks with shortedlide&ave
a higher priority. The information is showed in table 12.

Device Period Deadline Priority WCET
Methane Senso 80 35 10 12
Carbon
Monoxide 100 60 12 10
Sensor
Air-Flow Sensor 100 100 13 10
High-Low Water 6000 200 14 40
Sensor
Water-Flow 1000 40 11 20
Sensor

8.1.1 Schedulability

As mentioned before, there are still several problems with the useaking protocols
with dynamics priority scheduling algorithms, so we had to discaedude of EDF to

develop the case study. We chose Deterministic Priority schedulixeal priority
preemptive scheduler.
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Before going forward with the development of the case study, we had toyvirihe
system was schedulable, that is, if all tasks were able to run withoutaihed of any
deadline. So, for this test we used the famous sufficient, but overbsimistic, RTA-
Based schedulability test for Multiprocessor systems scheduled wigd foriority [].
Being sufficient means if the test passes, the task set is schedulable. Giad@rwould
be necessary to find another schedulability test less pessimistic.

. .S 480¢
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Whit this equation, a task setscheduled with a fixed priority. A bound on the maximum
response time AEO ®ofataski, D is derived by the fixed point reached, by iteratively
repeating the equation ,wheré® L : &;the set of tasks with priority higher theip," O
with initial value of 42°¢ L £ being B L 9 % p6The system is schedulable if the
condition 4§Oé Q s metforeveryi, D .1

Them on the formula stands for the number of processors in the systerthigncase,
2). On iterationn+1,for each task, the ®**value inside the brackets is replaced by the
RM2*calculated on iteratiom. The ¢stands for the WCET of the tasksD L .G ;

According to this test, since we are working on a dual-core system theviostasks
with the higher priority (CH4 sensor, water-flow sensor) will not hanar texecution
interfered by other tasks, so their maximum response time is thereahetorst-case
execution time.

45%°NL st
46%°NL st

On following iterations, when trying to calculate the response toha task we will have
in consideration all the higher priority tasks existing (since tteay interfere with the
execution of lower priority ones). We reach a result on each iterafax. response
time for the task) when the results from the two last iterations cageeORif the
response time calculated exceeds the deadline of the task. In the &t the
schedulability of our task set would not be possible to prove. @tld be needed
another less pessimistic testlrollowing this analysis, we go on to CO sensor task:

5 S Sr_. sr .
4,°LsrE—-d —"UstEst pE 45— "UsrEsr ihL ut
t zZr strr

6 s ut_. ut _ .
4,° L srE—=d —"UstEst pE 45— "UsrEsr L ut
t zr strr
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On the second iteration we can see the result is the same as that on fisiaier And
since this value is below the task deadline we go on to test the next task

5 S . Sr_. Sr . Sr .
4° L sSTrE—-d +—"UstEst pE 4+w—"UsrEsr pE 4-—"UsrEsr L vt
t zr strr str

48 L srE~d it“UstEst E —Iﬂ“Uersr EJV—t‘Uersr L vt
8 t zr PE e P =gy
The above calculations made for the response time of Air-flow sensor task converge
again, this time on value 42. Since 42 is less than 100 (deadls\gjill possible to
schedule our task set until this point.

s  tr_. tr . tr .
495Ler—d +— UstEst pE 45— "UsrEsrp E +-"UsrEsrp
t zZr strr str

tr .
E /—"~ rEsr L
érrus sr L zt
45 L VIE- d Zt‘lsttEst E—Iﬂ‘Uersr E—IZ—t‘Uersr
9 t o 7Zr PE Sy PE P
zt .
E k—"UsrEsr hhL zt
8rr 2

Onthe last task to be evaluated, High-low water sensor, its visible tleav#ues still
converge, and the calculated result also lies below the constrained idea@00) so,
we can now guarantee the schedulability of our task set, with treperties defined
above, on a dual-core environment.
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8.2 Design

The design process of a real-time application is a complex task, that iserfurth
complicated by the spreading of this activity to a set of processongadf just one.
When making the adaptation decisions for designing this use case we hadnticat

the use of standard RTEMS software components, as this significantlesetactime
required to develop real-time applications.

In this case the whole system of sensors and actuators is meant to be implemanted

a single RTEMS application. This is possible by creating RTEMS tasks tha geulat
readings of the sensors. The team was faced with several adaptation problents due
our execution environment, this includes the programming language used, (Bedause o
the limitations C impose i.e., lack of interfaces, the operating system anchtidevhre

On top of that, the RTEMS real-time multitasking executive allows aicapph to be
cast into a set of logical, autonomous processes/tasks which become easily mialeagea
on the design and implementation steps. For these reasons, the HRT-HEXIin
method does not fit quite right. Yet, the approach of our design method w&anentally
based on it.

Initially this adaptation was proposed to be implemented on amualcphysical, dual-
core board, this plan however never came to be. So, we were left witlg tke, now
familiar, QEMU to simulate our board (note: the decision was to keeones).

After the requirements gathered during the analysis phase, we alreadyv khe
existence of five RTEMS tasks, that represented the simulation of external d&aces.
the next step was to think on all the other tasks, and how we wereggtmrepresent
the pump and methane monitoring and the relationship betweeernth

We came up with the following interaction between all the entitie®of system, figure
57, the pump and the CH4 status on the environment represent thecalitbjects of
our system, requiring a careful synchronization when accessing it.
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Figure56 Interaction between the different entities of the case study
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All the tasks referred as sensors send information to the operator console when
dangerous values are simulated. This task will later print that infoonaitnto the
terminal.

The decision was to make the high-low water sensor also responsible foasigithe

water level readings, as creating ] S % E&]} ] "e]Jupo S]iv_ S ¢l (}JE& SZ
would change our schedulability analysis (and making our applicatischedulable on

the targeted machine).

dZ & ele ~ 8 o ve}E -0oNA ABPE + ve}E_ AJoo Z A 3Z & *%}
turning the pump on or off, accordingly. The first idea was to useRMEMS software

signals (ASR) and handlers to manage the pump. This solution however proved to be
non-feasible for our real-time constraints, as RTEMS signals are implemerdeasay

that the task will only handle the signal sent when entering a procesdach would

ule$ o]l oC pe 3Z (JouE }( 8Z "eZpus }AV %opu%o o]Jv X

So, the only solution found without losing any real-time capabilitiesaugalloading the
hardware was the use of structures that held the pump and methane statetigh-

low water task will make changes to the pump state: ON or OFF, if the safety
requirements are met.
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Figure57 State diagramt high-low water task turning the pump ON
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The check for safety is made to our protected object, CH4status. To turruthp pff,
the task only needs to check the pump state on the protectbgec (as turning the
pump off represents no danger, this action does not require previous valitgti

The changes CH4 sensor task makes to the objects state are a little more ctmplex
the previous presented.
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Figure59 State diagram - CH4 sensor changing pump and ch4 status
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This sensor will manage the CH4 state: SAFE or NOT SAFE and can also tunp the pu
OFF. If the pump is working while a new ch4 level reading above trealctitreshold
enters de system this task will change the pump state to OFF an@H4 state to NOT
SAFE. For performance reasons, the ch4 state is checked first at point32arttie
image, before making the changes.

8.3 Deployment

When starting the implementation, we first developed the system comndition.
Selecting the scheduler, Deterministic Priority SMP, to then allatébethe available
processorsye also had to configure the floating-point unit and extra stack size needed
as it can be seen in figu®

We continued our case study, whit the implementation of the header files and
structures that would represent the protected objects, pump aadvironment
(ch4status). Those objects were mainly used to store several states anidkhpgetiod

on which occurred the last state change.
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As in the others RTEMS application, the init task was configuresl tteelfirst one to be
executed in our system, she had the responsibility to create other tasktasetup the
environment. The fundamental parts of the environment setup were:

x Creation of semaphores with MrsP protocol -> those semaphores are crucial to
synchronize the access to the protected objects, one to access the pump and
other to control the ch4status.

x Data structures initialization -> initialization of the protectelojects and other
structures who are responsible to store other readings.

x Creation of a barrier -> to synchronize the periodicity creation for the |sited
external devices tasks.
x Creation of a message queue -> used to send alarms when required
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When creating the tasks that would represent the external devices, wediae careful
with the task's attributes, since some had to use the floating+ponit to have decimal
values.

When we started to implement the periodic tasks with the help & tate monotonic
manager, we were confronted with a deadline issue since RTEMS does arstth#
possibility to apply constrained deadline, it only accepts imptieadlines (relative
deadline = period). So, we had to find a way to turn around thiblera. A solution
found was the use of timers, at the beginning of the periodic code, a tmaear set to
fire when reached the tick moment correspondent to the absolute deadlfireached,

a specific routine was invoked, and sent an alarm through the message qiieusiing
the deadline failure, figuré7. If the periodic code ends without reaching the deadline,
the timer is cancelled to be reinitialize in the next job, fey66.

All the tasks communicated with the operator, sending alarms of dangerousngesadi
and deadline failures through a message queue. We used a message queue since it
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already offers synchronization and in case of deadline failure we aud the alarm
as urgent, it would go directly to the front of the quetegethen be handled.

On the next chapters all tasks will be further explain.

8.3.1 CH4

The methane task starts by simulating a new ch4 value, according with the grghabi
followed by a call to the environment where it alters the ch4status.

After simulating, the ch4 task verifies if the new value was safe or not, a balween
5% and 15%f methane in the air was considered not sdfeghe new reading was not
safe, it informs the operator through the functi@armthat uses a message queue, in
this case it also has the responsibility to shut down the pungwtod an explosion going
directly to the pump through the functioturn_pump_off). The sequence described can
be seen in figure 69.
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Figure69 CH4 Sequence diagram
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8.3.2 CO and Air flow

The carbon monoxide task was easier to develop compared with the methane task, sinc
this one does not have any relationship with the pump, it only sitesl the new co
value, storing it the environment, and in case of dangerous readingdissan alarm to

the operator.

Meanwhile, the job of the air flow was extremely similar to the monoxidéon task,
it only simulates the new value and if it was considered dangerbgends it to the
operator, this sequence can be verified in figute
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Figure70 CO sequence diagram
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Figure71 Air flow sequence diagram
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8.3.3 Water Flow

This task was responsible to verify if there occurred any unexpected behavtbuhei
water flow, we done it by simulating a value within a probability, drttle pump was
on, it means that the water was not flowing but should be, and theasjte if the pump
was off. This sequence is represented in figure
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8.3.4 HighLow Water

This external device had the burden to simulate the water and thefiéris level was
above or under a certain level. To simulate the water, as it can be seiguia 73, we
first started by checking if we had a uniform period, that is, iféh&as a change in state
of the pump in the last period. If no change occurred, we could simghgement or
reduce the water level according with the defined rates. If a changeddraggh we had
to calculate the amount of water retrieved when the pump was on andamsunt
gained when the pump state was off.
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Figure73 Water simulation
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After simulating a new value, this task had to check if the water ezhclertain levels.
If the level was above a maximum value, it had to verify through the fungicrafé) if

the methane was not considered dangerous, if not, the pump cbelturned on. And
if the level was under the minimum value, the highlowwater task turredgump off
with the functionturn_pump_off). The sequence diagram in figur& describes the
connection of this task with the pump and the environment.
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Figure74 HighLow Water Sequence diagram
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8.4 Results

For this section, we initially started by only printing the preemptions tofywefino
period failures occurred, that is, if all the periodic tasks entehedgrocessor when they
should according with the defined periodicity. But first, wafogured the circular buffer
to only store the preemptions related to the task we indicatdds eased our job of
verifying if the tasks had the correct periodicity behaviour.

In the figure75, we can verify that there was no period failure with the methaask,
known by the system as thread 167837698, it enters a CPU each 8Qridigsires/6
and 77 is presented the preemptions of the threads 1678376989 and 167837R€y, t
represents the monoxide carbon and air flow tasks respectively, both do not prasgnt
period failure as they enter the processor each 100 ticks.
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Figure76 CO buffer result
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And for last, the water flow, 167837701, and the highlow water, 167837702, bdhave
as expected, since both of them do not presented any periodic faitheeyater flow

entered a processor every 1000 ticks, figd8and the highlow water task entered each
6000 ticks, figur&9.
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Despite the scheduling test affirmed that no deadline failure was expedotedcur, we
decided anyway to test if any deadline failure could occur within system, so, we
removed the output related to the dangerous readings to isolate the deadlimenala
And as it can be seen in figu8@, no alarm related to the deadline failure was received

by the operator.
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To also test the behaviour of the system, we decided to introduce a deddiilnee in

one task and verify what could be the sequels. So, for that, we provakesror in the
water flow task. In figur&1 are presented the results, and we can see the alarms sent
to the operator, as we introduced a short failure it had no icgtiion on the execution

of the other tasks.

On the appendixes sectiohl, ]S possible to check the output that result frothe
execution of our application. We looked to increase the number of alarms rdisetb
the levels of methane, as this is the more critical value to havemsideration. It is
visible that no alarm is raised due to the missing of deadlines.

There]e Vv Ju%}@ES vE ]¢3]v 3]}v §} u SA 3z32 3Bu}a vs
$Ju _ }opuveX dZ u}u vd E ( E- 3} datm ®hs sens TAZ jctmal Z
time refers to the time in which the operator received the alarm. Ndtattthe
maximum deviation that ever occurs between the two values is in the magnivfid

tick, which means there is almost no delay between the raishkeftarm and the reach

of this to the console.
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If this system were to communicate via a network interfea@eS Z } %o Etefnidal ¢
this would most likely have a much larger delay.
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9. Conclusions

The current day situation regarding symmetric multiprocessor environments isngfart
to look promising. Only now, solutions that allow us to efficiently, andectigr harness
the larger processing power of multiprocessors are arriving to the embedgsiéms
world.

This project aims of exploring the area of study by allowing use$b the RTEMS
mechanisms in SMP proved to be a real challenge for a team that was jslsinfgnthe
current computer engineering degree. The test-suites idea served to make sure the
directives offered by RTEMS worked as intended. Since the SMP platform direaydy
enough challenge as it currently is, it is of extreme importance to make thare
functions of the RTOS do not show unpredictable behaviours.

dZ JE& po E p(( E %o0}Cu vs } ev[§ E]VP up Z }A EZ
SZ}uPZ 138 ]+ $Z @edlgibk[ in asjrdple manner, the project can be split in 3

main objectives that are tightly related: The test-suites, the circuldfieband the use

case development. The test-suites and buffer development really helped usnget
understanding on what a RTOS should support, and what are itsqoagerns. Mainly

because this required quite a long investigation though the RTEMS docEndlhstep

that contemplated the mine drainage case study, put us in contach wite
schedulability analysis of a system and the much more task and timstraored
environments this kind of programming takes.

9.1 Accomplished Objectives

In the end, the main objectives touched on section 2 were accomplished.

First, the test-suites original proposed. All the schedulers implemeoteRTEMs were
targeted during the development of these samples. The synchronization misch&n

that were missing samples (Events, Message Queues) were tested, as well as the MrsP
(helping protocol), OMIP and the barrier directives. The value of the samplespegel

lies on the possible use they can bring to support future RTEMS appigafioe header

files of each test-suite can be consulted when dealing with shene or similar
configurations.

The work related with the buffer deployment on the RTEMS kernel ingseti our
research on the innerworkings of the RTOS and brought a better uadeiag of its
behaviour. The changes we came up with allows to get access to the theammions
happening on the processors at runtime, specifically where and whantthppen. This
feature is only available for SMP configurations.
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The development of the mine drainage use case represented an impartgeattive
achieved by the group. The solution implemented resulted on a small RTENtSiqpl
for SMP systems with real-time capabilities.

In the end, the application is capable of simulating readings fratemand air sensors
and then managing the state of the pump motor, turning it on or difsThanagement
to the motor is made according to the water level and CH4 read. i2etha late arrival

of SMP systems to the real-time world, this work looked to contghtot this field by

researching the topic and going for a new adaption of an old case sflidy.
schedulability analysis allow us to prove the system is schedulablethesmdan be

attested empirically on subsection 8.4 where it is visible that no task missiespbsed

deadline.

9.2 Limitations and Future Work

One interesting extension of this work related with the use caseithmediately pops
out is using real sensors communicating with the applicatiarbtain the readings. This
would result on a much more cohesive application and would leavevith more
schedulability options to try out different designs.

Another interesting suggestion would be testing the performance of our solg®m
than, it would be possible to compare it against the original [22]s TWould mean

E ulA 37 AZ}o "e ve}E eJupo 3]}v_ 8}} (JE Z veppBe}uE+ U

would be meaningless. It would be possible to gather some interestingmiation
about the operating system.

Regarding the sample tests, we would like to see them uploaded alongheittest of
the samples present on the RTEMS official github page. From there, theg meach a
much larger number of people and who knows could serve some purmoaeytone
interested.

Even though the overall positive balance made, every academic work is bounded by
some limitations. The fact that we had no chance to implementtastithe case study
on a physical board was a missed opportunity.

The limitations on our knowledge of embedded systems proved to make the writing of
this report quite a challenging one. But one of the main purpos#si®project was also

to familiarize us with this field of study, and that was arcomplished goal. The
approach taken to solve several design issues regarding the case study wetieick

this exactly and we end feeling like the main goals were attained.
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11. Apperdixes
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11.1 Gantt Diagram
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11.2 Mine Control Output
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Figure84 Mine Control output
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Figure85 Mine Control output
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