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Abstract

Although reduction in operating costs remains to be a key motivation for migration to Cloudiemments, Power
consumption is a big concern for data centers and cloud service providers. Many big dgtalications execute on
Hadoop MapReduce framework for processing large workloads. In this paper, we ingest the tradeoff between
energy consumption and workload running on Hadoop clusters using multiple virtualahines. We characterize
power consumption profiles for various data intensive workloads and correlate these to quatf service (Qo0S)
metrics such as job execution time. Based on experiments, we ascertain that power conptian profiles for big
data applications can be used to optimize energy efficiency in data centers. We infer that thesefiles can be
used by Cloud service providers and consumers to specify green metrics in Service LevekefAggnts (SLA).
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Abstract Although reduction in operating costs remains to bea
key motivation for migration to Cloud environments, Power
consumption is a big concern for data centes and cloud service
providers. Many big data applications execute on Hadoop
MapReduce framework for processing large workloads In this
paper, we investigate the tradeoff between energy consumptio
and workload running on Hadoop clusters using multiple virtual
machines. We characterize power consumption profiles for
various data intensiveworkloads and correlate these taquality of
service (QoS) metrics such asjob execution time. Based on
experiments we ascertain that power consumption profiles for big
data applications can be used to optimize energy efficiency data
centers.We infer that these profiles can be used by Cloud service
providers and consumers to specify green metrics in Serviceslel
Agreements(SLA).

Keywords MapReduce; Energy efficiency; Virtual Hadoop
clusters Power consumption

I. INTRODUCTION

In recent times, Cloud computing technology is widely
being adopted by businesses and organization. The main driv

for this move is the reduction in maintenance of istinacture,

deployment and management overheads as well as overzﬁ1
reduced operating sts. On the other hand, environmental
impact of maintaining large computational infrastructure an
data centers a big concern prompting the need for research i

OgreenerO technologies for data cent@®ud service
providers are increasingly incorparag green metrics into
service level agreements (SLA) to market their sesvias

environmental friendl\f3]. While clean energy from solar and

wind power is being increasingly used for data cenbgrwell

known cloud service providers, an important challenge is to.
investigate how to efficiently utilize resources within data

centers to optimally consume enenghiereasmaximizing the
cost benefit to both consumers and service proviffs4-

17]. Flexibility of Cloud systems as well as variety of
configurdion parameters makes it difficult to understand

efficient utilization of each resource in data centers.

Deploying Hadoop efficiently across a cloud environine

infrastructure . i
a?é Analyze the tradeoff between scalability ofirtual

remains an important challenge. Cloud

deployments, configuration of various parameters and virtu
cluster configurations can have a major impact on energy

consumption and resource igétion in a data centebue to

unavailability of any standards for efficient deployment, there
is an opportunity to study the impact of various optimized
deployment techniques to monitor energy consumptions and

resource utilizationApache Hadoop framewlo [2] is a popular

platform commonly used for analysis of data intensive
operations and is widely used for research in Big Data analysis
where large volumes of data cannot be analyzed usin
traditional technologies. HadoopOs Map/Reduce [1] has beco
a beachmark tool for comparing performance of various .
architectures for compute, network, storage and 10 operation%qu'pment'

n

[8-9]. Recent works have provided an opportunity for further
investigating efficiency of Map/Reduce workloads inladoop
clustes. Tiwari et.al in [15] argue that varying MapReduce
parameters have a significant impact on computation
performance and energy consumption for typical MapReduce
workloads. Authors in[3, 4] and[11] outline the need for
understanding the potential for energy saving in MapReduce
Jobs in the context of CRhbund, IGbound or networtbound
workloads.The work presented in this paptakes motivation
from the aforementioned works and follows tabjedives, i)
to investigatemonitoling variability of paver consumption for
multiple executions of a dafatensiveapplicationin Hadoop
i) appreciatingthe correlation of number of Virtual Machines
per physical server and its impact on power consumption

To understand the impact of resource utilizationviarous
loads of data intensive computation and subsequently
correlating its energy footprint, we make use of TeraSort
benchmark3] that is part of Hadoop framework. TeraSort is
widely used as a stressst to allow Infrastructurasa-service
QraaS) administrators to optimize storage and network
parameters configurations for optimal Hadoop deployment
Fing HDFS and MapReduce layers of the Hadoop cluBter.
is endwe study variousdeployment models to measure,

OIanalyze and possibly optimip@wer consumption behavior for

data intensive applications; virtual Hadoop clustersWe
utilize two clustertestbeds RIoTU and Kafala testbeds with 4
low-end servers an@-high-end serversespectivelyand deploy
virtual Hadoop clustarusing a number of virtual machines
with various configurationsPower consumptionacross the
clusters is measured against the associated workload generat
using specialized power measurementequipment. We
investigate the impact of scaling the number of virtual
machines per server in the virtual cluster and amalthe
performance and energy consumptibarthermore, \& provide
a detailed evaluation of a set of MapReduce wodds,
highlighting significant variation in both the performance and
power consumption of the applications.

The contributions of this work can be categorized as
follows:

machineger physical server and job completion efficiency
on power consumption in virtualized Hadoolustes.

¥ Provide insight into significance of power consurapti
profiles for various cloudased applicationdNe believe
that these profiles can be used by Cloud service provider:
and consumers tgpecify greemetrics in SLAs.

The rest of the paper is organized as follo®sction 2
resents the related wor8ection3 presents the methodology
ith details on Hadoop virtual cluster setup, designihe
workload and configuration of the power measurement
Section 4 presents analysis of results with



characterization of power consumption profiles for the virtualcenters PUE is used as the ratio of power entering the date
cluster as well as analysis of computation times for variousenter divided by the power used to run the computation

workloads, followed by conclusioris Section 5 infrastructure. It is noticeable that the large portion of power
consumption in the data center is due to {nompute) related
II. RELATED WORK infrastructure sut as buildings, aiconditioning systems etc).

Recently Green energy harvested from solar and wind farmBurthermore, the utilization gfhysical machines of thdusters
is being used in data centers to lower the overall emissiahs ann data center is subptimal with nodes idling around 70% of
carbon footprint[5, 7, 1213]. In [5] authors analyze cost of the time[17-19]. It is important to understand the behavior of
energy on datacenters built in cold climatesin [7] proposed power utilization for various applications for their intensity of
Oasis a datacenter expansion strategy for scaling data centeesource utilization. Based on these power consumptior
infrastructure while considering power/carbon emissionsmetrics policies can be generated to optimally utilize the data
constraints. Oasis allows switching between green energycenter resourcebus relucing the overall power consumption
power supplies for optimizing power consumptibfadoop has In this work, we focus on characterizing the power
been extensively reseamdh for its power inefficiencies within consumptionvs. compute performance tradeoff feirtualized
clusters.GreenHadoop [d] is a framework for data centers Hadoop deploymentover Infrastructureasa-service (laaS)
powered by photovoltaic solar arrays. The framework describesloud environment It is important to understandthe
scheduling of Map/Reduce jobs based predicting theelationship between power consumption and performasce
availability of solar power to maximize the green energyQoS metric in optimizing virtual machines deployment
consumption. GreenHDFS 3L address developing engrg policies. To this end, we characterize the power consumption
saving mechanisms for the Hadoop Distributed File Systenprofiles for data intensive applicatiarisor time intervals when
(HDFS). deployment of physical machines yields poor power
On the other hand, many recent researches point deswar consumptionvs. performance tradeoffs, the optimal power
optimizing workloads in order to efficiently utilize energy in consumption policies can be applied. number of virtual
existing data centeriwari [15] study the impact of Hadoop machines would be deployed on the cluster to maxirtiiee
replicgion-factor, and its interaction among bleskze, Map power consumption tradeofEonsequentlyif the benefit of the
slots and CPWrequency.They conclude that Hadoop power tradeoff between power consumptionand performance
consumption optimization is dependent on many factorsoutweighsthe deployment with virtual machines, the user may
including CPU frequency, placement of map tasks, schedulingecide not to optiize the performancdn what follows we
of jobs, HDFS blocksize and wrkloads.Krish in [11] present  describe the cluster environment, characterization of the
oSched, a workflow scheduler that profiles the performance andorkloads and power measurement process used in this study.
the energy characteristics of applications on hardware cduster
oSched considers power utilization from server machines ir8.1 HadoopVirtual Cluster Environment
determining power configurations anenergy profiles for The experimental investigation carried out in thisper
scheduling of jobsX.Dai in [19] focus on the placement of focuses onthe performance of virtualized Hadoop clusters
communicating virtualized servers in the data center in amgiven Data intensive workloads typically used in big data
energy efficient manner and proposed two algorithmsapplications. We conduct series of experiments in order to
minimum energy virtual machine scheduling algorithm assess the impact of various parameters of virtual machin
(MinES) and minimum communication virtual machine configuration applicable to workloads of varying sizes for
scheduling algorithm (MinCS). performance and power consumptidro this end we deploy
E.Felleret.al[3] investigated the effect of virtual machine two virtual Hadoop clusters namely RloTiéstbed and Kafala
coexistence on the disk speed awdluate the performance Testbed. The RlIoTU Testbed is composed of féBrProLiant
and power of Hadoowith datasets obtained from Wikipedia. machines with single Intel Core i7 processor runniatg
They conclude thaboth write and read throughput decreases3.67GHz connected to a Gigabit Ethernet. Each machine ha
with increasednumber of virtual machinesAuthors in [17] 8GB d RAM with 256GB of Kingston Solid State Storage
presentan optimization approach using dynamic placement andlevices running windows 10 as host operating system. Thes
migration of virtual machines in green cloud computing machines are connected to th&/attsUp .net power
environment. The foau of this work is to enablelients in measurement equipmenfor collecting reliable power
receiving acceptable service with a limited numberactive consumption data at timely intervals
servers. The Kafala Testbed is composed ofs@rversused in this
The work presented in this paglecuses on characterizing study. Eachservermachine is equipped with 2 Intel Xeon-E5
the power consumptioms. Quality of Services (QoSjnetrics 2667 processors running at 3.30 GHz with 48GB RAM and
in data centers. We consideutlining power consumption 2TB SCSI Storage. Each server runs Windows Server 2012R.
profiles for typical Big data applications in order to optimize as Host operating system witMware used for running virtual
power consumption in Virtualized Hadoop cluster§hese  machines. The servers in the Kafala testbed aratesblfrom
power consumption profiles can be used to help deterthme the rest of the datacenter for performance parameter:
number of virtual machines to be deployedpiysical servers measurement for this experimentation.

to achieve throughpuwtithin acceptable constraints. On both of these cluster testbeds we deploy virtual
machines running Ubuntl6.0 LTE and Apache Hadoop 2.6.2.
. METHODOLOGY Table 1 shows the various configurations of virtoechines

Power Usage Effectiveness (PUhich was developed by deployment on the cluster testbeds. One of the virtual machine
the Green Grid Associatiors the key metric used in data server as the master node running the Haddamenode and



Table 1. Hadoop Virtual Machin@onfigurations.

RIoTU Testbed Kafala Testbed
No of VMs Per Server CPU RAM HDD No of VMs Per Server CPU RAM HDD
(GB) (GB) (GB) (GB)
1 Server (Standalone) 20% 4 120 1 Server (Standalone) 20% 48 980
1VM 70% 4 50 1VM 70% 4 50
2VM 35% 2 50 2VM 35% 2 50
4 VM 17.5% 1 50 4 VM 17.5% 1 50

YARN ResourceManager, the rest of the virtual machines various runs with data size in the range of 0.1GB, 1GKB
execute a sile Datanode andNodemanager.In Hadoop  and100GB respectively. We observe the job execution tinre fo
configuration files thenaximumMapReduceesource memory each run for comparison and analyze the performance on eac
was set to 1GB with a replication factor of 2. cluster. The results and analysis of these experiments are
provided in the next section.

3.2TeraSortworkload

The Hadoop TeraSort benchmark suite sdeta as fast as 3.3 Power measurement
possible to benchmark the performance of the MapReduce Since Hadoop exploits all resources (CPU, memoryk Dis
framework. TeraSort combines testing the HDFS andand Network IO) of the compute environment it is important
MapReduce layers of a Hadoop cluster and consisthireE  analyze the power consumption of the cluster collectively.
MapReduce programs, TeraGen, TeraSort and TeraValida External devices such as tiiéattsUpPro ‘power consumption
TeraGen is typicayl used to generate large amounts of datameter are required since the collective power consiomof
blocks. This is achieved by running multiple concurrent mapthe entire clustercannot be monitored from the local
tasks. In ouexperimentationwe use TeraGen to generate large monitoring software. In this experimental study, wse the
datasets to be sorted using a number of map tasks writing/attdJp Pro .net power meter that logs the power used in
100-byte rows of data to the HI¥F TeraGen divides the terms of watts at time intervals specified, into the unitOs non
desired number of rows by the desired number of tasks andolatilie memory. The unit allows easy download of data using
assigns ranges of rows to each map. Consequently, TeraGentliee USB cable connected to an external device (such ag)apto
a write intensive I/0O benchmarkhe TeraSort generates set of The use can also collect data only when the power
sample keys by sampling the input data generatetielbgGen  consumption exceeds a predefined threshold.
before the job is submitted and writes the list of keys into

HDFS. The input and output format, which are usedlbiheee IV. EXPERIMENTAL RESULTS
MapReduce programs, reads and writes the text filethe In this work, we focus onattempting to findan optimal
correct format. tradeoff between power consumption and data intensive

By design eacferaSortMapReducgob is executd in two  MapReduce workloadsasing TeraSort benchmark on Hadoop
steps: map and reduce. During these steparious  virtual clusters.The power consumption of the virtual cloud
Computation(CPU) intensive, disk I/O intensive and Network environment running Hadoop can be characterized by using
I/0 intensive subtasks with varying workloads are aétd. The powerconsumptiorprofiles. A power consumption profifer a
workloads depend on the number of map and reduce atloudbasedapplicationis the characterization ofits power
initiation of thejob. The map tasks read input data from files consumption levels at different time intervals during its
generated by TeraGen and outputs intermediate data. At thexecution on the cloud testbeWe define and explain the
completion of writing the intermediate data to the digle variouslevelsof power consumption obtained from both cloud
reduce step reads the indexed files from Disk to tleenary  testbeds used in this stutly describe the powaronsumption
referred to as shuffle buffer. The merged sortedlata is used profiles for TeraSort as an instance of a big data application
by the reducestep to write the output to the Diskit is Furthemore we determine the power usage of TeraSort jobs
important to characterize these steps into CPU intensive, |@ith workloadsof various sizes and compare thesedifferent
intensive and Network Intensive operations. configurations of virtual machindeploymentin the clusters.

i. From the launch offeraSortjob to the moment the Finally, we provide a performance comparison for these jjobs

first map task is read into memory (Disk I/O terms of CPU execution times and analyze the results.

intensive).
ii. From the initiation of map input until map output is 4.1Power usage profiles
written to disk (CPU intensive) The power usage profiles can be specified for apptins

iii. From the writing of firstmap until all map tasks are executing in a data center. We observe six distinct powel
completed (CPU, Disk 10 and Network |0 intensive). consumption levels for TeraSort jobs running on the cluster
iv. From the completion of all maps until last shuffisk  testbeds from Host machine running in idle mddeinitiation

is done (Disk IO and Network 10 intensive). of TeraSort jobto completion and shutting down of the virtual
V. From the end of shuffle task until all reduce taaks  cluster. The choice ofhe host machine operating system,

done (CPU and Disk intensive) virtualization software and hardware capabilities also have
Vi. From the end of reduce tasks until the job is fiatsh impact on the overall power consumption. We therefore

(Disk 10 intensive). providethe average values fggower consumption at each level

to understand the behavior. Big 1 shows the power usage

In our experimentationwe run TeraGen and TeraSort on profile for TeraSort withvarious levels of power usage at

both clustersdue to its intensive workload which is correlated
to adata intensivebig data application. We erute thesdor

! http://www.wattsupmeters.com




different timeintervalson the RloTU testbedrable 2describes 4.2 Power usage for Tée&n and Ter@orttasks
power usage levelsy to wg in time intevals y to t;. We study the power consumption &ioTU cluster using

As themachine in the clusters are booted, there is a smallthe TeraGen and TeraSort benchmark due to their intensiv
peak in power consumption due to the use of 10 operations iI€PU and IO bound operation¥o accurately measure power
running the host operating system. Tlegel Wy is the idle  consumptionin the cluster, a Wadtip Pro .net power meter is
mode when the machines are running with Host operatin attached to the clustand the power main§.he Wattsup Pro
system idling without any virtual machines runningcif). An .net meter is capable of recording power consumption in term:
increase in thgpower consumption is observddr level W, of watts, each reading is collected every s€tond and is
when virtual machines are started until the guestratng logged in the meterOs onboard memory. The risdtetialized
systemin the virtual machines is running<t;). A small but 60 seconds before each TeraGerd a'eraSort job is initiated
noticeableincrease in poweconsumptionis observed when and stops reading0 seconds after the job is completed.
Hadoop is started in each virtual machfioe level W,. This In order to run TeraSort, data files need to be genemted
value increases as the number of virtual machines executing pre HDFS using TeraGen using the single, 2 and 4 virtual
node also ineases. When the TeraSort job is initiated wemachine configurations. TeraGen was executedirhifs each
observe a significant increase in power consumption due to thier dataset sizes of 100MB, 1 GB and 10 GB respdgtior
intensity of Disk 10, Network 10 tasks running at the sameeach of these jobs, 10 mapskswith 1 reduce tasks were
time in all virtual machines on the cluster. provided as parametefSigure 2shows the power consumption

For TeraSort jobs, Hadoop stresses the system inggeas (in terms of watts) against time and completion rate the
the power consumption significantly for a short period of timecluster setup using 2 and 4 virtual machif@esl0 GB datasets
(t<tz) for level W3, As the map step begins, the map tasks startAs the job initiates, we notice a spike in power usage short
reading the data from Disk increasing the D€k but reducing  period of time for both VM configurations. We observe this
the overall power consumptioat level W; to level W,. The behavior due to the intensive read/write Disk and Network 10
cluster maintains almost a constant power consumption timeperdions. As the distribution of the map tasks over the
with a variability of +4% in power consumption until the clusters is completed, the map tasks start executing slightly
Shufflingphase is completed amlde reduce jobs are started. As reducing the power consumption. SinteraGen islO bound
the reduce jobsomplete the power consumption also reduces job, map tasksvrite to the HDFSand we observe steady power
due to the decrease in number of parallel tasks executing in t®nsumption until mapasks are completed. With the progress
cluster. We defindevel W5 to depictthe completion time of of map task completion, we notice a drop in power
TeraSort job.In our experimentatiotevels W, and W, were consumption due to the decrease in Diskal@ completion of
observed to be very closeLevel Wg defines power the joh We compute the ratio of power usage in terms of Watts
consumption behavior when Hadoop is shutdoRinally, the per hourfor each of these configuratiorSor a single machine
physical machine can be put to idle state when we close all theonfiguration we obtain the Energy consumption E in Kilo

virtual machinesTable 3 shows the minimum, maximum and Watts per hour (KWh) to bg 1" 11 1" '* KWh. For 2VM and
average power consumption (watts) for RlofEdtbed. 4 VM configurations we obtain" I"# 111" '' KWh and
g 1t Y KWh, This indicates that executing this task in
T Table2: Power usage levels for different time intervals
w3 Time Power Usage Description
Interval Level
W, [to, ta] Wo Host OS idle with no VMs
Wo W running
Wi we [t t] Wi Virtual Machines started
= [to, ts] Wy Hadoop Started and working
£ Wo [ts, ta] W3 TeraSort Map starting phase
= [ta, ts] Wy TeraSort Map/Reduce in
g progress
& [ts, to] Ws TeraSort Job completed
. [te, t7] Ws Hadoop shut down
to ty t 3ty g st ty [tz, ) Wo VMs shut down, Host is idle

time

Figure 1: Powerconsumptiorprofile for TeraSort

Table3: Power usage for various workloads on the RIoTU &gbtb
Workload (MB) No of  Min power Max power  Average Variability

VMs (watts) (watts) (watts)
100 MB 1 85.5 91.2 88.35 +2.85
100 MB 2 105.1 114.6 109.85 +4.75
100 MB 4 238.5 246.6 242.55 +4.05
1000 MB 1 87.1 90.1 88.6 +1.50
1000 MB 2 106.4 115.3 110.85 +4.45
1000 MB 4 239.3 245.4 242.35 +3.05
10000 MB 1 86.8 91.3 89.05 +2.25
10000 MB 2 107.4 114.9 111.15 +3.75
10000 MB 4 241.6 246.5 244.05 +2.45




4VM configuration is cost efficient compared to single and _ .

2VM configurations_ Power Consumption for TeraGenwsltel:ViCr)GB payload and 2VM and 4VM per
We observe similar power consumption patterns for

TeraSort jobs. The TeraSort generadeset of sample keys by s

sampling the input data generated by TeraGen bdfiergobis el

submitted and writes the list of keys into HDFS. The inputand = ;.

output format, which are used by all three MapReduce

programs, reads and writes the text files in the correct format

The TeraSort benchmark is CPU bound during the maseh

as it readsriput data and shuffles it/O bound during the

reduce phaséor writing output to HDFSWe notice a similar Figure 2. Comparison of Power consumption for Tera@itim 10GB

spike in power usage at the initiation of a Tera$aistwhile workload on 2VM and 4VM configurations for RIoTU Testbed.

map tasks are written across various nodes in theterhs can

be seen irFigUre 3 As the mappers Continue to Complete the Power Consumption for TeraSort with 10GB payload for 4VM per Server

tasks, the incoming results start processing in the reduce jobs

Before the completion of all mapsks the reducéasksinitiate

sorting and summarizing process requiring CPU as wdlDas

resources towards completion of the task&hilst the

distributedtaskscomplete the power consumptiodrops We

100

%age

(Watt

&
Completion

time (seconds)

—*—vmaPower  —&—vm2Power v ap ss  —B—vm2map

230

180

Power (Watts)

Completion %age

130

notice that the trends are similar for other data sizes ugadin 0 o 500 1000 1500 2000
study. As can be sednom Figure 3 the percentage of map time{seconds]
tasksand reducetasks completed correlates with the power ——poweriwatts) | ——MapProgress  ——Reducebrogress

consumptionfor both 2VM and 4 VM configurationsin
particular, when the map and reduaskscomplete, the power
consumptiondrops therefore highlighting underutilized nodes 190
in the clusters. e
Discussons. Both TeraGen and TeraSort exhibit different o
power consumption. TeraSort on both clusters has a relatively
long phase of higher power consumption from initialization of .
map jobs until about 80% of map jobs completion intihca
high CPU utilization. Aterwards, the power consumption

Power Consumption for TeraSort with 10GB payload for 2VM per Server

Power (Watts)

X
Completion %age

130
x

1000 1500 2000 2500 3000

time (seconds)

decreases slightly fluctuating while both map and reduce jobs Power(Watts) | ——MapProgress  ——ReduceProgress
are executing in parallelFinally, the power consumption Figure 3. Power consumption and map/reduce completit for TeraSort
steadies with minor tails and peaks in the plot towaedsice with 10GB workload on 4VM and 2VM configurations for RIdTrestbed.

jobs completion.For TeraSort job execution oa single

machine configuratigrwe obtain the Energ€onsumptiork to job completion time is correlating RIoTU and Kafaleclusters
be 0.136KWh. For 2VM and 4 VM configurations we obtain when payloads are increased, however the complétioan for
0.128 KWh and ! "l KWh. Although the runtime for the these jobs is different. For TeraGen with 10GB file sirel
same TeraSort jobs in 4VM configuration is éinefficient,  with 2 VM configuration both clustes present similar CPU
however the ratio of power consumption is 17igher. execution time, however with 4 VM configuration, the RloTU
Comparing the2 VM and single VM configuratias it is clear  cluster performs betteTeraSort on the other hand is CPU and
that 2 VM configuration is both timg7% faster)and power 10 intensive for map and reduce phase respectively2 Ravi
efficient (6% less power) than single VM configuration configuration the CPU execution time for smaller TeraSort jobs
Overall the results presented a tradeoff between power(0.1GB and 1GB) is 0.7 and 2.8 times faster for Kazlsster
consumption and time efficiency for various VM due to the increased number of servers and virtual machines.

configurations. In all casesunning multitenancy ofVMs per For larger dataset (10 GBthe performance of Kafala

server provids better power efficiency when compared to cluster is slightly better. With 4VM configuratiathe Disk 10

single VM or physical system configurations. per physical server increases due to the larger number of virtue
machines therefore affecting the read/write speadthe local

4.3 Computation Execution times disks. Thisis visible in Figure 4 where the run time for

In recent studies, various Quality of Service metrics fo TeraSort with 10GB file sizes 8.12 times faster foRIoTU
execution of parallel jobs in a Hadoop cluster have beemjuster.Since TeraGen anthe reduce phase of TeraSort is 10
employed. In this study, we analyze the impattVirtual  intensive, the larger run timeith 4VMs is due to increased
machines configurations on CPU Executioanipugtion) time  Disk 10. As RIoTU servers are equipped with faster Solid State
for executing TeraSort jobs on datasetsl00MB, 1GB and  pisks, the disk speed directly correlates with TeraGed
10GBsizes.We observe the job execution time for each run forTera®rt completion time for larger file sizesdowever for
comparison and analyze the performance twth cluster  smaller file sizes, the larger number of virtual maeki
testbedsThe experiments were rdid times for each datsize running per server yield better run times.
on ezh cluster. Figurel shows box whisker plots for the job
completion time (CPU Execution Timp for TeraGenand
TeraSortfor varying data payloads. Performance in terms of



CPU Execution Time (Seconds)

2VM per Server TeraGen
Execution Time vs Data Size

Y
o
IS)

700

@
o
1)

IS
o
3

w
o
1)

~
o
1)

=

1)
1S)

100MB 1GB

o

10GB
Data Size Giga Bytes

2VM per Server TeraSort
Execution Time vs Data Size

4VM per Server TeraGen
Execution Time vs Data Size

g 400
2
8 350
a
=~ 300
E 250

450

CPU Execution Time (Se
Boe N
S5 & o
s & 38

@
S

——

1o00mMB 1GB

o

10GB
Data Size Giga Bytes

4VM per Server TeraSort
Execution Time vs Data Size

4000
B 3500
2
S
% 3000
L)
@ 2500
£
= 2000
c
s
< 1500

o

X 1000

CPU

500

0
100mB

1GB

=

10GB

3000

N
@
o
1)

2000

1500

1000

@
S
o

CPU Execution Time (Seconds)

o

100MB

=

1GB

10GB

Data Size Giga Bytes

Data Size Giga Bytes

2VM per Server TeraGen
Execution Time vs Data Size

@
o
S

5w
o o
S o

N
=]
S

1)
S

CPU Execution Time (Seconds)
8
8

o

100mB 1GB
Data Size Giga Bytes

10GB

2VM per Server TeraSort
Execution Time vs Data Size

4VM per Server TeraGen
Execution Time vs Data Size

@
o
1)

«
o
3

N
o
1)

~
o
5]

1)
5]

i

CPU Execution Time (Seconds)
8
8

o

100mMB 1GB 10GB

Data Size Giga Bytes

4VM per Server TeraSort
Execution Time vs Data Size

3500

3000

500

15}
S
15

@
S
15

1000

«
o
5]

CPU Execution Time (Seconds)

o

=

10G8

100mMB 1GB

CPU Execution Time (Seconds)

3500

3000

2500

2000

1500

1000

@
=)
o o

100mMB 1GB

=

=

——

10GB
Data Size Giga Bytes

Data Size Giga Bytes

@)

(b)
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V. CONCLUSIONS
Energy efficiency of data centers enabling the clsuthst

[41.

becoming a governing issue and key research direction in dats.
center design, deployment and operation. In this paper, we

investigatel the issueof power consumption profiles for data

intensive big data applicatiors in determining the optimal

6.

tradeoff between power consumption and job completion time

in virtualized Hadoop clusterd.o this end, we deployed two
virtual Hadoop cluster

TeraSort jobs with various payloads. We also obskifes

testbeds to analyze the powe
consumption behavior and time efficiency of executing

!

large filesizesthe role of efficient storage media is imperative. [8].

We conclude that there is a direct correlation betwé¢he

number of virtual machines and data workloads executed apq;

these VMs compared to execution on physical machines. Tt

work presentedn this paperthelps identiffjng how many VMs

per machine can be deployed to achieve throughput at a givéﬁol'

power consumption profileassisting decision makers in

optimizing energy efficiency of the infrastructuddthough we  [11].
used private cloud infrastructure as testbed for this
experimetal study, webelievethe multitenancy in public cloud [12]

environments where workloads and number of VMs pel

machine greatly vary over time, can benefit from shisly.
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