

From Code to Weakly Hard Constraints: A
Pragmatic End-to-End Toolchain for Timed C
RTSS 2019 originally postponed from December 2019 (Hong-Kong) to February 2020
(York, UK) was cancelled.

Conference Paper

*CISTER Research Centre

CISTER-TR-190905

2020/02/18

Saranya Natarajan

Mitra Nasri

David Broman

Björn B. Brandenburg

Geoffrey Nelissen*

Conference Paper CISTER-TR-190905 From Code to Weakly Hard Constraints: A Pragmatic ...

© 2020 CISTER Research Center
www.cister-labs.pt

1

From Code to Weakly Hard Constraints: A Pragmatic End-to-End Toolchain for
Timed C
Saranya Natarajan, Mitra Nasri, David Broman, Björn B. Brandenburg, Geoffrey Nelissen*

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP P.Porto)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: mitra@mpi-sws.org, gnn@isep.ipp.pt

https://www.cister-labs.pt

Abstract
Complex real-time systems are traditionally developedin several disjoint steps: (i) decomposition of
applicationsinto sets of recurrent tasks, (ii) worst-case execution time estimation,and (iii) schedulability analysis.
Each step is alreadyin itself complex and error-prone, and the composition of allthree poses a nontrivial
integration problem. In particular, it ischallenging to obtain an end-to-end analysis of timing propertiesof the whole
system due to practical differences between theinterfaces of tools for extracting task models, execution
timeanalysis, and schedulability tests. To address this problem, wepropose a seamless and pragmatic end-to-end
compilation andtiming analysis toolchain, where source programs are writtenin a real-time extension of C, called
Timed C. The toolchainautomatically translates timing primitives into executable code,measures execution times,
and verifies temporal correctness usingan extended schedulability test for non-preemptive generalizedmultiframe
task sets. Novel aspects of our approach are: (i) bothsoft and firm tasks can be expressed at the
programminglanguage level and stated timing requirements are automaticallyverified by the schedulability test,
and (ii) the schedulability testoutputs per-job response-time information that enables a newapproach to sensitivity
analysis. Specifically, we perform a weaklyhard sensitivity analysis that determines the worst-case executiontime
margins for the strongest still-satisfied (M;K) constraint,where M = m_1 + 26 + m_N denotes the number of
deadlinemisses across the entire task set, and K = k_1; 26 ; k_N is theset of windows of interest of the different
tasks. The toolchain isimplemented as a source-to-source compiler, freely available asopen source, and
conveniently distributed as a Docker container.

From Code to Weakly Hard Constraints:

A Pragmatic End-to-End Toolchain for Timed C

Saranya Natarajan∗, Mitra Nasri⋆, David Broman∗, Björn B. Brandenburg†, and Geoffrey Nelissen‡

∗KTH Royal Institute of Technology, Sweden ⋆Delft University of Technology, Netherlands
†Max Planck Institute for Software Systems (MPI-SWS), Germany

‡CISTER Research Centre, Polytechnic Institute of Porto (ISEP-IPP), Portugal

Abstract—Complex real-time systems are traditionally devel-
oped in several disjoint steps: (i) decomposition of applications
into sets of recurrent tasks, (ii) worst-case execution time es-
timation, and (iii) schedulability analysis. Each step is already
in itself complex and error-prone, and the composition of all
three poses a nontrivial integration problem. In particular, it is
challenging to obtain an end-to-end analysis of timing properties
of the whole system due to practical differences between the
interfaces of tools for extracting task models, execution time
analysis, and schedulability tests. To address this problem, we
propose a seamless and pragmatic end-to-end compilation and
timing analysis toolchain, where source programs are written
in a real-time extension of C, called Timed C. The toolchain
automatically translates timing primitives into executable code,
measures execution times, and verifies temporal correctness using
an extended schedulability test for non-preemptive generalized
multiframe task sets. Novel aspects of our approach are: (i) both
soft and firm tasks can be expressed at the programming
language level and stated timing requirements are automatically
verified by the schedulability test, and (ii) the schedulability test
outputs per-job response-time information that enables a new
approach to sensitivity analysis. Specifically, we perform a weakly
hard sensitivity analysis that determines the worst-case execution
time margins for the strongest still-satisfied (M,K) constraint,
where M = m1 + . . . + mN denotes the number of deadline
misses across the entire task set, and K = {k1, . . . , kN} is the
set of windows of interest of the different tasks. The toolchain is
implemented as a source-to-source compiler, freely available as
open source, and conveniently distributed as a Docker container.

I. INTRODUCTION

The implementation and validation of a real-time system

involves a number of distinct steps. First, the application is

decomposed into a set of recurrent tasks. The properties and

constraints of the tasks (such as periodicities, dependencies,

and deadlines) are either specified natively in a real-time

programming language (such as Ada [12], a real-time extension

of C [17, 31], or RTSJ [44]), or by using system calls provided

by a real-time operating system (RTOS). In a second step,

the worst-case execution time (WCET) [45] of each task is

determined, either using static analysis methods that determine

a conservative, safe upper bound on the actual WCET [16, 19],

or by using measurement-based methods [6] that estimate a

WCET bound based on a set of execution traces. These WCET

estimates together with task properties such as their periodicity

are then given as input to a schedulability analysis.

The viability of this traditional design methodology, however,

is problematic from both practical and theoretical viewpoints.

Practically speaking, research on tools and methods for

the different steps proceeds largerly in isolation, making it

challenging to integrate individual solutions into an automatic

toolchain. Theoretically, the soundness of each step relies on

the correctness of previous steps. For instance, a schedulability

analysis of hard real-time systems requires the existence of

a safe WCET bound for each task. This is, however, a very

strong assumption: on the one hand, static methods are safe

and conservative [16, 19, 45], but rely on the correctness of

the timing model of the hardware, which is hard to obtain for

complex modern architectures. Measurement-based methods

are on the other hand inherently unsafe because they can only

provide observations for a subset of all possible execution

traces [45]. Thus, in practice, uncertain WCET estimates,

together with timing imprecisions induced by the RTOS or

underlying hardware platform, render even a theoretically

“hard” schedulability result less than 100% certain. A binary

analysis outcome (“schedulable” or “not schedulable”) is clearly

unsatisfying when the inputs have a high level of uncertainty.

To make progress on both fronts—tool integration and

platform unpredictability—we propose an end-to-end toolchain
for Timed C, a recently proposed dialect of the C programming

language with explicit timed semantics [31]. As illustrated in

Fig. 1, our toolchain seamlessly integrates (i) a source-to-source

compiler [31], (ii) automatic instrumentation for measurement-

based timing analysis (Section III), (iii) a uniprocessor schedu-
lability analysis extended with support for Timed C semantics

(Section IV), and (iv) a novel sensitivity analysis for weakly
hard constraints [18] (Section V), a classic way of specifying

real-time requirements with a quantifiable degree of “softness.”

The proposed toolchain targets non-preemptively scheduled

uniprocessors because this initial version is primarily aimed at

microcontrollers and similarly small, embedded platforms. It

is convenient for programmers since it automatically translates

Timed C’s native timing primitives into executable code,

measures execution times, and assesses the application’s

temporal correctness with a novel weakly hard sensitivity

analysis based on an extended uniprocessor schedulability

test [30] for non-preemptive generalized multiframe tasks [5]

without exposing any of the details pertaining to the integration
of the individual methodologies and tools to the programmer.

Furthermore, our toolchain is pragmatic in two major ways.

First, it works for any hardware platform supported by a

C compiler (since the Timed C source-to-source compiler

1

Instrumentation

Timing Analysis (Section III)

Timed C

Code

Execute

on target

platform

Timing

traces

Job set
Job set

generator

Instrumented

Code

Schedulability

Test

Schedulability

 result

Sensitivity

Analysis

Not schedulable

Schedulable with

 WCET margins

Sensitivity Analysis (Section V)

Schedulability Analysis (Section IV)

Fig. 1: Overview of the proposed end-to-end toolchain for Timed C. The overall methodology and toolchain consists of three main parts: a
measurement-based WCET analysis that automatically instruments and profiles the real-time program on the target platform (Section III), an
exact schedualbility analysis (Section IV), followed by a sensitivity analysis (Section V), which iteratively searches for boundaries in the
space of task set parameters for which the system exhibits a varying number of deadline misses.

translates to “plain” C) that allows for dynamic execution-time

measurements (since we do not rely on static WCET analysis),

which makes it readily applicable in many contexts and with

a low barrier to entry. Second, our toolchain embraces the

inherent platform unpredictability that realistically cannot be

avoided on contemporary commodity hardware by reporting

margins instead of guarantees. Specifically, instead of providing

a simplistic “yes/no” result, the toolchain performs a weakly

hard sensitivity analysis that determines the strongest still-

satisfied weakly hard real-time constraint (across the entire

task set) as a function of increasing maximum execution times.

For example, after compiling a given task set and and

profiling it on the deployment platform, the toolchain might

report that (i) no deadlines will be missed assuming the

observed WCET estimates, (ii) one deadline miss cannot be

ruled out if WCETs increase by, say, 30%, (iii) two deadline

misses cannot be ruled out if WCETs increase by 43%,

(iv) three deadline misses cannot be ruled out if WCETs

increase by 61%, and so on. Pragmatically speaking, such

output is much more useful to an engineer than a simple “yes/no”

schedulability result, or a single response-time bound based

on uncertain WCET estimates, because it provides insight into

the system’s robustness, i.e., a quantitative assessment of the

margin of error in the reported timing properties. Especially

given that many embedded real-time systems can typically

tolerate “a few” deadline misses (e.g., this is true for most

control systems), it can be highly valuable to learn that an

unexpected WCET increase by X% will result in no more

than Y deadline misses (across a configurable window of ki
consecutive invocations for each task τi).

In addition to the practical aspects of the proposed toolchain—

which is freely available1 as an open-source project and

distributed as a Docker container—this paper makes two

algorithmic contributions to the state of the art. First, we provide

a uniprocessor schedulability test for Timed C programs that

realize a set of periodic generalized multiframe tasks (GMF) [5]

scheduled by a non-preemptive job-level fixed-priority (JLFP)

1https://github.com/timed-c/end-to-end-toolchain

scheduling algorithm, which is obtained by extending a recent

schedulability test [30] for independent non-preemptive jobs

to support precedence constraints and the forced abortion of

jobs (which is needed for a key feature of Timed C, namely

“firm timing points,” as discussed in Section II-A).

Second, we provide the first sensitivity analysis for weakly

hard real-time systems, which yields a WCET margin for

the strongest still-satisfied (M,K) specification, that is, the

largest factor by which all WCET estimates can be scaled

while missing at most M = m1 + . . . + mN deadlines across

all N tasks w.r.t. a set K = {k1, . . . , kN} of user-configurable

windows of interest of ki jobs each.

II. BACKGROUND AND SYSTEM MODEL

This section provides a brief introduction to Timed C, its

key features (Section II-A), and then defines a system model

to represent a wide class of Timed C programs (Section II-B).

A. The Timed C Language
Timed C [31] is a recently introduced programming language

that is designed to expose fine-grained control of program

timing to application programmers. In particular, it offers a set

of temporal and concurrent constructs with a clear temporal

semantics at the language level that enable programmers to

easily detect and react to transient overruns at the granularity

of individual blocks. For instance, Timed C provides a safe

construct for interrupting and aborting the execution of a

given code fragment when, for any reason, it does not finish

by its deadline. These features empower the programmer to

have precise control of the timing of I/O interactions, making

Timed C a good alternative for embedded real-time systems.

Timed C uses the concept of timing points to let the

programmer express and combine various timing constraints as

first-class constructs. The current implementation of the Timed

C language provides programmers with two types of timing

point primitives: (i) soft timing points and (ii) firm timing

points. A soft timing point (STP) is specified as

stp(expr1, expr2, n)

2

1 task foo(){

2 stp(20,inf,ms);

3 while(1){

4 work();

5 stp(60,40,ms);

6 }

7 } 0 80

3-4 5 3-4 5

20 40 60 100 120 140

Fig. 2: A Timed C program realizing a simple periodic task and a
timing diagram of its execution. The task has offset 20, period 60,
and relative deadline 40 ms. In the timing diagram, the upward arrows
show arrival times and the dashed downward arrows show deadlines.

where the arguments expr1 ∈ N and expr2 ∈ N are the

lower bound and the upper bound on the amount of delay

relative to the previous timing point, respectively. The argument

n ∈ N is the resolution exponent of the time values, i.e.,

the resolution is 10−n seconds (a common choice is the

macro ms, which expands to 3 to yield millisecond resolution).

Equivalently, expr1 can be seen as the relative arrival time

of the code fragment following the timing point with respect

to the arrival time of the code fragment preceding the current

timing point, while expr2 can be seen as the relative deadline

of the code fragment preceding the current timing point.

Fig. 2 shows a Timed C program example with two soft

timing points, together with its timing trace. The program

implements a simple periodic task with period 60, an offset

20, and a soft deadline of 40 ms. The offset is applied using

the first stp construct (line 2) by forcing the program to start

the while loop (i.e., the next fragment of the code) only

when 20 ms have passed since the invocation of function foo.

Since the role of the first stp is to apply the offset, it does

not enforce a deadline on the prior code and hence its second

argument is set to ∞. The second stp (line 5) ensures that the

while loop is periodic and is activated only when 60 ms have

passed since the execution of the previous timing point. For

example, in the timing diagram shown in Fig. 2, the first call

to work() takes 30 ms and the program reaches the stp on

line 5 at t = 50 ms. The stp on line 5 will delay the execution

of the program until t = 80 ms to ensure that the while loop

(line 3) is executed periodically every 60 ms. Furthermore, the

stp on line 5 specifies a deadline for the code in the while

loop. Since the deadline is relative to the previous time point,

the first deadline will be at time 60 = 20 + 40, the second

deadline will be at t = 120 ms, etc. As an STP applies a

soft deadline, Timed C will not stop the code if it overruns

the deadline. For example, in Fig. 2, the second call to the

work() function takes 45 ms (released at t = 85, finished at

t = 130). The stp function will then return the amount of

overrun (tardiness) experienced by the code fragments. It is

worth noting that our toolchain ensures that, even if the code

within the timing points overruns, it will not impact the arrival

time of later timing points.

Firm timing points (FTPs) are defined as follows

ftp(expr1, expr2, n)

where the arguments expr1, expr2 and n have the same

meaning as for stp. However, unlike an STP, an FTP ensures

that the execution of the code fragment prior to the timing

point will be terminated at the deadline specified by expr2.

1 task work(){

2 while(1){

3 foo();

4 ftp(40,20,ms);

5 bar();

6 stp(20,10,ms);

7 }

8 } 0 80

2-3 54 6 4 2-3 4 5 6

20 40 60 100 120

Fig. 3: Example of mixed soft and firm timing points. The example
shows a generalized multiframe task implemented in Timed C.

In cases where the lower and upper bounds of a timing point

are equal, Timed C provides the following constructs

sdelay(expr, n) fdelay(expr, n)

which are equivalent to stp(expr, expr, n) and

ftp(expr, expr, n), respectively.

Fig. 3 shows a Timed C program that uses a mixture of soft

and firm timing points and a timing diagram depicting one of its

executions. In this timing diagram, the first call to the function

foo() completes at t = 10. Since the expr1 of the next

timing point (line 4) is 40, Timed C delays the call to function

bar() until time t = 40. The function bar() completes at

time t = 45 and the stp on line 6 delays the next iteration

of the while loop until t = 60 (= 40 + 20). In the second

iteration, function foo() would have required 30 ms; however,

thanks to the firm timing point (line 4), it is interrupted and

aborted at t = 80, preventing the overrun from impacting

subsequent invocations of the bar() function. Since in some

scenarios interrupting a computation may lead to unexpected

behavior, Timed C’s critical construct, discussed shortly

in Section III, can be used to defer such untimely interruptions.

In this paper, we focus on a subset of Timed C’s expressive

power to encode generalized multiframe tasks (GMFs) [5],

where frames have either soft or firm deadlines. To this end,

we next introduce a model of Timed C programs as GMF tasks.

B. System Model
We consider a uniprocessor platform that runs a set of

generalized multiframe tasks (GMF) [5] scheduled by a job-

level fixed-priority (JLFP) scheduling algorithm such as fixed-

priority (FP) or earliest-deadline first (EDF) scheduling. We

assume that when a code fragment is called, it executes non-

preemptively until completion or until it is terminated by a firm

timing point. Each timing point also provides a preemption

point in the application, i.e., when the timing point is reached

another task may be dispatched by the scheduler.

Following the GMF task model [5], we assume that each task

τi (1 ≤ i ≤ n) is defined by an offset Oi and consists of a finite

sequence of Ni frames 〈Fi,1,Fi,2, . . . ,Fi,Ni〉. Each frame Fi,j

is characterized by (Cmin
i,j , Cmax

i,j , Ai,j , Di,j , ji,j , γi,j), where

Cmin
i,j is the best-case execution time (BCET), Cmax

i,j is the

worst-case execution time (WCET), Ai,j is the inter-arrival

time, Di,j is the relative deadline, ji,j is the release jitter,

and γi,j ∈ {soft, firm} is the type of deadline of the frame.

The first instance of the first frame Fi,1 arrives at time Oi.

Then, the value of Ai,j denotes the relative time between

the arrival of an instance of frame Fi,j and the arrival of

the previous frame released by the same task, as explained

3

in Section II-A. To reduce clutter, we introduce the notation

Oi,j = Oi+
∑j

k=2 Ai,k to refer to the offset of frame Fi,j . We

also define the period of the GMF task as Ti =
∑Ni

k=1 Ai,k.

Each periodic GMF task generates an infinite number of

instances. For the sake of analysis, we transform the set of

periodic GMF tasks in an infinite set of jobs J . Each job

Ji ∈ J refers to the execution of one frame executed by a GMF

task. To relate the two models, we define the three functions

δ(Ji) : N → {1, . . . , n}, σ(Ji) : N → N, and λ(Ji) : N →
{1, . . . , Nδ(Ji)} that return the task number, instance number,

and frame number corresponding to job Ji, respectively.

Each job Ji is characterized by a 7-tuple

(rmin
i , rmax

i , cmin
i , cmax

i , di, γi, πi), where rmin
i is the

absolute arrival time (also known as the earliest release time),

rmax
i is the latest release time, cmin

i and cmax
i are the BCET

and WCET, di is the absolute deadline, γi is the type of

deadline, and πi is the priority of the job. Let k denote

the value returned by δ(Ji), ℓ denote the value returned by

σ(Ji), and j denote the value of λ(Ji). Then, Ji’s BCET

and WCET are given by cmin
i = Cmin

k,j and cmax
i = Cmax

k,j ,

respectively, and the earliest and latest release times are given

by rmin
i = Ok,j + Tk · (ℓ − 1), rmax

i = rmin
i + jk,j . The

deadline of Ji is di = rmin
i + Dk,j . It is worth noting that

the priority of a job depends on the scheduling policy. For

example, for FP scheduling, πi is equal to the priority of the

associated task τk, while for EDF scheduling it is equal to the

absolute deadline of the job, i.e., πi = di, where a smaller

value denotes a higher priority. We assume that ties on the

priority are broken arbitrarily but consistently.

Each job has a non-deterministic yet bounded release time

that occurs within the interval [rmin
i , rmax

i]. We assume that

the release jitter is caused by implementation factors such as

interrupt latency or timer inaccuracy.

We define Omax to be the latest possible arrival time of the

first instance of any frame in the task set, that is, Omax =
maxi{Oi,Ni | ∀i ∈ {1, . . . , n}}. The hyperperiod of a set of

GMF tasks is denoted by H and is equal to the least-common

multiple (LCM) of the periods of the tasks. We denote the task

set utilization by U =
∑

Ci/Ti, where Ci is the total sum of

the WCET of the frames of a task, i.e., Ci =
∑

1≤j≤Ni
Cmax

i,j .

In the context of Timed C, a frame of a GMF task is a code

segment between two timing points. Its inter-arrival time is

defined by the argument expr1 of the preceding timing point,

while its relative deadline is defined by the argument expr2

of the following timing point. An example of a GMF task with

two frames implemented in Timed C is shown in Fig. 3.

III. TIMING ANALYSIS

Our end-to-end toolchain currently uses a measurement-

based timing analysis to simplify portability between different

platforms. However, the overall end-to-end methodology itself

is not bound to measurement-based methods, and static timing

analysis would be interesting to add in future work.

In this section, we explain how the toolchain currently

estimates the BCET, WCET, maximum jitter, and trigger

precision for a given Timed C program and execution platform.

We explain the meaning of these terms and how the values are

computed. As depicted in the first part of Fig. 1, the timing

analysis consists of two main stages: (i) instrumentation and

(ii) generation of timing traces. The timing traces are then

used to generate the input to the schedulability test.

A. Instrumentation
There are two steps: (i) a Timed C instrumentation step that

takes Timed C code as input and produces an instrumented

version of the Timed C code, including measurement statements,

and (ii) the source-to-source compilation that compiles the

instrumented Timed C code to target-specific C code.

We explain the instrumentation procedure using the Timed

C example program in Fig. 4(a). Task rts periodically calls

functions sense, compute, and actuate. The function

sense writes a new value to s by reading from a sensor.

The function compute reads from s and a, and writes to

b. In line 6, the content pointed to by b is copied to a. In

this example, the calls to sense and compute have a firm

deadline of 40 ms as specified by the fdelay at line 8. Note,

when compute returns a new value and writes into b, the

critical block ensures that this new value is written to

a without being interrupted by fdelay. That is, the Timed

C construct critical makes sure that the execution of the

critical block has finished before the execution of the code

fragment is aborted. The term trigger precision is used for the

extra time it takes to escape out of the critical section and jump

to the fdelay. On line 9, actuate reads a and performs

its operation with a soft deadline of 10 ms. If compute and

sense take longer than 40 ms, the previous value of a will

be used by actuate. The periodicity is still correct.

The instrumenting compiler assigns a unique id to each

timing points in a task. In the example, there are 3 timing

points (marked as TP0, TP1, and TP2 in the code), where the

initial timing point TP0 is the start of the function. There are

three code fragments, each represented as the code between two

timing points (fragments TP0-TP1, TP1-TP2, and TP2-TP1).

During the instrumentation, the compiler performs static

analysis and inserts three different types of instructions to

each code fragment. These instructions measure the absolute

arrival, start time, and finish time of the code fragment. The

instruction for measuring the arrival and start time are inserted

at the beginning of the code fragment (for instance before line

2 for fragment TP0-TP1). The instruction for measuring the

finish time is inserted at the end of the code fragment (before

line 8 in the case of TP0-TP1).

The instrumenting compiler passes the instrumented Timed C

code to the KTC compiler [31] that compiles the instrumented

Timed C code into target specific code.

B. Generation of Timing Traces
Timing traces are generated when the instrumented target-

specific binary is executed. The traces can either be generated

as a continuous log while running the real-time system on the

target platform, or as a summary log that only exports the

worst-case values, and not the whole trace.

4

1 task rts(int* a,int* b,int s){ // TP0

2 while(1){

3 sense(&s);

4 compute(b, a, s);

5 critical{

6 memcpy(a, b, 100);

7 }

8 fdelay(40, ms); // TP1

9 actuate(a);

10 sdelay(10, ms); // TP2

11 }

12 } (a)

(b)

src arrival start finish precision dst
0 0 4 30 0 1

1 40 42 52 0 2

2 50 52 91 23 1

1 90 91 100 0 2

Fig. 4: (a) Example Timed C task and (b) a partial timing trace.

Fig. 4(b) shows an example of the former approach of a

partial timing trace. Each row in the timing trace lists the

execution details of a code fragment. For efficiency of the

instrumented C code, this information is stored in a memory

buffer before it is written to the timing trace log. Each row in

the buffer contains six fields, corresponding to the columns in

Fig. 4(b). The instrumentation for measuring the arrival time

stores the src and arrival information, where src is the ID of the

source timing point, and arrival is the arrival time of the timing

point at the start of a code fragment. The instrumentation for

measuring the start and finish time store the start and finish
information, respectively. Both these calls log the total time

elapsed since the start of the task (absolute time). The successor

timing point stores the precision and dst information, where

precision is the maximal time it can take to abort a job and dst
is the identifier of the destination timing point. The precision

field stores the trigger precision, which includes platform jitter

and worst-case execution time of a critical section, if available.

From the timing trace, the BCET, WCET, and trigger

precisions for each code fragment can be computed. Recall from

Section II-B that a code fragment between two timing points

in Timed C corresponds to a GMF frame. For instance, assume

that we compute the values for the frame that corresponds to the

code fragment between timing points 1 and 2 (TP1 and TP2) in

Fig. 4. The WCET is then Cmax
1,k = max (52−42, 100−91) =

10, the BCET Cmin
1,k = min(52 − 42, 100 − 91) = 9. The

release jitter cannot be computed from the timing trace, and is

instead considered a platform specific parameter, which can be

obtained in platform-specific ways. For instance, on a Linux

system, the cyclictest tool may be used.

IV. SCHEDULABILITY ANALYSIS

The proposed end-to-end toolchain integrates a customized

and extended version of the open-source2 schedulability

analysis for non-preemptive job sets proposed by Nasri and

Brandenburg [30], which we denote as NPA for brevity. The

reason why we chose NPA as the basis for our toolchain is that

it is the only applicable response-time analysis to yield per-job
2https://github.com/brandenburg/np-schedulability-analysis

response-time bounds, which is essential for enabling a weakly

hard sensitivity analysis (as discussed later in Section V).

In the following, we summarize NPA, point out where it is

insufficient for our purposes, and then describe our extensions.

Due to space constraints, we assume the reader to have some

familiarity with NPA at a high level and refer to [30] for details.

A. Background and Overview
NPA [30] assesses the schedulability of a given finite set

of jobs under a given JLFP scheduler by exploring the space

of all possible schedules of the jobs that the scheduler can

generate. NPA can be applied to analyze recurrent workloads

(i.e., infinite job sets generated by, for instance, periodic tasks)

if it is possible to determine a finite observation window such

that the absence of deadline misses in the observation window

implies the absence of deadline misses altogether.

To effectively search the extremely large space of possible

schedules, NPA relies on the notion of a schedule-abstraction
graph, which allows for an aggregation of schedules with

similar properties (i.e., scenarios that lead to similar scheduling

decisions). A schedule-abstraction graph is a directed acyclic

graph (DAG) whose edges represent jobs (i.e., code segments

executed non-preemptively) dispatched by the scheduling

algorithm, and whose vertices represent time intervals during

which the last-scheduled job on any incident path may complete

its execution in any of the schedules represented by the path.

For example, Fig. 5 shows a job set and its equivalent

schedule-abstraction graph under FP scheduling. This job set

has been generated for an observation window of length 27 for

two GMF tasks τ1 and τ2, where τ1 has higher priority than

τ2. Each edge represents a job that is scheduled after a system

state represented by its source vertex. Each path represents

an ordering of the execution of different jobs. For example,

the path 〈v1, v2, v4, v5〉 represents the execution of J1, J6, and

J4 in that specific order. Each vertex vi is associated with an

interval delimited by the earliest and latest finish time of the last

job scheduled on any path that connects v1 to vi. For example,

the earliest and latest finish time of J1 when it is scheduled

after v3 are 4 and 6, respectively. Similarly, the earliest and

latest finish time of J6 when it is scheduled after v2 are also

4 and 6, respectively. The fact that scheduling J1 after v3 and

scheduling J6 after v2 lead to the same state (i.e., vertex) is

essential for searching the space of all possible schedules (i.e.,

it is the result of deliberate search-space pruning).

The graph is explored using a breadth-first approach that

alternates between two phases: expansion and merging. During

the expansion phase, every leaf vertex is expanded by adding an

edge for each of the not-yet-scheduled jobs that can potentially

be scheduled after that leaf vertex by the given JLFP scheduling

policy. For instance, in the example in Fig. 5, at time 0

(represented by the initial vertex v1), jobs J1 and J6 are the

only jobs that can potentially be executed after v1. On the one

hand, if J1 is released at time 0, it will be the highest-priority

ready job and hence will be dispatched, which is represented

with a new vertex v2 that is connected to v1 with an edge

labeled J1. On the other hand, if J1 is not released at time

5

0 2 𝜏1
𝐽3
20 22 23

𝑑3𝐽1
10 12

𝐽2ℱ1,1
ℱ1,2

3

𝑑1
13

𝑑2
10

𝑑4
𝐽6𝜏2 𝐽7
0 10 14

𝑑6
24

𝑑7𝐽8
20

8

𝐽4
20

𝑑5
18

𝐽5

𝑂1,1 = 0𝑂1,2 = 8𝑂2,1 = 0

𝐽1 0 2 1 2 3 soft 1 𝐽2 10 12 1 2 13 soft 1 𝐽3 20 22 1 2 23 soft 1𝐽4 8 8 1 3 10 soft 1 𝐽5 18 18 1 3 20 soft 1 𝐽6 0 0 3 4 14 soft 2 𝐽7 10 10 3 4 24 soft 2 𝐽8 20 20 3 4 34 soft 2

𝐽𝑖 𝑟𝑖 𝑚𝑖𝑛 𝑟𝑖 𝑚𝑎𝑥 𝑐𝑖𝑚𝑖𝑛 𝑐𝑖𝑚𝑎𝑥 𝑑𝑖 𝛾𝑖 𝜋𝑖
1 6
11 17
21 27
9 11
19 21
3 6
13 17
23 27

𝑓𝑖𝑚𝑖𝑛 𝑓𝑖𝑚𝑎𝑥

𝐽1[0, 0]

[1, 2]

[9, 11]

𝐽1
[3, 4]

𝐽6 [4, 6]

𝐽6 𝐽4 𝐽2
[11, 12]

𝐽2
[13, 15]

𝐽7
𝐽7 [14, 17] [19, 21]

𝐽5 𝐽3
[21, 22]

𝐽3
[23, 25]

𝐽8
𝐽8 [24, 27]

𝑂𝑚𝑎𝑥 = 8𝐻 + 𝑂𝑚𝑎𝑥 = 18𝑂𝑊 = 27

(a) (b)

(c)𝑣1 𝑣2
𝑣3

𝑣6
𝑣7𝑣4 𝑣5 𝑣10

𝑣11𝑣8 𝑣9 𝑣12
ℱ2,1

Fig. 5: A job set and its equivalent schedule-abstraction graph in the observation window [0, 27].

0 due to experiencing release jitter (note that rmin
1 = 0 and

rmax
1 = 2), then job J6 will be the highest-priority ready job

at time 0. This is recorded by the creation of v3 with a finish-

time interval [3, 4] connected to v1 with an edge labeled J6.

To determine the eligible jobs that can follow a given vertex

during the expansion phase, NPA implements a set of rules

that will be described with more detail in Section IV-C.

During the merge phase (which directly follows the expan-

sion phase), all paths from the initial vertex to leaf vertices of

the expanded graph that include the same set of jobs and have

intersecting time intervals are merged. For example, in Fig. 5(c),

after the expansion of v2, a vertex v′
2 = [4, 6] connected by

an edge with label J6 will be created. Similarly, after the

expansion of v3, a vertex v′
3 = [4, 6] connected by an edge

with label J1 will be created. These two new leaf vertices are

collapsed into a single vertex v4 during the merge phase since

the path from v1 to v′
2 references the same set of jobs (i.e.,

{J1, J6}) as the path from v1 to v′
3, and the intervals of v′

2

and v′
3 intersect. Thanks to the merge phase, at the end of each

busy window, i.e., an interval of time where the processor may

remain continuously busy, the graph has only one leaf vertex.

To summarize, for a given job set, NPA [30] iteratively

explores its schedule-abstraction graph, which represents the

space of all possible schedule. Each job’s earliest- and latest-

possible finish times can be trivially inferred from the graph.

B. Challenges and Open Problems
Extending NPA to Timed C programs presents several

challenges. First, NPA assumes that all jobs are independent;

it is thus oblivious to the precedence constraints among frames

of the same task. The issue appears if, for example, a task

has a relative deadline exceeding its period (i.e., an arbitrary

deadline), or when a job with a soft timing point becomes tardy

or does not even start its execution by its deadline. If such jobs

are falsely assumed to be independent, then the analysis may

choose any of the not-yet-scheduled code segments of a task

to execute next, including code segments whose predecessors

have not yet been completed. As such, the analysis may include

an impossible scenario in the schedule abstraction graph, which

may lead to optimistic and hence possibly unsafe results.

Second, NPA assumes that all jobs run to completion, i.e., it

does not support segment abortion at the boundary of fdelay

timing points in Timed C programs. Clearly, aborting segments

has a large impact on the space of possible schedules.

Third, to the best of our knowledge, prior work has not

yet established a safe finite observation window OW for soft

real-time GMF tasks, without which NPA cannot be applied.

C. Analysis Extensions
We next explain how we extended NPA to include code

abortion and precedence constraints. In Section IV-D, we show

how to obtain a safe observation window for GMF tasks.

1) Supporting Code Abortion:
a) Job eligibility: For each state reachable in the schedule-

abstraction graph and for every incomplete job Ji, NPA

computes the earliest- and latest-possible start times EST i and

LST i, respectively, to determine whether it may be dispatched

next. As in the original analysis [30], a soft-deadline job (i.e.,

a job corresponding to a soft timing point) may be the next

job scheduled if and only if:

EST i ≤ LST i. (1)

Ineq. (1) does not consider the job’s deadline when checking

whether it is eligible for execution. However, a firm-deadline
job (i.e., a job corresponding to a firm timing point) never

commences execution past its deadline. Therefore, a firm-

deadline job Ji may be the next job dispatched on the platform

by the scheduler if and only if Eq. (1) is respected and its

deadline is later than its earliest start time, i.e., EST i < di.
If the latter condition is not respected, then the job cannot be

scheduled since it is not able to start before its deadline.

For example, suppose J1 has a firm deadline in the example

in Fig. 5. As a result, during the expansion phase of vertex v3,

J1 will no longer be a candidate to follow v3 since EST 1 = 3,

which is not strictly less than its deadline d1 = 3.

b) Job completion time: If Ji is the next job scheduled on

the platform, and no job abortion must take place (i.e., if Ji has

a soft deadline), the earliest and latest finish times EFT i and

LFT i, respectively, are simply given by EFT i = EST i+cmin
i

and LFT i = LST i + cmax
i .

6

In contrast, if Ji has a firm deadline, it will be aborted

by the scheduler when reaching its deadline. Hence, we must

first compute the earliest and latest possible times EAT i and

LAT i at which the job may be aborted because of overshooting

its deadline. Those are respectively computed as EAT i =
di + clmin and LAT i = di + trmax

i + clmax, where clmin

and clmax are the minimum and maximum execution times

of the cleanup and rollback functions called when a job is

aborted, and trmax
i is the maximum delay that may be suffered

by the interrupt triggering the abortion due to, for instance,

the execution of a critical section or timer imprecision.

Consequently, the earliest and latest finish times of a firm-

deadline job Ji are given by the following equations:

EFT i = min
{
EAT i, EST i + cmin

i

}
(2)

LFT i = min {LAT i, LST i + cmax
i } (3)

For example, let J4 have a firm deadline in the example of

Fig. 5 and assume that both clmax and trmax
4 are zero. During

the expansion of vertex v5, we will thus have EST 4 = 8,

LST 4 = 8, EAT 4 = 10 and LAT 4 = 10. Hence, EFT 4 = 9
and LFT 4 = min{10, 8 + 3} = 10, meaning that J4 will

complete at the latest by time 10.

The proof of correctness in [30] transfers to our extensions

as they rely only on the fact that the earliest and latest start

and finish times of the scheduled jobs are indeed lower and

upper bounds on their actual release and completion times.

2) Supporting precedence constraints: Since we must sup-

port precedence constraints to analyze the timing behavior of

Timed C programs, we denote the set of predecessors of a

job Ji by pred(Ji). All jobs in pred(Ji) must complete their

execution before Ji can start executing.

For single-core platforms, extending the analysis to support

precedence constraints is rather straightforward. One must

simply add the following rule to the eligibility conditions

defined in the previous section: a job Ji is eligible for execution
in system state S only if all jobs in pred(Ji) already appear in
the path leading to state S in the schedule abstraction graph.

Since a job appears on a path in the graph if and only if

it has been scheduled in the execution scenario modeled by

that path, the condition boils down to checking that all jobs in

pred(Ji) have already been scheduled.

D. Obtaining a Finite Observation Interval
NPA analyzes the response time of every job that may be

released in a finite observation window that is representative
of the recurrent workload (i.e., infinite job set) in the sense

that analyzing the observation window is sufficient to ensure

temporal correctness in general. However, to the best of our

knowledge, no safe bound on the observation window length

for soft real-time task systems is known form prior work. Since

Timed C programs may contain soft timing points and hence

generate jobs with soft deadlines, we must provide a condition

that indicates when the analysis may safely be stopped.

In this section, we make the following assumptions, which

are met in the context of our toolchain: (1) the analysis is run

with cmin = 0 for all jobs, (2) the hyperperiod H of the task

set is known and, without loss of generality, (3) at least one

task releases a job at time 0.

It is well-known that the job release pattern of a set of

periodic tasks that respects (2) and (3) is periodic with period H
from time Omax onward. Two cases must thus be considered:

1) All jobs released in the hyperperiod finish their execution
by time H + Omax. In that case, there is no workload

carried over from one hyperperiod to the next. Thus,

the worst-case response time of every job in subsequent

hyperperiods (i.e., every interval [Omax + k ·H,Omax +
(k + 1) · H) with k ∈ N) will be lower than or equal to

that in the interval [Omax, H + Omax). Consequently,

the analysis can safely stop after the first hyperperiod

extended by Omax.

2) Some jobs released in the hyperperiod do not finish their
execution by H + Omax. In that case, there is some

workload that is carried over from one hyperperiod to

the next. Hence the analysis must continue since the

system state at the beginning of the second hyperperiod

is different from the system state at the beginning of

the first hyperperiod. Now, let tidle > H +Omax be the

first instant after H + Omax such that the processor is

certainly idle. That is, there is only one system state in

the schedule abstraction graph with no job running at

time tidle and all not-yet-scheduled jobs have an earliest

start time EST i larger than tidle . Then, the analysis can

be safely stopped at time tidle .

Case 2 in the above discussion relies on Assumption (3), that

is, that the analysis is performed with cmin = 0 for all jobs

until time tidle . Since all jobs before tidle may execute for zero

time, the case where the processor is idle is also one of the

possible system states considered in the schedule abstraction

graph for time (tidle − H). Therefore, all system states that

may be reached from the state at tidle can also be reached

from the system states already explored at time (tidle − H).

The analysis can thus safely stop at tidle .

Next, we derive an upper bound on time tidle by extending

the classic notion of busy windows to our model. Specifically,

we bound tidle with the following fixed-point recurrence:

t(0) = 0 (4)

t(1) = min
∀Jj∈J

{rmax
j } (5)

t(i) = t(i−1) +
∑

{Jj | t(i−2)<rmax
j ≤t(i−1)}

cmax
j (6)

The recursion stops if the following condition is satisfied.

(t(i) = t(i−1)) ∧ (t(i) ≥ H + Omax) ∧
(∄Jj , rmin

j ≤ t(i) < rmax
j) (7)

If at any point, t(i) = t(i−1) but ∃Jj , rmin
j ≤ t(i) < rmax

j

or t(i) < H + Omax, then the next t(i) is advanced to the

beginning of a busy window as follows.

t(i) = min{rmax
j | t(i) < rmax

j } (8)

7

Algorithm 1: Bounding the observation window length

1 tp ← 0;
2 t← min{rmax

j };
3 while t 6= tp do
4 tn ← t+

∑

{cmax
j | tp < rmax

j ≤ t};
5 if

(tn = t) ∧
(

∃Jj |rmin
j ≤ tn < rmax

j ∨tn < H+Omax
)

then
6 tn ← min{rmax

j | tn < rmax
j };

7 end
8 tp ← t;
9 t← tn;

10 if t > tthreshold then
11 Abort;
12 end
13 return t;
14 end

Eq. (8) guarantees that the search for the end of a busy

window continues until t(i) becomes larger than or equal to

H+Omax. Further, if t(i) = t(i−1)∧∄Jj , rmin
j ≤ t(i) < rmax

j ,

then the processor is certainly idle at t(i) because t(i) = t(i−1)

entails that any job that has been certainly released before t(i)

has certainly completed by t(i), and ∄Jj , rmin
j ≤ t(i) < rmax

j

entails that there is no job that may be released before or at

time t(i). Hence, when the recursion ends, t(i) is equal to an

instant where the processor is certainly idle in any possible

execution scenario. It thus upper-bounds tidle and hence is a

safe bound on the length of the observation window.

Algorithm 1 summarizes the computation of the fixed-point

iteration to obtain an upper bound on tidle using the equations

derived above. As such fixed point is not guaranteed to exist

(e.g., if the processor is overloaded), Algorithm 1 is aborted
if no fixed point is found before a configurable threshold is

reached and no further analysis of the workload is possible. If

Algorithm 1 terminates before reaching the threshold, then it

returns a valid upper bound on the observation window length.

V. SENSITIVITY ANALYSIS

Our end-to-end toolchain analyzes the sensitivity of the

system w.r.t. each frame’s WCET under weakly hard timing

constraints. A weakly hard real-time task τi is feasible if any ki
consecutive jobs of a task exhibit at most mi deadline misses.3

The toolchain calculates the WCET margins for the strongest

still-satisfied (M,K) specification, where M = m1+ · · ·+mN

and K = {k1 , . . . , kN }. That is, given a window length ki for

each task, it bounds the largest scaling factor ∆max by which

all WCETs can be scaled so that the sum of the individual

deadline-miss bounds m1, . . . ,mN does not exceed M , where

each mi is determined w.r.t. the given ki.

A. Motivating Example

Consider a GMF task set {τ1, τ2}, where τ1 has two frames

with arrival times A1,1 = 10 ms and A1,2 = 30 ms (and hence

3Bernat et al. [18] defined an (m, k) weakly hard real-time constraint to
denote that a least m jobs meet their deadlines in any k consecutive executions.
In contrast, we define m to show the number of missed deadlines since it
simplifies the presentation and reasoning about the analysis.

(a)

0 0 0 0 0 0 0 0 0 0

0 0 0 0

τ1

τ2 ∆=1.24
m1 = 0,m2 = 0,M = 0

(b)

0 0 1 0 0 0 0 0 0 0

0 0 0 0

τ1

τ2 ∆=1.71
m1 = 1, m2 = 0, M = 1

(c)

0 0 1 0 0 0 0 1 0 0

1 0 0 0

τ1

τ2 ∆=1.98
m1 = 1, m2 = 1, M = 2

(d)

0 0 1 0 0 0 1 1 0 0

1 0 0 0

τ1

τ2 ∆=2.81
m1 = 2, m2 = 1, M = 3

Fig. 6: The outcome of executing two tasks τ1 and τ2 as the WCETs
of the two tasks are increased.. A value of 1 denotes a deadline miss.

T1 = 40), and τ2 has one frame with arrival time A2,1 = 50 ms

(and hence T2 = 50). Both tasks have an offset of zero. Thus,

the observation window of this task set is H = 200 and

includes five instances of τ1 (each with two frames) and four

single-frame instances of τ2. Suppose we set k1 = k2 = 2 to

gain insight into whether back-to-back misses are possible.

Fig. 6(a) shows the analysis outcome for the observation

window assuming WCETs are scaled up by ∆ = 1.24, where

no deadline misses occur yet. Thus, M = m1 + m2 = 0.

After further increasing the WCETs by a factor of ∆ = 1.71,

we observe a first deadline miss in τ1, as indicated in Fig. 6(b).

We thus have m1 = 1 and m2 = 0, yielding M = 1.

Next, in the scenario shown in Fig. 6(c), ∆ has been

increased to 1.98. As a result, in addition to the 3rd job of τ1,

its 8th job now also misses its deadline. However, despite the

two deadline misses, we still have m1 = 1 since m1 is the

largest number of deadline misses in any two consecutive jobs

of τ1 (recall that k1 = 2). The 1st job of τ2 now also misses

its deadline, which implies m2 = 1. Hence, M = 1 + 1 = 2.

Finally, Fig. 6(d) shows an execution scenario in which the

7th instance of τ1 also misses its deadline due to a further

increase of all WCETs by a factor of ∆ = 2.81. Now, the

largest number of deadline misses in any two consecutive jobs

of τ1 is 2, and therefore M = m1 + m2 = 2 + 1 = 3.

The example highlights how more deadline misses become

possible as WCETs increase. The overall goal of the (M,K)
sensitivity analysis is to report the largest WCET increase (i.e.,

the largest scaling factor ∆) that does not cause M to exceed

a given threshold. The analysis also yields for each task the

“steps” of its mi value, which allows developers to reason about

the implications of WCET overruns on each individual task.

B. Sensitivity Analysis Overview
Our toolchain performs an (M,K) sensitivity analysis by

computing scaling factors between 0 and an upper bound that

results in a change to M (for a given set K). Fig. 7 illustrates

how M relates to the scaling factor ∆. For example, around

8

Algorithm 2: sensitivityAnalysis()

1 Msup ← calcMisses(∆sup);
2 ∆min ← {∆sup | i ∈ 0..Msup};
3 ∆min

0 ← 0;
4 ∆max ← {0| i ∈ 0..Msup};
5 ∆max

Msup ← ∆sup ;

6 i← 0;
7 while i < Msup do

8 u← min({j| i < j < Msup ∧∆min
j < ∆sup}∪{Msup});

9 (∆min ,∆max , i)← bsearch(∆min ,∆max , i, u);
10 end

Algorithm 3: bsearch(∆min ,∆max , l, u)

1 if (∆min
u −∆max

l < ǫ) then

2 return (∆min ,∆max , u);
3 end
4 else

5 ∆mid ←
∆min

u +∆max
l

2
;

6 M ← calcMisses(∆mid);
7 ∆′ min ← ∆min ;
8 ∆′ max ← ∆max ;

9 ∆′ min
M ← min

(

{∆mid ,∆
min
M

}

);
10 ∆′ max

M ← max
(

{∆mid ,∆
max
M

}

);

11 u′ ←

{

u, l = M

M, l 6= M
;

12 bsearch(∆′ min ,∆′ max , l, u′);
13 end

Algorithm 4: calcMisses(∆)

1 J ′ ← J ;
2 c′max ← {∆ · cmax

i | i ∈ 1..|J ′|};
3 (F ′min , F ′max)← schedulabilityAnalysis(J ′);
4 M ← 0;
5 foreach i ∈ 1..|K| do

6 L ← {d′
j − f ′max

j | j ∈ 1..|J ′|, i = δ(j)};
7 M ′ ← 0;
8 foreach j ∈ 1..|L| do

9 M ′ ← max
(

M ′,
j+ki −1
∑

p=j

{

0, Lf(p) ≥ 0

1, Lf(p) < 0

)

,

where f(x) =
(x− 1) mod |L|+ 1 and Lf(x) ∈ L;

10 end

11 M ←M +M ′;
12 end
13 return M ;

∆ ≈ 1.5, there is a discontinuity where M increases from 0

to 1. Another “step” from 1 to 2 occurs around ∆ ≈ 1.8.

To reason about these ranges, we let [∆min
x ,∆max

x] denote an

interval such that M = x if ∆ ∈ [∆min
x ,∆max

x]. For example,

M = 1 as long as ∆ ∈ [∆min
1 ,∆max

1]. Conversely, the step

from 1 to 2 occurs for some ∆ ∈ (∆max
1 ,∆min

2). The goal of

our sensitivity analysis is to find a close lower bound on ∆max
x

for each x ∈ {0, 1, 2, . . .}, up to some upper bound ∆sup on

the maximum scaling factor of interest. The ∆sup value is

computed by considering (i) a user-specified utilization cap on

the acceptable total utilization of the system (100% by default),

(ii) a user-provided limit of interest li for each task τi, which

M

0 1 2 3 4

scaling factor

1.5 1.8 2.1 2.9∆min
0 =0 ∆min

1 ∆min
2 ∆min

3 ∆min
4

∆max
0 ∆max

1 ∆max
2 ∆max

3 ∆sup=3.3

ǫ ǫ ǫ ǫ

Fig. 7: The relation between M and scaling factor ∆

The maximum initial upper bound for J * ∆sup
The total number of deadline misses M

The mapping of misses to its minimum scaling factor ∆min = {∆min
0 , . . . ,∆min

M }
The mapping of misses to its maximum scaling factor ∆max = {∆max

0 , . . . ,∆max
M }

The number of jobs in observation window for τ L = {L1 , . . . , LN }
The output of the schedulability analysis (Fmin , Fmax)
The maximum permissible error* ǫ
The number of consecutive window for τ* K = {k1 , . . . , kN }
Function mapping job id to its task id* δ : N→ N
Set of jobs, in a given observation window* J

Fig. 8: Notation. The four last rows marked with (*) specify

implicit values that are available in all algorithms.

bounds the largest mi value that is of interest to the user (by

default, li = ki), and (iii) by computing an upper limit based

on the slack of the original task set. To speed up this process,

random simulations of the observation window (rather than the

analysis presented in Section IV) are used to estimate a lower

bound on each mi (and hence M) since determining ∆sup
is not soundness-critical. The complete sensitivity analysis is

given in Algorithms 2 to 4. Fig. 8 summarizes our notation.

We explain the analysis with the example in Fig. 7, in

which ∆sup = 3.3. The sensitivity analysis computes the

maximum scaling factor ∆max
M for each M ∈ {0, 1, 2, 3} as

follows. Suppose M = 1 and ∆ ∈ [1.5, , 1.8]. For each M ,

the algorithm initializes ∆max
M to 0 and ∆min

M to ∆sup . Since

we already know that the minimum scaling factor for M = 0
is 0 and that the maximal scaling factor for M = 4 is 3.3, the

algorithm updates ∆min
0 to 0 and ∆max

4 to 3.3. In the next

step, for each possible value of M ∈ {0, 1, 2, 3}, the sensitivity

analysis determines ∆min
M and ∆max

M with a binary search.

To compute ∆max
M , the sensitivity analysis specifies the

search boundaries between the current value of ∆max
M and

an upper bound that is less than or equal to ∆sup . Although

the binary search executes between two scaling factors, the

sensitivity analysis specifies the search boundaries in terms

of M , which in turn is used to calculate the boundaries of

the scaling factor, for reasons that will become apparent later

in this section. For instance, to compute ∆max
0 the algorithm

searches between ∆max
0 = 0 and ∆min

4 = 3.3. For the given

search boundaries, the algorithm computes the scaling factor in

the middle, denoted ∆mid . It computes M from ∆mid based

on the schedulability analysis results (Section IV), assuming

the WCET of the input is scaled by ∆mid .

Continuing the example, during its first iteration while

computing ∆max
0 , the binary search algorithm computes

∆mid = (0 + 3.3)/2 = 1.65. From the schedulability analysis,

we obtain that a scaling factor 1.65 results in M = 1. Then

both ∆max
1 and ∆min

1 are updated to 1.65. Since M 6= 0 at

∆mid , the second iteration executes with updated boundaries 0
and 1 between scaling factors ∆max

0 = 0 and ∆min
1 = 1.65. In

the second iteration, ∆mid is computed as 0.83 = (0+1.65)/2.

9

5	 6	

35	

677	

2,192	

11	
22	

433	

7,781	

24,908	

1	

10	

100	

1000	

10000	

100000	

4	 8	 12	 16	 20	

R
u
n
0
m
e
	(
s)
	

Number	of	tasks	

Median	

Average	

.90	Percen0le	

.98	Percen0le	

(a) Runtime

0	

20	

40	

60	

80	

100	

0	 4	 8	 12	 16	 20	

S
u
c
c
e
s
s
	r
a
)
o
	

Number	of	tasks	

(b) Success ratio

11	
14	 15	 15	 15	16	

19	
22	

25	 25	

0	

5	

10	

15	

20	

25	

30	

4	 8	 12	 16	 20	

#	
ca

lls
	to

	sc
he

d.
	a

na
ly

si
s	

Number	of	tasks	

Average	 .90	Percentile	 .98	Percentile	

(c) Calls to schedulability analysis

0	

5000	

10000	

15000	

20000	

25000	

0	 4	 8	 12	 16	 20	

	#
	j
o
b
s	
in
	o
b
s.
	w
in
d
o
w
	

Number	of	task	

(d) Problem size

0	

5	

10	

15	

20	

25	

0	 4	 8	 12	 16	 20	

M
a
x
im

u
m
	s
ca
li
n
g
	f
a
ct
o
r	

Number	of	tasks	

(e) Scaling factor vs. number of tasks

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

20	

22	

0	 0.5	 1	 1.5	

M
a
x
im

u
m
	S
ca
li
n
g
	F
a
ct
o
r	

Total	U3liza3on	

(f) Scaling factor vs. utilization

Fig. 9: Results of the scalability experiment. Inset (f) shows the maximum scaling factor (∆sup) relative to the total utilization of

unscaled task sets. Task sets with a utilization larger than one are scaled down and the maximum scaling factor is thus below one.

Suppose that the schedulability analysis indicates M = 0 for

∆ = 0.83; then ∆max
0 is updated to 0.83. Note that ∆min

0 is

not updated since its current value 0 is less than the computed

value 0.83. Since M at ∆mid is 0, the third iteration executes

with search boundaries 0 and 1. However, since ∆max
0 was

updated in this iteration, the next step is performed between

scaling factors ∆max
0 = 0.83 and ∆min

1 = 1.65. In the third

iteration, ∆mid is computed as 1.24 = (0.83 + 1.65)/2. If

M = 0 for ∆ = 1.24, then ∆max
0 is updated to 1.24. Finally,

since ∆min
1 −∆max

0 = 1.65−1.24 = 0.41 is less than ǫ = 0.5,

the algorithm terminates. As the largest observed scaling factor

resulting in M = 0 is ∆max
0 = 1.24, the end-to-end toolchain

reports 24% as the WCET margin for M = 0.

VI. EVALUATION

We evaluated two aspects. First, in VI-A, we report on an

experiment conducted to evaluate the scalability of the end-to-

end toolchain (w.r.t. the number of tasks). Thereafter, in VI-B,

we present a case study that exhibits how the toolchain provides

useful insights into an application’s temporal robustness.

A. Scalability

Experimental Setup: We ran the end-to-end toolchain within a

Docker environment on an Intel Xeon Gold 6148 CPU clocked

at 2.40 GHz. Timing traces were obtained by executing the in-

strumented Timed C code on a Raspberry Pi 2 Model B, which

features an ARM Cortex A7 CPU clocked at 900 MHz, running

the Raspbian Linux distribution with the PREEMPT RT kernel

patch in place. In all our experiments, we applied the Rate-

Monotonic scheduling policy. Non-preemptive scheduling was

enacted on Raspbian OS by assigning each code fragment a

reserved (i.e., the highest) priority at the start of its execution,

and reverting to its normal priority at the next preemption point.

The system calls necessary for these priority adjustments are

automatically inserted by the Timed C compiler.

Task sets were generated randomly following the period

distribution of an automotive benchmark [25]. Recall that the

period of a GMF task is the sum of the periods of its frames.

The periods were sampled from the set {1, 2, 5, 10, 20, 50,

100, 200, 1000} ms according to the distribution reported by

Kramer et al. [25]. The experiment was carried out for 4 to 20

tasks in increments of 4. In total, we generated 250 different

valid task sets (50 each for N ∈ {4, . . . , 20}). A generated

task set was treated as invalid and discarded if ∆sup is close

to zero (less than epsilon) and some task’s limit of interest is

violated (i.e., mi > li). The number of frames in each task

ranged from 1 to 4. We randomly varied the workload by

repeatedly running selected functions from MiBench [20].

Execution-time estimates were obtained by observing 100
iterations of each task on the target platform. We used Linux’s

cyclictest tool to measure the platform-induced release

jitter on the target platform and observed a maximum jitter

of 356 µs in a 30-minute benchmark. In this evaluation, we

used 0.98 as the utilization cap (leaving 2% of the system’s

capacity for OS overheads), 4 as the limit of interest, 10 as

the window of interest (k), and 0.05 as the epsilon resolution.

Results: Fig. 9a shows the runtime of the end-to-end

toolchain as a function of the number of tasks. Fig. 9b shows

the success rate of the end-to-end toolchain, where a run is

considered successful when a call to the schedulability analysis

completes without timeout (30 minutes). Figs. 9a and 9b show

that task sets consisting of at most 12 tasks could be processed

10

by the end-to-end toolchain within a few seconds to a few

minutes. They also show that, as the number of tasks increases,

the runtime of the toolchain and number of timeouts increases

considerably, too. Fig. 9c depicts the number of invocations of

the schedulability analysis as a function of the number of tasks.

Though there is only a modest increase in the number of calls of

the schedulability analysis, the time required for each invocation

grows substantially as the problem size increases (see Fig. 9d).

Additionally, the maximum scaling factor computed by the

sensitivity analysis pushes each task set to the limit of its

schedulability, which in turn drastically increases the number

of system states and possible schedules that the schedulability

analysis must explore. As a result, timeouts become more

frequent for larger workloads (Fig. 9b).

Figs. 9e and 9f show the maximum scaling factor as a

function of the number of tasks and the total utilization, respec-

tively. Unsurprisingly, the maximum scaling factor decreases

as the system’s capacity is approached by increasing either

the number of tasks or per-task utilizations, which reflects

that more heavily-loaded systems have less slack, and are thus

temporally less robust (i.e., WCET margins are smaller). A

key contribution of our end-to-end toolchain is to quantify
this effect, and to expose it to the developer in a simple and

actionable manner, as we highlight next with a case study.

B. Case Study
To demonstrate the benefits of the overall methodology, we

constructed a synthetic case study inspired by an autonomous

unmanned aerial vehicle (UAV). The parameters and dependen-

cies of the task graph are based on the Paparazzi project [32].

This case study is synthetic since, although the task set and

its parameters are based on a real project, the actual tasks that

execute on our embedded platform are nonfunctional dummy

tasks for ease of experimentation, and the experiment does not

involve an actual UAV in operation. This simplifying approach

is sufficient for our purposes since only the timing analysis

and the task graph are needed to study how the proposed

methodology and weakly hard sensitivity analysis can be used

to explore the temporal robustness of a realistic task set.

Task set: The Paparazzi UAV is controlled by two 16 MHz

microcontrollers [32]. In this case study, we study a consol-

idated setup where all tasks run on a single 32-bit 80 Mhz

microcontroller, as shown in Figs. 10a and 10b. There are ten

periodic tasks, with task T4 being a multi-frame tasks consisting

of four frames. In comparison to the original Paparazzi task

set, our workload features two additional tasks that estimate

the UAV’s position when GPS signals are not available. Each

task is realized as a separate Timed C task, where task T4

models dependencies among its four subtasks (frames).

Experimental Setup: We obtained the timing traces by exe-

cuting the instrumented Timed C implementation on a ChipKIT

Max32 board with a 80 MHz 32-bit MIPS processor, running

FreeRTOS version 10.2.1, with non-preemptive cooperative

FP scheduling. The sensitivity analysis was performed on a

MacBook Pro with two 3.1 GHz cores and 16 GB memory,

running Docker Desktop Community 2.1.0.3. In our case study,

T2

ID Description Frames Frequency	

T1 Distance	and	LIDAR	sensors 1 4Hz
T2 Particle	filter 1 4Hz
T3	 Receiving	GPS	signals	 1 4Hz
T4 Control	(set	of	subtasks) 4 4Hz
T5 Stabilization 1 20Hz
T6 Reporting	task 1 10Hz
T7 Receive	radio	commands 1 40Hz
T8 Manage	radio	commands 1 40Hz
T9 Check	for	fail-safe	handling 1 20Hz
T10 Transmit	to	servos 1 20Hz

T3

T4

T1

T10
T5

T6
T8T7

T9

Misses WCET Margin

0 1.55456852792

1 1.8654822335

2 2.02093908629

3 2.17639593909

5 2.25412436548

6 2.33185279188

7 2.40958121827

(a)

(b)

(c)

Fig. 10: Task set used in the UAV case study, based on the Paparazzi
UAV project [32]. Edges indicate dependencies among tasks.

the (synthetic) tasks exhibited a total utilization of less than one

on the deployment platform. That is, intuitively, the system has

some slack to cope with WCET increases—but just how much

of a margin for error is there? Our toolchain answers exactly

this question in a developer-friendly, easy-to-understand way.

Results and discussion: Three aspects are of interest: (i) how

much of a WCET margin is there before any of the critical

tasks miss a deadline, (ii) what are the margins of the tasks

that are allowed to experience a limited number of misses,

and (iii) how would the margins change if certain tasks are

optimized and their execution time reduced? To express that

most tasks should not miss their deadlines, we configured the

tool with ki = 1 and the limit of interest li = 1 for all tasks

except for tasks T2 and T6. To ensure that task T2 (particle

filter) does not miss more than 3 deadlines in a row, we set

k2 = 3 and l2 = 3. Configured like this, and with a utilization

cap of 0.98, the toolchain requires less than 7 s of runtime to

report the WCET margins listed in Fig. 10c.

We observe that all WCETs can be scaled by factor of up to

1.5545 (55.45%) without resulting in any misses, which gives

the developer an intuitively meaningful, quantified notion of

the system’s temporal robustness due to the available slack. At

most one miss (M = 1) can occur until the WCET increase

exceeds a factor of 1.8654. By inspecting the per-task tool

output (omitted from Fig. 10c for space reasons), we see that

m1 = 1, which means that the temporal correctness of (only)

task T1 can no longer be guaranteed at this point. Similarly,

we can inspect what tasks are the reasons for different margins.

For instance, the margin until the particle filter incurs up to

m2 = 2 misses within any window of k2 = 3 jobs is 2.2541.

In summary, this brief case study illustrates how an engineer

can use the information provided by the toolchain to optimize

the temporal robustness of a system and gain detailed insights

into which tasks are vulnerable to experience deadline misses,

in which order tasks will experience a degradation in temporal

robustness, how frequent deadline misses become as WCETs

11

increase, and, perhaps most importantly, how large the margin

of error w.r.t. WCET estimates is before anything goes wrong.

Inarguably, such details are more useful to engineers than a

simple “yes/no” analysis result based on uncertain assumptions.

VII. RELATED WORK

Programming with time: Several programming languages

(such as Esterel [7], Lustre [33], Signal [26], Ada [12], and the

real-time extension to Java, RTSJ [29]) and modeling languages

(such as UML MARTE [1], Modelica [2], and Ptolemy [34])

provide explicit timing constructs. However, most small-scale

embedded systems are programmed in C, which lacks timed

semantics. Adding a notion of time to C programs can be done

by either using APIs provided by operating systems [11] or

language extensions such as Real-Time Concurrent C [17] and

Timed C [31]. Of these, Timed C is an attractive choice for our

purpose since with only a few timing constructs it is general

enough to support various task models such as GMF tasks.

Timing Analysis: There is a rich established literature

on WCET analysis of real-time applications, and many static

timing analysis tools are available (e.g., [4, 6, 10, 15, 24,

28]. However, a major challenge for any of these tools is

the analysis of modern complex hardware architectures. As

a consequence, recent research has also focused on timing-

predictable hardware [41, 48]. In contrast to the state of the art

in timing analysis, the pragmatic measurement-based approach

adopted in this paper is rather simplistic. Timing analysis in

itself is not a contribution of this paper, but the integration

of a timing analysis component is essential to obtaining an

end-to-end toolchain. In future work, it will be interesting to

also incorporate support for static WCET analysis tools as an

alternative to the current measurement-driven approach.

Schedulability Analysis: Despite much prior work on the

schedulability analysis of non-preemptive tasks on uniprocessor

platforms [8, 13, 14, 23, 30, 39, 40, 42, 46], only few

provide exact results. Further, none of these analyses yield

per-job response-time bounds as required for our weakly hard

sensitivity analysis (i.e., they yield task-level bounds, which

are insufficient for (m, k) compliance). The only prior exact

analysis that provides per-job response times [30] supports

neither precedence constraints nor job abortions (due to firm

timing points). We provide the needed extensions in Section IV.

Sensitivity Analysis: Sensitivity analysis of timing param-

eters of real-time tasks, such as deadline, period, WCET, and

offsets, has been studied by many researchers [3, 9, 21, 22,

27, 35–37, 43, 47]. These methods, however, are limited to

the preemptive execution model and do not support weakly

hard timing constraints, job abortion, or multiframe tasks as

they occur in Timed C programs. For systems with limited

preemptions, Regehr [38] proposed a random testing approach

to analyze the sensitivity of schedulability w.r.t. a tasks’ priority,

preemption threshold, and WCET. However, Regehr’s solution

does not consider precedence constraints or firm deadlines. A

system-level sensitivity analysis of WCETs w.r.t. end-to-end

deadlines based on a binary-search approach was later proposed

by Racu et al. [36, 37] and integrated in SymTA/S [21, 36].

VIII. LIMITATIONS, EXTENSIONS, AND CONCLUSION

We have introduced an end-to-end toolchain that inte-

grates (i) a programming language with timed semantics,

(ii) an analysis-aware compiler, (iii) measurement-based timing,

(iv) schedulability, and (v) sensitivity analysis. Besides the

integration aspects, the novel contributions of this paper are

extensions w.r.t. (iv) and the first weakly hard solution for (v).

By design, any of these components can be replaced or

improved individually. First off, our toolchain is based on the

Timed C language and the KTC compiler, but the basic end-to-

end principle is not limited to Timed C in any way. Another

language or compiler may be trivially incorporated as long as it

can generate sufficient instrumentation and metadata for timing

and schedulability analysis; the engineering effort would be

limited to adding support for outputting job sets in the simple

file format used by the schedulability and sensitivity analyses.

A key feature of Timed C is that it is not a new programming

language, but rather a small extension to C with a limited

set of constructs for expressing timing constrains. Hence, a

legacy program written in C without explicit timing constrains

does not have to be translated into Timed C. Instead, the

recommended approach is to view a Timed C program as a

coordination program that defines the task set, including timing

constrains such as periodicity and deadlines. Since the KTC

source-to-source compiler needs to analyze the task set as a

whole, it currently limits the scope of a Timed C program to

one compilation unit. However, existing legacy C functions

(without timing constructs) can simply be compiled separately

and linked in, and then called from Timed C tasks.

The current toolchain relies on a measurement-based ap-

proach to timing analysis, but this is a purely pragmatic

choice motivated by our target platforms and not a conceptual

limitation of the toolchain. However, actually incorporating

support for an off-the-shelf static timing analysis tool will

likely require both significant engineering effort and further

research. In particular, a static analysis of Timed C programs

would need to (i) extract the code fragments between timing

points in a format suitable for static timing analysis, and (ii)

generate sound flow facts for the extracted code fragments.

The sensitivity analysis is currently the primary scalability

bottleneck due to repeated invocations of the underlying

schedulability analysis on difficult problem instances. While

the schedulability analysis is conceptually an easy-to-replace

component, there currently exists no viable alternative because

the weakly hard sensitivity analysis requires per-job response-

time bounds, for which there is little applicable prior work. In

future work, it would be interesting and beneficial to devise a

faster sensitivity analysis that does not rely on binary search

or repeated invocations of the schedulability analysis.

Furthermore, the current schedulability analysis limits our

toolchain to limited-preemptive scheduling and regular job-

release patterns (e.g., GMF tasks). For the targeted small

microcontroller platforms, this is an ideal choice, but for

larger platforms (e.g., powerful multicore platforms) support

for preemptive and/or sporadic tasks will need to be developed.

12

IX. ACKNOWLEDGMENTS

The authors would like to thank Daniel Lundén, Elias Castegren,

Viktor Palmkvist, Oscar Eriksson, and Christian Schulte for

their valuable input and feedback. We also thank the anonymous

reviewers and the shepherd for their insightful comments

and suggestions. This project is financially supported by the

Swedish Foundation for Strategic Research (FFL15-0032) as

well as by national funds through FCT/MCTES (Portuguese

Foundation for Science and Technology), within the CISTER

Research Unit (UID/CEC/04234), by the Operational Competi-

tiveness Programme and Internationalization (COMPETE 2020)

under the PT2020 Partnership Agreement through the European

Regional Development Fund (ERDF), and by national funds

through FCT within project POCI-01-0145-FEDER-029119

(PReFECT).

REFERENCES

[1] “MARTE,” http://www.omg.org/spec/MARTE/, accessed:

2019-04-10.

[2] “Modelica and the Modelica Association — Modelica

Association,” https://www.modelica.org, accessed: 2019-

04-10.

[3] P. Balbastre, I. Ripoll, and A. Crespo, “Analysis of

window-constrained execution time systems,” Real-Time
Systems, vol. 35, no. 2, pp. 109–134, 2007.

[4] C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat,

“Otawa: an open toolbox for adaptive wcet analysis,” in

SEUS, 2010, pp. 35–46.

[5] S. Baruah, D. Chen, S. Gorinsky, and A. Mok, “General-

ized multiframe tasks,” Real-Time Systems, vol. 17, no. 1,

pp. 5–22, 1999.

[6] G. Bernat, A. Colin, and S. Petters, pwcet: A tool
for probabilistic worst-case execution time analysis of
real-time systems. University of York, Department of

Computer Science, 2003.

[7] G. Berry and G. Gonthier, “The Esterel synchronous pro-

gramming language: Design, semantics, implementation,”

Science of Computer Programming, vol. 19, no. 2, pp.

87–152, 1992.

[8] M. Bertogna and S. Baruah, “Limited Preemption EDF

Scheduling of Sporadic Task Systems,” IEEE Transactions
on Industrial Informatics, vol. 6, no. 4, pp. 579–591, 2010.

[9] E. Bini, M. Di Natale, and G. Buttazzo, “Sensitivity

analysis for fixed-priority real-time systems,” Real-Time
Systems, vol. 39, no. 1, pp. 5–30, 2008.

[10] D. Broman, “A brief overview of the KTA WCET tool,”

arXiv preprint arXiv:1712.05264, 2017.

[11] A. Burns and A. J. Wellings, Real-time systems and
programming languages: Ada 95, real-time Java, and
real-time POSIX. Pearson Education, 2001.

[12] A. Burns and A. Wellings, Concurrent and Real-Time
Programming in Ada. Cambridge University Press, 2007.

[13] Y. Cai and M. C. Kong, “Nonpreemptive scheduling

of periodic tasks in uni- and multiprocessor systems,”

Algorithmica, vol. 15, no. 6, pp. 572–599, 1996.

[14] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien,

“Controller Area Network (CAN) schedulability analysis:

Refuted, revisited and revised,” Real-Time Syst., vol. 35,

no. 3, pp. 239–272, 2007.

[15] C. Dietrich, P. Wägemann, P. Ulbrich, and D. Lohmann,

“SysWCET: Whole-System Response-Time Analysis for

Fixed-Priority Real-Time Systems,” in RTAS, 2017, pp.

37–48.

[16] C. Ferdinand and R. Wilhelm, “Efficient and precise

cache behavior prediction for real-time systems,” Real-
Time Systems, vol. 17, no. 2, pp. 131–181, 1999.

[17] N. Gehani and K. Ramamritham, “Real-time concurrent C:

A language for programming dynamic real-time systems,”

Real-Time Systems, vol. 3, no. 4, pp. 377–405, 1991.

[18] B. Guillem, A. Burns, and A. Liamosi, “Weakly hard real-

time systems,” IEEE Transactions on Computers, vol. 50,

no. 4, pp. 308–321, 2001.

[19] J. Gustafsson, A. Ermedahl, C. Sandberg, and B. Lisper,

“Automatic derivation of loop bounds and infeasible paths

for WCET analysis using abstract execution,” in RTSS,

2006, pp. 57–66.

[20] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M.

Austin, T. Mudge, and R. B. Brown, “Mibench: A free,

commercially representative embedded benchmark suite,”

in WWC-4, 2001, pp. 3–14.

[21] A. Hamann, M. Jersak, K. Richter, and R. Ernst, “Design

space exploration and system optimization with symta/s

- symbolic timing analysis for systems,” in RTSS, 2004,

pp. 469–478.

[22] J.-F. Hermant and L. George, “A C-space sensitivity

analysis of Earliest Deadline First scheduling,” in ISoLA,

2007, pp. 21–33.

[23] K. Jeffay, D. F. Stanat, and C. U. Martel, “On non-

preemptive scheduling of period and sporadic tasks,” in

RTSS, 1991, pp. 129–139.

[24] J. Knoop, L. Kovács, and J. Zwirchmayr, “r-tubound:

Loop bounds for wcet analysis (tool paper),” in LPAR,

2012, pp. 435–444.

[25] S. Kramer, D. Ziegenbein, and A. Hamann, “Real world

automotive benchmarks for free,” in WATERS, 2015.

[26] P. LeGuernic, T. Gautier, M. Le Borgne, and C. Le Maire,

“Programming real-time applications with signal,” Pro-
ceedings of the IEEE, vol. 79, no. 9, pp. 1321–1336,

1991.

[27] J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic

scheduling algorithm: exact characterization and average

case behavior,” in RTSS, 1989, pp. 166–171.

[28] X. Li, Y. Liang, T. Mitra, and A. Roychoudhury, “Chronos:

A timing analyzer for embedded software,” Science of
Computer Programming, vol. 69, no. 1, pp. 56–67, 2007.

[29] T. Mirtin, “Realtime programming language pearl-concept

and characteristics,” in COMPSAC, 1978, pp. 301–306.

[30] M. Nasri and B. B. Brandenburg, “An exact and sustain-

able analysis of non-preemptive scheduling,” in RTSS,

2017, pp. 12–23.

13

[31] S. Natarajan and D. Broman, “Timed C: An Extension to

the C Programming Language for Real-Time Systems,”

in RTAS, 2018, pp. 227–239.

[32] F. Nemer, H. Cassé, P. Sainrat, J.-P. Bahsoun, and

M. De Michiel, “Papabench: a free real-time benchmark,”

in WCET, 2006.

[33] D. Pilaud, N. Halbwachs, and J. Plaice, “Lustre: A declar-

ative language for programming synchronous systems,”

in POPL, 1987, p. 188.

[34] C. Ptolemaeus, System design, modeling, and simulation:
using Ptolemy II. Ptolemy. org Berkeley, 2014.

[35] S. Punnekkat, R. Davis, and A. Burns, “Sensitivity

analysis of real-time task sets,” in ASIAN, 1997, pp. 72–

82.

[36] R. Racu, A. Hamann, and R. Ernst, “Sensitivity analysis

of complex embedded real-time systems,” Real-Time
Systems, vol. 39, no. 1, pp. 31–72, 2008.

[37] R. Racu, M. Jersak, and R. Ernst, “Applying sensitivity

analysis in real-time distributed systems,” in RTAS, 2005,

pp. 160–169.

[38] J. Regehr, “Scheduling tasks with mixed preemption

relations for robustness to timing faults,” in RTSS, 2002,

pp. 315–326.

[39] M. Stigge and W. Yi, “Combinatorial Abstraction Re-

finement for Feasibility Analysis of Static Priorities,” in

Real-Time Syst., vol. 51, no. 6, 2015, pp. 639–674.

[40] A. Thekkilakattil, R. Dobrin, and S. Punnekkat, “The

limited-preemptive feasibility of real-time tasks on unipro-

cessors,” Real-Time Systems, vol. 51, no. 3, pp. 247–273,

2015.

[41] L. Thiele and R. Wilhelm, “Design for timing predictabil-

ity,” Real-Time Systems, vol. 28, no. 2-3, pp. 157–177,

2004.

[42] K. W. Tindell, A. Burns, and A. J. Wellings, “An

extendible approach for analyzing fixed priority hard real-

time tasks,” Real-Time Syst., vol. 6, no. 2, pp. 133–151,

1994.

[43] S. Vestal, “Fixed-priority sensitivity analysis for linear

compute time models,” IEEE Transactions on Software
Engineering, vol. 20, pp. 308–317, 1994.

[44] A. Wellings, Concurrent and real-time programming in
Java. John Wiley & Sons, 2004.

[45] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti,

S. Thesing, D. Whalley, G. Bernat, C. Ferdinand, R. Heck-

mann, T. Mitra, F. Mueller, I. Puaut, P. Puschner,

J. Staschulat, and P. Stenström, “The Worst-Case

Execution-Time Problem - Overview of Methods and

Survey of Tools,” ACM Transactions on Embedded
Computing Systems, vol. 7, pp. 36:1–36:53, May 2008.

[46] B. Yalcinkaya, M. Nasri, and B. B. Brandenburg, “An ex-

act schedulability test for non-preemptive self-suspending

real-time tasks,” in DATE, 2019, pp. 1228–1233.

[47] F. Zhang, A. Burns, and S. Baruah, “Sensitivity analysis of

the minimum task period for arbitrary deadline real-time

systems,” in PRDC, 2010, pp. 101–108.

[48] M. Zimmer, D. Broman, C. Shaver, and E. A. Lee,
“FlexPRET: A Processor Platform for Mixed-Criticality

Systems,” in RTAS, 2014, pp. 101–110.

14

	Introduction
	Background and System Model
	The Timed C Language
	System Model

	Timing Analysis
	Instrumentation
	Generation of Timing Traces

	Schedulability Analysis
	Background and Overview
	Challenges and Open Problems
	Analysis Extensions
	Supporting Code Abortion
	Supporting precedence constraints

	Obtaining a Finite Observation Interval

	Sensitivity Analysis
	Motivating Example
	Sensitivity Analysis Overview

	Evaluation
	Scalability
	Case Study

	Related Work
	Limitations, Extensions, and Conclusion

