

Multiprocessor Real-Time Scheduling
Considering Concurrency and Urgency

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-100101

Version:

Date: 01-12-2010

Jinkyu Lee

Arvind Easwaran

Insik Shin

Insup Lee

Technical Report HURRAY-TR-100101 Multiprocessor Real-Time Scheduling Considering Concurrency and Urgency

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

Multiprocessor Real-Time Scheduling Considering Concurrency and Urgency

Jinkyu Lee, Arvind Easwaran, Insik Shin, Insup Lee

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail:

http://www.hurray.isep.ipp.pt

Abstract
It has been widely studied how to schedule real-time tasks on multiprocessor platforms. Several studies find optimal
scheduling policies for implicit deadline task systems, but it is hard to understand how each policy utilizes the two
important aspects of scheduling real-time tasks on multiprocessors:inter-job concurrency and job urgency. In this paper,
we introduce a new scheduling policy that considers these two properties. We prove that the policy is optimal for the
special case when the execution time of all tasks are equally one and deadlines are implicit, and observe that the policy
is a new concept in that it is not an instance of Pfair or ERfair. It remains open to find a schedulability condition for
general task systems under our scheduling policy.

Multiprocessor Real-Time Scheduling Considering Concurrency and Urgency

Jinkyu Lee∗, Arvind Easwaran†, Insik Shin∗ and Insup Lee‡

∗Dept. of Computer Science, KAIST, South Korea
†IPP-HURRAY! Research Group, Polytechnic Institute of Porto (ISEP-IPP), Portugal

‡Dept. of Computer and Information Science, University of Pennsylvania, USA
jinkyu@cps.kaist.ac.kr; aen@isep.ipp.pt; insik.shin@cs.kaist.ac.kr; lee@cis.upenn.edu

Abstract—It has been widely studied how to schedule real-
time tasks on multiprocessor platforms. Several studies find
optimal scheduling policies for implicit deadline task systems,
but it is hard to understand how each policy utilizes the two
important aspects of scheduling real-time tasks on multipro-
cessors: inter-job concurrency and job urgency. In this paper,
we introduce a new scheduling policy that considers these two
properties. We prove that the policy is optimal for the special
case when the execution time of all tasks are equally one and
deadlines are implicit, and observe that the policy is a new
concept in that it is not an instance of Pfair or ERfair. It
remains open to find a scheduliability condition for general
task systems under our scheduling policy.

I. I NTRODUCTION

Real-time schedulability analysis have been studied for
achieving predictability on satisfying timing constraints. In
particular, scheduling policies for uniprocessor have been
extensively studied. EDF [1] and DM [2] are optimal
dynamic- and static-priority scheduling policies for preemp-
tive scheduling of periodic and sporadic tasks, respectively.
While uniprocessor scheduling has matured over years,
finding optimal scheduling policies for general task systems
on multiprocessor platforms is still an open problem. Some
studies (e.g., [3], [4], [5]) focused on adapting existing
uniprocessor scheduling to multiprocessor scheduling, but
they do not optimally utilize the processing capacity. This is
because uniprocessor policies are not designed to efficiently
handle concurrent executions. Several other studies (e.g.,
[6], [7], [8], [9], [10], [11]) have been introduced that
generate optimal schedules for implicit deadline task systems
on multiprocessor platforms, but some of these algorithms
suffer from high preemption overhead. Further, none of
them is able to preserve optimality for more general task
systems (such as constrained deadline task systems). We
believe this limitation in the state-of-art arises from the
fact that it is difficult to understand how existing policies
treat some of the important aspects of scheduling real-time
tasks on multiprocessor platforms. Therefore, in this paper,
we design a novel scheduling policy that clearly differs
from existing policies in this regard. That is, it explicitly
uses important aspects of scheduling like “job urgency” and

“inter-job concurrency” to prioritize jobs.
Handling the trade-off between “job urgency” and “inter-

job concurrency” is, in our opinion, the key to efficient
scheduling on multiprocessor platforms. This can be ex-
plained as follows. To maximize the number of concurrently
executing jobs, it is desirable to delay the finishing time of
jobs so that more unfinished jobs are available for schedul-
ing. For instance, a policy which gives “higher priority
to jobs with longer remaining execution time” implements
this concept. However, in order to meet hard real-time
requirements it is also important to finish jobs by their
deadlines. For instance, a policy which gives “higher priority
to jobs with earlier deadline” implements this concept.
Therefore, one approach for allowing a trade-off between
these concepts would be to simultaneously consider the
remaining execution time and deadline of jobs.

In this work, we first consider a simple and intuitive
scheduling policy based on the above discussion (called
Dynamic Density First (DDF)). The dynamic density of
a job is defined as its remaining execution time divided
by the time to deadline. Note that this parameter changes
continuously over a job’s lifetime. DDF assigns a higher
priority to a job with a larger dynamic density. However,
we observed that such a simple (and in some sense crude)
strategy does not offer a very fine-grained trade-off between
urgency and concurrency. For example, consider two jobs;
one with a higher dynamic density and a longer time to
deadline, and the other with a lower dynamic density but a
shorter time to deadline. As DDF will schedule the former
job, it could lead to a situation where the latter job misses
its deadline eventually. Therefore, it entails another more
refined scheduling strategy.

In this paper, we introduce a new scheduling policy
extending DDF. We observe and prove that DDF is an
optimal multiprocessor scheduler for implicit deadline tasks,
when their execution times are all equally one. DDF is
not optimal for general tasks with arbitrary execution times
however. Looking at how DDF fails to schedule such general
tasks, we observe that some jobs are executed earlier than
they should be. Its implication is that an optimal schedule
can be obtained from a DDF schedule if we can delay the

execution of “some” jobs. Reflecting this, we introduce a
new scheduling policy called LADD (Lagging And Dynamic
Density). A job is said to belagging if it has a longer
remaining execution time when compared to some nominal
value (we describe this nominal value later in the paper).
In LADD, jobs are classified into two groups: a group of
lagging jobs and another group of non-lagging jobs. All jobs
in the lagging group have a higher priority than those in
the non-lagging group. Further, jobs in the same group are
scheduled using DDF policy. LADD favors lagging jobs first
and then jobs with higher dynamic density; it essentially
delays the execution of non-lagging jobs. Our goal is to
investigate the performance of LADD. In this paper, we
show that for the special case where the execution times
of all tasks are one, LADD produces the same (optimal)
schedule as the one by DDF. We are currently working on
finding a schedulability condition for general tasks systems
under LADD.

The contributions of this paper are as follows: we
introduce a new scheduling policy that considers both
concurrency and urgency; we prove the optimality of the
policy for a special task system; and we observe that the
policy is not an instance of Pfair [6] or ERfair [8].

Task Model. We assume a constrained deadline sporadic
task model [12]. In this model, a taskτi is specified as
(Ti, Ci, Di), whereTi is the minimum separation,Ci is the
worst-case execution time requirement, andDi is the relative
deadline. We assumeCi ≤ Di ≤ Ti. A task τi invokes a
series of jobs, each separated from its predecessor by at
leastTi time units. We assume that a single job of a task
cannot be executed in parallel. There arem processors in
the system, and we assume that

∑
∀j

Cj

Dj

M= Dsys (named as
the system static density) is not more thanm.

We useDi(t) andCi(t) to denote the remaining time to
deadline and the remaining execution time, respectively, of
a job of τi at time t. The dynamic density of a job ofτi at
t is then specified asCi(t)

Di(t)
, and the system dynamic density

is
∑

j
Cj(t)
Dj(t)

M= Dsys(t). We express that a job ofτi is active
at t whenCi(t) is non-zero. We denote the number of tasks
asn, and the number of active jobs att asn(t).

We consider quantum-based (discrete) systems, and thus
the schedule is also quantum-based.

II. OPTIMALITY OF DDF FOR Ci = 1

In this section, we prove that we can schedule any task
set under the following assumptions: (A1) the task set is
scheduled by DDF; (A2) the system static density is not
more thanm; and (A3) execution times of all tasks are one
(Ci = 1), and thus remaining execution times of all active
jobs are also one (Ci(t) = 1, ∀ active τi at t). First, we
prove that the system dynamic density does not increase in

case of no new arrival of jobs. Second, we prove that the
system dynamic density at any timet cannot exceedm in
spite of arrival of new jobs.

The first lemma shows that if remaining time to deadline
of all jobs are identical, then the system dynamic density
cannot increase in case of no new arrival of jobs.

Lemma 1:Assume that the following conditions: (A4) re-
maining time to deadline of all active jobs att0 are identical
(i.e., Di(t0) = D(t0)); (A5) the system dynamic density at
t0 is not more thanm; and (A6) there is no new arrival of
jobs in the interval[t0, t1). Then,Dsys(t) ≤ Dsys(t0) for
all t ∈ [t0, t1).

Proof: We use mathematical induction.
(The basis) Att0, Dsys(t0) ≤ Dsys(t0).
(The inductive step) We wish to prove the following: if

Dsys(t) ≤ m is true, thenDsys(t + 1) ≤ Dsys(t). From
(A3) and (A4), we deriveDsys(t) = n(t)

D(t) implying n(t) =
Dsys(t) ·D(t). Assumingm jobs are serviced in[t, t + 1),
we calculaten(t + 1) = n(t)−m. We then have the results
below.

Dsys(t + 1) =
n(t + 1)

D(t + 1)
=

Dsys(t) ·D(t)−m

D(t)− 1
≤ Dsys(t).

Here we assumed thatm jobs are scheduled in the time
interval [t, t + 1). If there are less thanm active jobs att,
then there is no active job att+1. This meansDsys(t+1) =
0 ≤ Dsys(t), and hence this lemma is always true.

We now wish to show that the above lemma holds even
when remaining time to deadline of jobs are different.
For this purpose, we first show a system dynamic density
bounding transformation from a set of jobs with different
deadlines to a set of jobs with identical deadline (Lemma 2).
Then, in Lemma 3 we prove that Lemma 1 holds even when
job deadlines are different.

Lemma 2:Assumek · 1
D =

∑
j

1
Dj

andD ≤ Dj for all
j. Then, we can derive thatk · 1

D−t ≥
∑
∀j

1
Dj−t for all

0 < t < D.
Proof:

k · 1

D − t
= k · 1

D
+ k · 1

D
· t

D − t
=

∑
j

1

Dj
+

∑
j

1

Dj
· t

D − t

≥
∑

j

1

Dj
+

∑
j

1

Dj
· t

Dj − t
=

∑
j

1

Dj − t

Lemma 3:Assume (A5) shown in Lemma 1, and suppose
there is no arrival of new jobs in[t, t + 1). Then, we can
derive thatDsys(t + 1) ≤ Dsys(t).

Proof: Without loss of generality, we sort the index of
jobs by remaining time to deadline att as follows.

D1(t) ≤ ... ≤ Dm(t) ≤ Dm+1(t) ≤ ... ≤ Dn(t)(t) (1)

We construct a set of new jobs satisfying the following:
(a) the system dynamic density att of the new jobs is same
as that of the original jobs; (b) them most urgent jobs (as
per DDF) from the new set is the same as that in the original
set; and (c) other new jobs except them most urgent jobs
are the same as themth urgent job in the original set. Note
that, with this transformation, the number of jobs in the new
set at timet is no more than that in the original set. Thus,
the set of new jobs can be expressed as follows.

D′
1(t) ≤ ... ≤ D′

m(t) = D′
m+1(t) = ... = D′

n′(t)(t),

whereD′
1(t) = D1(t), ..., D

′
m(t) = Dm(t)

and
n′(t)∑
j=1

1

D′
j(t)

=

n(t)∑
j=1

1

Dj(t)
, n′(t) ≤ n(t) (2)

During [t, t + 1) the m most urgent jobs are serviced,
so the system dynamic density att + 1 of the set de-
scribed in Eq. (2) is

∑n′(t)
j=m+1

1
D′j(t)−1 = n′(t)−m

D′
m+1(t)−1 . Here

we know thatD′
m+1(t) is equal to or less than any of

Dm+1(t), ..., Dn(t)(t). By Lemma 2, the system dynamic
density att + 1 of the set described in Eq. (2) is not less
than that of the set described in Eq. (1).

We now define another set of new identical jobs as
follows:

D∗
1(t) = ... = D∗

m(t) = D∗
m+1(t) = ... = D∗

n∗(t)(t),

where
n∗(t)∑
j=1

1

D∗
j (t)

=

n(t)∑
j=1

1

Dj(t)
, n∗(t) = n′(t) (3)

Note these jobs also have the system dynamic density at
t same as that of the original job set. Further, it is easy
to see thatD∗

m+1(t) ≤ D′
m+1(t), and thus the system

dynamic density att + 1 of the set described in Eq. (3)(∑n∗(t)
j=m+1

1
D∗

j (t)−1

)
is equal to or larger than that of the

set described in Eq. (2)
(∑n′(t)

j=m+1
1

D′
j(t)−1

)
. Therefore, by

Lemma 1 we get,

n(t+1)∑
j=1

1

Dj(t + 1)
≤

n′(t+1)∑
j=1

1

D′
j(t + 1)

≤
n∗(t+1)∑

j=1

1

D∗
j (t + 1)

≤
n∗(t)∑
j=1

1

D∗
j (t)

=

n(t)∑
j=1

1

Dj(t)
,

and thus we conclude thatDsys(t + 1) is not more than
Dsys(t)1. Similar to Lemma 1, it does not affect the proof

1In this lemma, the defined new jobs described in Eq. (2) and (3) may
have non-integer deadlines, which means a continuous system is allowed.
However, since the worst case ofDsys(t + 1) for both discrete and
continuous systems is not less than that for discrete systems, this lemma
holds for discrete systems.

that there can be less thanm active jobs att.

It now remains to prove that Lemma 1 holds even when
new jobs are released in the interval of interest. For this
purpose, we first prove that when the remaining time to
deadline of a job ofτi becomes zero, the system dynamic
density is at mostm −

(
1

Di

)
. The proof technique of the

following lemma is similar to that of Lemma 3.
Lemma 4:Assume (A5) in Lemma 1, and suppose there

is no arrival of new jobs in[t, t + D1(t)], whereD1(t) is
the remaining time to deadline of the most urgent job at
t. We denote the number of most urgent jobs att as N
(note all have deadline att + D1(t)). Then we conclude
Dsys(t + D1(t)) ≤ Dsys(t)− N

D1(t)
.

Proof: Without loss of generality, we sort the index of
jobs by the remaining time to deadline att.

D1(t) = ... = DN (t) ≤ DN+1(t) ≤ ... ≤ Dm·D1(t)(t)

≤ Dm·D1(t)+1(t) ≤ ... ≤ Dn(t)(t) (4)

We construct a set of new jobs in a similar way to
Lemma 3, as follows:

D′
1(t) = ... = D′

N (t) ≤ D′
N+1(t) ≤ ... ≤ D′

m·D′1(t)(t)

= D′
m·D′1(t)+1(t) = ... = D′

n′(t)(t),

whereD′
1(t) = D1(t), ..., D

′
m·D′1(t)(t) = Dm·D1(t)(t)

and
n′(t)∑
j=1

1

D′
j(t)

=

n(t)∑
j=1

1

Dj(t)
, n′(t) ≤ n(t) (5)

By Lemma 2, the system dynamic density att′ ∈ [t, t +
D1(t)] of the set described in Eq. (5) is equal to or larger
than that of the set described in Eq. (4).

We now define another set of new identical jobs similar
to Lemma 3, but in this case we do not change theN most
urgent jobs{D1(t), ..., DN (t)}.

D∗
1(t) = ... = D∗

N (t) ≤ D∗
N+1(t) = ... = D∗

m·D∗1 (t)(t)

= D∗
m·D′1(t)+1(t) = ... = D∗

n∗(t)(t),

whereD∗
1(t) = D1(t), ..., D

∗
N (t) = DN (t),

and
n∗(t)∑
j=1

1

D∗
j (t)

=

n(t)∑
j=1

1

Dj(t)
, n∗(t) = n′(t) (6)

We can calculate the system dynamic density att of the
set described in Eq. (6) byU∗

sys(t) = N
D∗

1 (t) + n∗(t)−N
D∗

N+1(t)
.

During [t, t + D∗
1(t)], D∗

1(t) ·m jobs are serviced, and thus,
using U∗

sys(t), we calculate the system dynamic density at
t + D1(t) of this set as follows.

U∗sys(t + D1(t)) =
n∗(t)−D∗

1(t) ·m
D∗

N+1(t)−D∗
1(t)

=
n∗(t)−D∗

1(t) · U∗sys(t)

n∗(t)−D∗
1(t) ·m

(
U∗sys(t)− N

D1(t)

)

≤ U∗sys(t)− N

D1(t)

Using arguments identical to Lemma 3 we can conclude
that Dsys(t + D1(t)) is equal to or smaller thanDsys(t)−

N
D1(t)

.

Using the previous lemmas, we finally have the following
theorem.

Theorem 1:DDF can schedule any task set which satis-
fies (A2) and (A3).

Proof: Assume that the system dynamic density att is
equal to or less thanm. By Lemma 4,Dsys(t+D1(t)) is not
more thanDsys(t)− N

D1(t)
. At t + D1(t), we have enough

slack in the system dynamic density to accommodate the
arrival of a new job of taskτ1. Since we assume constrained
deadline tasks, we then guarantee that the arrival of new jobs
of τ1 cannot make the system dynamic density larger thanm.
Since we know the system dynamic density cannot increase
without arrival of new jobs from Lemma 3, it is enough to
look at points when remaining time to deadline of any job
becomes zero. Since the system dynamic density at the start
is not larger thanm (system static density is at mostm),
we then guarantee that the system dynamic density never
exceedsm.

At any time, there are at mostm urgent jobs (i.e., Ci(t) =
Di(t)), and these jobs have the highest priorities. Therefore,
DDF can schedule any task set which satisfies (A2) and
(A3).

A direct corollary of the above theorem is that DDF is
optimal for implicit deadline task systems when execution
time of all tasks are equally one. As an aside, note that for
this specific task system, the schedule generated by DDF is
identical to that generated by global EDF.

III. T OWARD OPTIMALITY OF LADD

We have proved in Section II that DDF is an optimal
scheduling policy when the execution times of all tasks
are equally one and deadlines are equal to periods. But
it can be easily verified that DDF is not optimal without
such an assumption on the execution time. Consider a task
system that comprises of seven tasks as follows:τ1 = τ2 =
(14, 7, 14), τ3 = τ4 = τ5 = τ6 = τ7 = (5, 1, 5). This task
set is scheduled on a multiprocessor platform that consists
of two processors. As shown in Figure 1(a), if we apply
DDF, τ7 cannot be scheduled until its deadlinet = 5. This

0 1 2 3 4 5

Deadline miss

(a) The original task set

0 1 2 3 4 5

(b) The alternative task set

Figure 1. Schedule under DDF

scheduling failure comes from early execution ofτ1 andτ2.
If we substitute the original set by a new task set where
τ ′1 = τ ′2 = (2, 1, 2) and other tasks are the same, DDF
produces a feasible schedule as shown in Figure 1(b). Since
any feasible schedule of the new task set can be used for the
original task set, we can see that DDF’s schedule becomes
a feasible schedule by postponing the execution ofτ1 and
τ2.

To improve DDF, we must answer the question “when
to delay the execution of jobs and which ones.” For this
we consider a parameter called the expected remaining
execution time of taskτi (denoted asCE

i (t)). If a job of τi is
ideally scheduled with a rate ofCi

Di
, its remaining execution

time att becomesCE
i (t), which meansCE

i (t) = Ci

Di
·Di(t).

A job is said to belagging if Ci(t) is strictly larger than
CE

i (t + 1). The intuitive meaning of alagging job is that if
the job is not serviced in[t, t + 1), its remaining execution
time becomes larger than its expected remaining execution
time at t + 1. Using this concept of lagging, we now
introduce a new scheduling policy called LADD (Lagging
And Dynamic Density). In LADD, we divide jobs into two
groups: lagging jobs and non-lagging jobs. At everyt, we
schedulem lagging jobs which have higher dynamic density
at t (scheduled by DDF). If there are less thanm lagging
jobs, we schedule non-lagging jobs also prioritized using
DDF.

In the following theorem, we prove that a schedule of
LADD is the same as that of DDF for task sets where
execution times of all tasks are identically one2.

Theorem 2:LADD can schedule any task set, which
satisfies (A2) and (A3) shown in Section II.

Proof: Any active jobs att satisfy the following.

CE
i (t + 1) =

Ci

Di
· (Di(t + 1)) =

1

Di
· (Di(t)− 1) < 1 = Ci(t),

which means any active jobs are lagging. So, LADD pro-
duces the same schedule as DDF. By Theorem 1, we con-
clude that LADD can schedule any task set, which satisfies
(A2) and (A3). In other words, LADD is also optimal for
any implicit deadline task system where execution time of
all tasks are equally one.

In the following observation, we claim that LADD is a
new scheduling concept.

Observation 1:LADD is not an instance of Pfair or
ERfair.

Proof: We provide a example. Consider a task system
comprised of six tasks as follows:τ1 = (157, 66, 157), τ2 =
(667, 174, 667), τ3 = (867, 162, 867), τ4 = (132, 127, 132),
τ5 = (878, 120, 878), τ6 = (31, 1, 31). In this system,m =
2 andDsys < 2. When we apply LADD,lag (as defined in
[6]) of τ5 at t = 8 is strictly larger than1.0.

IV. CONCLUSION

We present a new multiprocessor scheduling policy that
offers a fine-grained trade-off between concurrency and
urgency. We prove that the proposed scheduling policy is
optimal for implicit deadline task systems where execution
time of all tasks are equally one. We also observe that our
scheduling policy is not an instance of Pfair or ERfair.

Our future work involves deriving a schedulability condi-
tion for general task systems under LADD. Another direc-
tion of our future work is to find the theoretical bound on
the number of preemptions and migrations. We also plan to
compare overhead of LADD with that of other scheduling
algorithms (e.g., EKG [9] and LLREF [7]) through simula-
tion and/or analysis.

ACKNOWLEDGEMENT

This research was supported in part by IT R&D program
of MKE/KEIT of Korea [2009-KI002090, Development of
Technology Base for Trustworthy Computing], National
Research Foundation of Korea (2009-0086964), and KAIST
ICC, KIDCS, KMCC, and OLEV grants.

2We conjecture that the scheduling policy of non-lagging jobs does not
affect optimality.

This work was also partially funded by the Portuguese
Science and Technology Foundation (Fundação para a
Ciência e a Tecnologia - FCT) and the European Commis-
sion through grant ArtistDesign ICT-NoE-214373.

REFERENCES

[1] C. Liu and J. Layland, “Scheduling algorithms for multi-
programming in a hard-real-time environment,”Journal of
the ACM, vol. 20, no. 1, pp. 46–61, 1973.

[2] J. Leung and J. Whitehead, “On the complexity of fixed-
priority scheduling of periodic real-time tasks,”Performance
Evaluation, vol. 2, pp. 237–250, 1982.

[3] S. Cho, S.-K. Lee, S. Ahn, and K.-J. Lin, “Efficient real-time
scheduling algorithms for multiprocessor systems,”IEICE
Trans. on Communications, vol. E85–B, no. 12, pp. 2859–
2867, 2002.

[4] A. Srinivasan and S. Baruah, “Deadline-based scheduling
of periodic task systems on multiprocessors,”Information
Processing Letters, vol. 84, no. 2, pp. 93–98, 2002.

[5] B. Andersson, S. Baruah, and J. Jonsson, “Static-priority
scheduling on multiprocessors,” inRTSS, 2001.

[6] S. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel,
“Proportionate progress: a notion of fairness in resource
allocation,” Algorithmica, vol. 15, no. 6, pp. 600–625, 1996.

[7] H. Cho, B. Ravindran, and E. D. Jensen, “An optimal real-
time scheduling algorithm for multiprocessors,” inRTSS,
2006.

[8] J. H. Anderson and A. Srinivasan, “Early-release fair schedul-
ing,” in ECRTS, 2000, pp. 35–43.

[9] B. Andersson and E. Tovar, “Multiprocessor scheduling with
few preemptions,” inRTCSA, 2006, pp. 322–334.

[10] K. Funaoka, S. Kato, and N. Yamasaki, “Work-conserving
optimal real-time scheduling on multiprocessors,” inECRTS,
2008.

[11] B. Andersson and K. Bletsas, “Sporadic multiprocessor
scheduling with few preemptions,” inECRTS, 2008, pp. 243–
252.

[12] S. Baruah, A. Mok, and L. Rosier, “Preemptively scheduling
hard-real-time sporadic tasks on one processor,” inRTSS,
1990.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings to create PDF documents suitable for IEEE Xplore. Created 15 December 2003.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 841.890]
>> setpagedevice

