

Partitioning and Analysis of the Network-on-
Chip on a COTS Many-Core Platform

Conference Paper

*CISTER Research Centre

CISTER-TR-170302

2017/04/18

Matthias Becker

Borislav Nikolic

Dakshina Dasari

Benny Åkesson*

Vincent Nélis*

Moris Behnam

Thomas Nolte

Conference Paper CISTER-TR-170302 Partitioning and Analysis of the Network-on-Chip on a COTS ...

© CISTER Research Center
www.cister.isep.ipp.pt

1

Partitioning and Analysis of the Network-on-Chip on a COTS Many-Core Platform

Matthias Becker, Borislav Nikolic, Dakshina Dasari, Benny Åkesson*, Vincent Nélis*, Moris Behnam,
Thomas Nolte

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: matthias.becker@mdh.se, borni@isep.ipp.pt, dandi@isep.ipp.pt, kbake@isep.ipp.pt, nelis@isep.ipp.pt

http://www.cister.isep.ipp.pt

Abstract
Many-core processors can provide the computational power required by future complex embedded systems.
However, their adoption is not trivial, since several sources of interference on COTS many-core platforms have
adverse effects on the resulting performance. One main source of performance degradation is the contention on
the Network-on-Chip, which is used for communication among the compute cores via the offchip memory.
Available analysis techniques for the traversal time of messages on the NoC do not consider many of the
architectural features found on COTS platforms.

In this work, we target a state-of-the-art many-core processor, the Kalray MPPA. A novel partitioning strategy for
reducing the contention on the NoC is proposed. Further, we present an analysis technique dedicated to the
proposed partitioning strategy, which considers all architectural features of the COTS NoC. Additionally, it is shown
how to configure the parameters for flow-regulation on the NoC, such that the Worst-Case Traversal Time (WCTT) is
minimal and buffers never overflow. The benefits of our approach are evaluated based on extensive experiments
that show that contention is significantly reduced compared to the unconstrained case, while the proposed
analysis outperforms a state-of-the-art analysis for the same platform. An industrial case study shows the
tightness of the proposed analysis.

Partitioning and Analysis of the Network-on-Chip
on a COTS Many-Core Platform

Matthias Becker⇤, Borislav Nikolić§, Dakshina Dasari‡, Benny Akesson†

Vincent Nélis†, Moris Behnam⇤, Thomas Nolte⇤
⇤MRTC / Mälardalen University, Sweden {matthias.becker, moris.behnam, thomas.nolte}@mdh.se

§ Institute of Computer and Network Engineering, Technische Universität Braunschweig, Germany bnikolic@ida.ing.tu-bs.de
†CISTER/INESC-TEC, ISEP, Portugal {borni, kbake, nelis}@isep.ipp.pt

‡ Robert Bosch GmbH, Renningen, Germany dakshina.dasari@de.bosch.com

Abstract—Many-core processors can provide the computa-
tional power required by future complex embedded systems.
However, their adoption is not trivial, since several sources of
interference on COTS many-core platforms have adverse effects
on the resulting performance. One main source of performance
degradation is the contention on the Network-on-Chip (NoC),
which is used for communication among the compute cores
via the off-chip memory. Available analysis techniques for the
traversal time of messages on the NoC do not consider many of
the architectural features found on COTS platforms.

In this work, we target a state-of-the-art many-core processor,
the Kalray MPPA R©. A novel partitioning strategy for reducing
the contention on the NoC is proposed. Further, we present an
analysis technique dedicated to the proposed partitioning strat-
egy, which considers all architectural features of the COTS NoC.
Additionally, it is shown how to configure the parameters for
flow-regulation on the NoC, such that the Worst-Case Traversal
Time (WCTT) is minimal and buffers never overflow. The benefits
of our approach are evaluated based on extensive experiments
that show that contention is significantly reduced compared to
the unconstrained case, while the proposed analysis outperforms
a state-of-the-art analysis for the same platform. An industrial
case study shows the tightness of the proposed analysis.

I. INTRODUCTION

Many industrial domains face the challenge of proliferation
in their systems. Traditional system designs are founded on a
one application per controller principle. Powerful backbone
networks are used to provide the required inter-application
communication, as well as the communication with sensors
and actuators. Due to the growing system complexity, a
threshold was reached where additional controllers cannot
be added to the system, either due to space limitations or
cost restrictions. A prominent example is the automotive
domain [1], [2].

Many-core processors are a promising platform in this
domain [3], [4]. With tens or even hundreds of compute cores
on a single processor, they provide enough computational
performance to host several applications [5], while their low
energy consumption makes them well-suited for deployment
in embedded systems. The compute elements on a many-
core processor are arranged in so called tiles, where each
tile can host a number of cores. The tiles themselves connect
to a Network-on-Chip (NoC) that is used to access shared
resources, such as I/O or off-chip memory. However, the
analysis of such systems is not trivial since several sources

of interference that affect the execution of applications need
to be considered [6], [7].

This work assumes a mapping of one application to one
tile. This is reasonable since a tile of the considered Commer-
cial Off-The-Shelf (COTS) platform, the Kalray MPPA R©[8],
contains 16 compute cores. Additional benefits arise through
the spatial isolation between tiles on the die. If all required
resources are available within a tile, an application executing
in one tile cannot affect another application on another tile.

Current state-of-the art analysis techniques for NoCs do not
consider many of the crucial architectural elements that are
found in real implementations. For instance, an important low-
level detail with the Kalray MPPA R© is that it provides flow
regulation on source nodes [9] in order to avoid buffer over-
flows on the NoC router. Another source of pessimism may
arise if the buffer in the NoC router is neglected. Traditional
analysis techniques either do not factor-in the impact of all the
involved elements, which may lead to optimistic results [10]
in the presence of buffers, or they lead to over-approximations
which in turn leads to an under-utilization of the platform [11].

This paper addresses the problem of contention in the NoC
through the following five contributions:

1) A NoC organization based on symmetric partitioning,
which reduces contention on the access to off-chip resources,
such as memory or I/O, and additionally provides compos-
ability among clusters. We demonstrate that this reduced
contention leads to faster traversal of messages in the path
from the cluster to the off-chip DDR memory via the I/O
cluster, thereby reducing effectively the overall access latency.
This is because the benefits of the NoC management are also
sustained at the DDR subsystem level.
2) An analysis of the contention-induced delays in a partition
is presented, taking the flow regulation on source nodes, as
well as the limited buffer size on NoC routers into account.
3) A method to configure the flow regulation on source
nodes in a way that minimizes the Worst-Case Traversal Time
(WCTT) of application messages is proposed.
4) Experimental evaluations show the benefits of the parti-
tioned model and the presented analysis compared to existing
approaches.
5) Finally, an industrial case study is presented to demonstrate
the strength of the approach and the reduced pessimism of the
proposed analysis.978-1-5090-5269-1/17/$31.00 c©2017 IEEE

The rest of the paper is organized as follows. Section II
discusses related work, followed by a description of the system
model in Section III. The proposed NoC partitioning strategy is
introduced in Section IV. Section V presents the calculation of
the WCTT for application messages, and Section VI introduces
the configuration of the flow regulation. Experiments are
presented in Section VII. Lastly, conclusions are drawn in
Section VIII.

II. RELATED WORK

The design and analysis of NoC architectures targeting
applications with strict timing constraints has received sig-
nificant attention in recent years. Two main approaches can
be observed: 1) The design of NoC architectures tailored
to avoid contention by applying Time-Division Multiplexing
(TDM) [12], [13], [14], [15]. This provides high predictability
and allows for simple WCTT calculations, but may waste
bandwidth on the NoC. 2) The second approach lies in the
analysis of the worst-case behavior of a given NoC. This
generally targets the NoC implemented on COTS many-
core platforms (e.g. Kalray MPPA R© 256 [8] or Tileras Tile
Processor [16]). In this work, we focus on Round Robin
(RR) arbitrated NoC architectures as this is the arbitration
mechanism implemented on the Kalray MPPA R© [8].

Ferrandiz et al. [17] propose the Recursive Calculus (RC)
method for RR arbitrated NoCs. The RC takes the largest
possible interference of contending flows on each link into
account and calculates a safe WCTT for individual NoC
packets. Dasari et al. [18], as well as Liu et al. [19], extended
the RC method to account for periodic NoC packets, and
Abdallah et al. [20] extended the original RC with additional
properties to reduce pessimism. Ayed et al. [11] adapt the
RC for a Kalray-like NoC. However, all these methods only
compute WCTT for individual NoC packets and they do not

consider buffer effects on the NoC.
The NoC of the Kalray MPPA R© 256 is designed to provide

for guaranteed service [8]. This is achieved by flow regulation
on the source node [21] together with non-blocking routers
(i.e., there is no link-level flow control implemented). The
main intention of this design is to enable simple analysis using
Network Calculus (NC) [9].

The existing methods have several limitations. The RC-
based methods do not consider buffers and hence the computed
results may be optimistic (unsafe) if buffers are present, as
shown in [10]. Also, these methods only consider individual
NoC packets. However, realistic application messages consist
of a sequence of packets released at the same time. Hence, an
earlier NoC packet of the same application message may block
a later one – While this is considered by the NC approaches,
the computed results are pessimistic in most scenarios [11].
Puffitsch et al. [22] compare TDM and a dynamically sched-
uled NoC for the example of the Kalray NoC [8] and the
Argo NoC [14]. The WCTT of the dynamically scheduled
NoC were based on NC. Their experimental evaluation shows
that the WCTT of the TDM NoC is generally tighter then the
dynamically scheduled NoC using the NC analysis, but that
the dynamically scheduled NoC achieves higher utilization.

For most many-core platforms, the on-chip memory is small
compared to the application footprint (instructions plus data).

I/O	Subsystem	DDR0

I/O	Subsystem	DDR1

I/
O
	S
u
b
sy
st
e
m
	E
th
e
rn
e
t	
1

I/O
	S
u
b
sy
ste

m
	E
th
e
rn
e
t	1

(a)

DDR0

DDR1

C
o
m
p
u
te
	C
u
st
e
r

(b)

Fig. 1: NoC architecture of the Kalray MPPA R© 256 with four I/O subsystem
regions and the compute cluster region in the middle is shown in (a). The NoC
links to the compute clusters and to the I/O nodes are omitted for better clarity.
(b) One column of the NoC (the column with gray shaded background).

This means that during the execution of the application access
to off-chip memory is required. This generally introduces
additional load on the system and may affect the execution
time of applications.

Giannopoulou et al. [23] propose a framework for mixed-
criticality scheduling on one cluster of a many-core processor,
such as the Kalray MPPA R©. Time-triggered scheduling is used
on the clusters while WCTT on the NoC is computed using
real-time calculus and NC. They consider access to off-cluster
memory in their analysis.

Perret et al. [7] analyze the potential sources of interference
on clustered COTS many-core architectures, such as the Kalray
MPPA R©. They identify the NoC as well as the external
DDR memory as main sources for interference. Consequently,
they provide design guidelines for execution frameworks that
adhere to the requirements found in safety-critical embedded
systems. In [24], the same authors present an execution frame-
work for time-critical applications on the Kalray MPPA R©. To
add predictability to the NoC, they implement TDM on top
of the RR-arbitrated COTS NoC. This then fully decouples
different applications.

Our method differs from the existing approaches by taking

the authentic NoC topology of the Kalray MPPA R© into ac-

count, which allows to partition the NoC such that contention
is minimized. We then show how to compute tight WCTT
for application messages, which are divided into several NoC
packets, on such partitions. This includes the buffering effects
on NoC router and the injection pattern imposed to the
injection of NoC packets by the flow regulation on source
nodes. It is further shown how to select the flow regulation
parameters in a way that buffer overflows in NoC routers are
avoided.

III. SYSTEM MODEL

This section introduces the NoC architecture found on
the Kalray MPPA R© many-core processor, as well as the
communication model used by the clusters.

A. NoC Architecture

The NoC is the interconnect of choice for today’s many-core
platforms [25]. The Kalray MPPA R© consist of 16 compute

clusters, arranged on a 4x4 grid. Each compute cluster hosts 16
compute cores, as well as local memory. A network interface
is used to connect the cluster to the NoC router. In contrast to
the traditional 2D-mesh based topology that can be found on
Intel’s Single Chip Cloud Computer [26] or on Tilera’s Tile
Processor [16], the NoC on the Kalray MPPA R© is arranged
in a torus topology, as shown in Fig. 1a. In addition to the
16 compute clusters, 16 nodes connect to 4 so called I/O
subsystems. Each of the 4 I/O subsystems serves 4 independent
connections to the NoC. On the north- and south-sides of
the chip, the I/O subsystems connect to external memory,
while the I/O subsystems located on the east- and west-side
of the chip are intended for ethernet communication. In order
to provide the required performance, two independent NoCs
are implemented on the Kalray MPPA R©, the Data-NoC (D-
NoC) and the Control-NoC (C-NoC). Both have the same
architecture and differ only in the buffer size within the router,
and flow regulation implemented on the D-NoC nodes. The C-
NoC is intended for control messages, hence their payload is
small. In contrast, the D-NoC is designed for transferring large
payloads.

B. Switching Mechanism on the NoC

Wormhole switching is the switching mechanism on the
NoC [27]. A NoC packet is divided into flow control digits
(flits), where a flit has a fixed size of f bytes. Each link can
transmit one flit every DC clock cycles, where DC is the link
latency. In addition to the packets payload, a header flit is
appended. The header contains the necessary information to
route the message from source to destination node, i.e. static
routing is applied. The number of header flits in a message is
denoted as h. During transmission, the header propagates on
its static route through the network. Once the header proceeds
from one router to the next, the remaining flits follow in a
pipelined manner.

Routing

W
E
S
T

SOUTH

E
A
S
T

NORTH

Fig. 2: Architecture of the NoC router on the Kalray MPPA R© 256.

The architecture of the NoC router is shown in Fig. 2. Each
output link has its own set of buffers. Each incoming link has
its own dedicated buffer at each output link (i.e. the output
link in direction north has separate buffers for the traffic from
west, south, east, respectively, and from the connected node).
When the header flit arrives at an input port, it experiences a
switching delay of DSW clock cycles before the flit is placed
in the corresponding output buffer. However, this is a pipelined
delay, so two flits that arrive DC cycles apart at the input
link will become available in the same inter-arrival time DSW

cycles later at the output buffer. Each of the buffers has a
capacity of bC flits on the C-NoC, and bD flits on the D-NoC.

…

flit

Application	Message	!" with	Payload	#"

…

NoC Packet	2 NoC	Packet	$"

ℎ&"

'"

NoC Packet	1

Fig. 3: Application message and the packetization into NoC packets.

In contrast to most NoC implementations, links on the Kalray-
NoC do not have a flow control mechanism [9], [28]. This
means a buffer can potentially overflow if more flits arrive
than depart over a certain time period. The link arbitration
between the different buffers at an output link is based on the
Round Robin (RR) mechanism and works on packet level. This
successfully (by design) prevents deadlocks in the system, i.e.
the situation that packets on the NoC block each other in such
a way that no packet can progress is eliminated due to the
non-blocking links.

C. Flow Regulation on the Source Node

To avoid buffer overflow and to guarantee service on the
D-NoC, a flow regulation mechanism is implemented on each
source node [8], [21]. A packet shaper and a traffic limiter

work in tandem to guarantee the service on the NoC. This
applies at connection level, i.e. messages of different NoC
connections departing from the same node may have different
flow regulation settings.

1) Packet Shaper: The packet shaper limits the size of NoC
packets that are injected by a connection i to Pi flits. Since
each packet has its own header, the effective payload is Si =
Pi−h flits. An application message of size Mi flits is thus sent
over the NoC via a series of α = dMi/Sie NoC packets. The
relation between the application message and the NoC packets
that are generated by the packet shaper before the packets are
injected into the NoC is visualized in Fig. 3.

2) Traffic Limiter: The traffic limiter regulates the injected
traffic. It is configured by two parameters, the window size

TW and the bandwidth quota β [8]. On each clock cycle the
traffic limiter compares if the number of injected flits during
the last TW cycles plus the number of flits in the next pending
packet is larger than β. If not, the complete packet is injected.

D. Application Model

An application Ai is mapped to a single compute tile of
the many-core platform, and different tiles can possibly have
different execution models. During execution, each application
may read and write data to and from the off-chip memory.
Such requests are performed in a sequential manner. During
its execution, an application Ai can issue a set of read requests
Ri and a set of write requests Wi. Each request j has an
associated payload size of Mj flits, which needs to be read
or written from or to the I/O subsystem, respectively. In this
work, application message refers to a message 2 Ri or Wi.

For a read request, a message is sent from the compute
cluster to the I/O cluster on the C-NoC. Such a request
message always has a fixed size of MCNoC flits, which is
not included in Mi. Once the I/O cluster fetches the requested
data from off-chip memory, the data of size Mi flits is sent
back to the compute cluster over the D-NoC. Write requests,

Read Execute Write

t

Core

NoC

I/O

…

…

Fig. 4: Read-Execute-Write semantic and the resulting communication pattern.

on the other hand, do not need a C-NoC message, since the
data can be directly sent over the D-NoC to the I/O subsystem.
Both communication patterns are depicted in Fig. 4, where the
dashed arrow represents communication on the C-NoC and the
full arrow communication on the D-NoC.

No assumptions are made on the arrival times of read or
write requests. This is the case for many industrial applica-
tion models. For example, AUTOSAR [29] follow a coarse-
grained memory access, divided into read, execute, and write

phases [5], [30].
On the application side, the time that needs to be reserved

for read or write messages is the time required for the complete
transmission of the data over the NoC. This is to keep the
memory coherent, since a C-NoC message can potentially
overtake a D-NoC message. If the I/O subsystem is in the
process of receiving data (i.e. a write request) and a C-NoC
message requesting the same data arrives, it is possible that
the partially written data plus old data is sent back, thereby
compromising the data consistency. From the application per-
spective, the main objective is to minimize the communication
times since this allows for a better utilization of the cluster.

IV. CONTENTION-AWARE NOC PARTITIONING

In an unconstrained NoC, a NoC packet can potentially
suffer blocking on every router on its path from its source
cluster to the I/O. This blocking on each router may be caused
by contention from packets departing from the router to the
same (direction) link from other clusters or the source cluster
of the considered packet. Since there is a FIFO buffer at
the output link for packets arriving from each direction, the
considered packet incurs (intra-queue) blocking delays firstly,
since it is queued up behind other packets in the corresponding
output buffer. Secondly, further (inter-queue) delays are in-
curred due to the round robin arbitration between the different
FIFO queues on the output link. The routing of NoC packets
emerging from other compute clusters thus has large impact
on the WCTT of all NoC packets, and hence on the off-
chip memory access time. This also means that, even though
compute clusters are independent entities, as soon as the NoC
is accessed, other NoC traffic needs to be accounted for. While
different methods to compute the WCTT are available for
several NoC-types, all require a priori knowledge of NoC
communication in order to derive the WCTT bounds. If routes
are given, upper bounds can be computed for the Kalray
MPPA R© NoC, as shown in [8]. However, these bounds are,
in most cases, overly pessimistic [11].

This section introduces a novel partitioning based on
placement and routing rules for the NoC on the Kalray
MPPA R© with the objective to minimize the WCTT of mes-
sages over the NoC by significantly reducing the inter-cluster
interference.

NoC	Link

Inactive	NoC	Link

NoC Router	Group	1

NoC Router	Group	2

NoC	Group	1

NoC	Group	2

Fig. 5: Division of the NoC column into two independent groups in order to
minimize the possible interference.

A. Effective NoC Sub-Topology

The application model described in Section III brings sev-
eral advantages. The key idea of our approach is to refrain

from direct communication among applications residing in

different clusters and that all communication happens via the
shared off-chip memory. With such a partitioning, there is no

horizontal NoC traffic, i.e. the eastward and the westward links
are not used for any communication. We later experimentally
show in Section VII, that the benefits of contention-free
communication outweigh and justify the intentional loss of
these links on the NoC.

Given this setup, the proposed partitioning is based on the
concept of NoC Columns and NoC groups. The entire NoC is
logically divided vertically into four NoC columns, as shown
in Fig. 1b. Each NoC column comprises one router of each
DDR I/O subsystem and 4 routers connected to the 4 compute
clusters in that column. Each NoC column is further divided
into two NoC Groups, as shown in Fig. 5, each consisting
of two compute clusters. We mandate that the two compute
clusters in NoC group 1 in every NoC column access the off-
chip memory through the I/O subsystem on the north side

and the two compute clusters in NoC group 2 in every NoC
column access the off-chip memory through the I/O subsystem
on the south side of the chip, respectively1. Note that with this
explicit well-defined spatial memory separation across the two
NoC groups, there is no interference and direct communication
between them. To guarantee the spatial isolation between the
respective groups on the NoC, unused NoC links need to
be disabled. This can be done on the Kalray MPPA R© using
lockout bits, which remove the connected links from the NoC
topology until the system reset [31]. This is an important
feature since it guarantees freedom of interference between
NoC groups, even in case one group malfunctions.

The partitioning of the NoC into the proposed NoC groups
has three benefits in terms of system design, contention
minimization and predictable execution:

1) Each compute cluster has a private link to the router of the
I/O subsystem, and shares only the final link with the second
compute cluster of the NoC group. This also implicitly means
no contention for the internal NoC links.
2) Each NoC group is identical in terms of NoC topology.
This symmetry facilitates a uniform analysis applicable to all
NoC groups.

1If all DMA controllers have access to both memories this is straightfor-
ward. Otherwise linker scripts can be used to place the code in the right
memory banks to implicitly direct the memory access through the required
DMA controller.

!"

#

$!%

A

B

AA

!&

' BB

Cluster	A

Cluster	B

I/O	System

Compute	Cluster	to	I/O

(a)

!

"#

"$

A

%

&B

A

B

"'

B

Cluster	A

Cluster	B

I/O	System

I/O	to	Compute	Cluster

A

(b)

Fig. 6: All involved network elements of one NoC group for cluster to I/O messages are shown in (a) and for I/O to cluster messages are shown in (b).

3) Interference on the NoC is limited to the compute clusters
within a group. This is the case since access to off-chip
memory is predefined within the groups and no other commu-
nication takes place on the NoC. Thus, the introduced rules
already limit the possible interference only to interference
from a single compute cluster as opposed to 15 other clusters
in the unconstrained system.

V. COMPUTING THE WCTT OF NOC MESSAGES

This section shows how to obtain the WCTT of applica-
tion messages on the NoC. These calculations consider the
architectural details of the COTS platform and are tailored
to the partitioning previously described in Section IV. As
seen in Fig. 6, the NoC elements that are shared among the
two compute clusters are different for the two directions of
communication. This mainly manifests itself in router R2. The
architecture in Fig. 6a performs round robin arbitration be-
tween the two buffers that contend for the same link, compared
to Fig 6b where each buffer is located at a different output
link. Thus, we analyze the two cases separately. Without loss
of generality, we always analyze a message from cluster A that
receives blocking by a message from cluster B.

First we present how to compute the WCTT of the last
packet of the application message in isolation, defined as Basic
Network Latency CBNL. Given the pipelined transmission
of packets on the NoC, and the fact that all packets of the
application message are released at the same time, the total
WCTT of the packet is then computed as CBNL plus the
blocking delays added by other packets from the same flow
and blocking delays due to packets from other clusters. These
calculations are presented for each type of message.

A. Basic Network Latency

The basic network latency constitutes the latency of one

NoC packet when traveling in isolation, i.e. there are no other
packets on the NoC. This latency is the same for all three
types of messages that can be observed in the partitioned NoC,
since the same number of links and routers are encountered
in both directions (see Fig. 6). To calculate the basic network
latency, the traversal time of the header flit must be computed.
Additionally, the pipelined arrival of the remaining body flits
needs to be considered.

Let PLP be the size of the Last Packet of the application
message Ai. PLP can be computed as follows:

PLP = MA,i − ((αA,i − 1) · SA) + h (1)

In order to transfer the complete application message payload
MA,i, we need αA,i NoC packets. Thanks to the flow regu-
lation, all but the last NoC packet have the complete packet

payload SA. Subtracting the payload of these complete packets
from MA,i results in the payload of the last packet. A header
is added to account for the total number of flits in the packet.

The header flit needs to traverse 3 links where it experiences
2 switching delays inside routers on the path, as shown in
Fig. 6, before reaching its destination. The remaining flits then
follow in a pipelined manner.

CBNL = 2 ·DSW + 3 ·DC + (PLP − 1) ·DC (2)

The traversal time of any packet can be computed in this way
by replacing PLP with the respective packet size.

B. Read from Memory Scenario

This subsection introduces the WCTT for the required
messages, when a cluster reads data from the I/O subsystem.

1) Request Message on the C-NoC to Read Data from the

I/O Subsystem: The request message from the compute cluster
to the I/O subsystem travels on the C-NoC, which is intended
for control messages. These messages have a fixed size of
MCNOC flits (MCNOC <= Si). Due to the NoC partitioning,
there is at most one message of cluster B that can introduce
blocking on the shared router (R2). This means that the RC-
based analysis for a round robin arbitrated NoC [11] can be
applied here, where, in addition to the basic network latency,
the blocking delay due to a request message of the other cluster
is added. Since C-NoC messages can be sent in only one NoC
packet, no more blocking is possible.

WCTTC−NoC = MCNOC ·DC + CBNL (3)

2) Sending the Requested Data to the Compute Cluster:

Communication from the I/O cluster to the compute cluster
is shown in Fig. 6b. On the NoC, only the link between the
I/O cluster and router R2 is shared. However, both application
messages are released from the same node, i.e. they can block
each other before they are injected into the NoC, but they
cannot block each other on the NoC itself. This guarantees
that there can be no buffer overflow on the NoC routers, since
packets travel without blocking. Hence, the I/O subsystem can
safely inject packets without flow regulation.

This allows to divide the WCTT computation in two parts:
1) the release blocking Brel, which is experienced due to
contending messages inside the I/O cluster, and 2) the Network
Latency (NL) of the message on the NoC, CNL.

The network latency of an application message with payload
MA,i can be easily computed.

CNL = ((αAi
− 1) · PA ·DC) + CBNL (4)

The first part of the equation denotes the sequential injection
of αAi

− 1 full packets and their transmission over one

NoC link. This is equivalent to the blocking the last packet
experiences before it is injected into the NoC. The second part
denotes the traversal of the last NoC packet over the complete
path.

The maximum blocking by a message of cluster B that can
be suffered on the I/O cluster occurs if the largest application
message to cluster B is scheduled right before the message
under analysis. This means all NoC packets of the contending
message need to be injected into the NoC before the packets of
the message under analysis. Note, there can be only one active
message per compute cluster. The largest blocking can then be
computed assuming transmission of the largest message MB,j

to cluster B over a single NoC link. Once all flits are injected
into the NoC, they do not have any possibility to affect the
message under analysis.

Brel = ((αB,j · h) +MB,j) ·DC (5)

The WCTTIO!CC can then be expressed as the summa-
tion:

WCTTIO!CC = CNL +Brel (6)

C. Write to Memory Scenario

When sending data from the compute cluster to the I/O
subsystem (see Fig. 6a), the traversal time of an application
message is affected by blocking in the shared router, but also
by the flow regulation on the source node. Since packets might
be blocked in the shared router, and hence accumulate, flow
regulation is required to guarantee that the buffer on the router
does not overflow.

The objective is to determine the WCTT of an application
message of payload MA,i from the cluster A to the I/O subsys-
tem C, while cluster B introduces the maximum blocking, i.e.
there is always a packet of B contending for the shared link.
Further, it is assumed that the inter-arrival time of consecutive
messages of cluster A are sufficiently apart, such that the
buffer in R2 is empty when a new transmission starts, i.e.
the preceding message arrived at its destination. This can be
a pessimistic assumption, but it improves the composability
because it allows to compute the WCTT of messages of cluster
A without knowledge of the properties of messages of cluster
B or earlier messages sent by cluster A.

1) Desired Traffic Regulation: Different flow regulation
settings impact the resulting WCTT of messages and also
the accumulation of flits in the buffer of R2 during the
transmission. Fig. 7 presents the largest traversal time of a
message of size 10000 flits, that is sent from cluster A to the
I/O subsystem, when maximum contention is present on the
router R2. This is shown for varying flow regulation settings β.
The results of Fig. 7 are based on a cycle accurate simulator of
the NoC group 2. It can be observed, that the WCTT decreases
with increasing β, up to a point when the WCTT value does
not change anymore, i.e. further increasing β does not have an
impact on the WCTT. The smallest setting for β that results in
this minimum WCTT yields a lower bound, which is defined
as βmin. Additionally, the same figure depicts the largest
observed buffer occupation in R2 during the transmission of
the message. If the buffer requirement of a message under a

2See Section VII-E for more details on the simulator used.

0

1000

2000

3000

4000

5000

6000

0

20000

40000

60000

80000

100000

67 117 167 217 267 317 367 417 467 517 567

B
u
ff
e
r	
O
cc
u
p
a
ti
o
n
	[
fl
it
]

W
C
T
T
	[
cy
cl
e
s]

Nmax

WCTT
Max.	Buffer	

Available	Buffer

Flow	Regulation	Budget	! [flit]

"#$% "#&'

Fig. 7: WCTT and max. buffer occupation for the same message sent under
different flow regulation settings. βmin and βmax are additionally shown.

certain setting of β is larger than the available buffer, a buffer
overflow is caused. Thus, the intersection of the largest buffer
occupation and the actual buffer capacity (in the figure shown
as 3600 flits), shows βmax, the upper bound of β. The non
linear behavior in both curves is caused by the flow regulation
that operates on packet granularity, while β is expressed as the
number of flits.

Several conditions must be fulfilled in order for β to
be in the desired range between βmin and βmax. First the
conditions to achieve the minimum WCTT are presented,
when β ≥ βmin. In [20], it is shown that the worst-case
scenario for the traversal time of packets on a round robin
arbitrated NoC occurs if the header of contending packets
arrive simultaneously at the shared router and the respective
other packet wins the round robin arbitration. Due to the flow
regulation on source node it must also hold:

Lemma 1: In order to obtain the WCTTCC!IO of an
application message MA,i, β must be configured such that
the buffer in R2 always holds at least the header flit of a NoC
packet of MA,i in the cycle after a contending packet of cluster
B finished its departure, for all packets of MA,i.

Proof 1: This directly follows from the property in [20]. If
a packet of cluster B finished its transmission and in the next
cycle there is no packet of MA,i ready (i.e. at least its header
flit arrived in R2), then there is no data transfer in this cycle.
As shown in [20], the worst case then occurs when the next
packets of cluster B and A, respectively, arrive simultaneously,
where arbitration is given to cluster B. Thus, the additional
empty cycle increases the WCTT (see Fig. 7 for β < βmin).
⇤

Given Lemma 1, in Section VI-A we will show how to
compute the value of βmin. Additionally, the limited buffer in
the router requires an extra condition for the maximum value
of β.

Lemma 2: In order to obtain the WCTTCC!IO of an
application message MA,i, β must be configured such that
the number of flits that accumulate in the buffer on the shared
router R2 (due to the RR arbitration with packets of cluster
B at the output link) must always be smaller or equal to the
buffer capacity bD. Otherwise, packets can be dropped.

Proof 2: This directly follows from the hardware architec-
ture. Since no link-level flow control is implemented, a flit is
lost if it arrives while the buffer is already full (see Fig. 7 for
β > βmax). ⇤

Given Lemma 2, in Section VI-B we will show how to

0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

D
a
ta
	[
fl
it
]

Time	[cycles]

Buffer	Level

Arrival	Curve

Departure	Curve

Window	Budget

!

"
#
+
(&

#
'
ℎ
)

Buffer	Level

Arrival	Curve

Departure	Curve

Window	Budget

Fig. 8: Arrival and departure curve as seen from the buffer in R2. Additionally
the window budget and the buffer level are shown.

compute the value for βmax.

Now, assuming that β is in the desired range (between βmin

and βmax), in the remainder of this section we present how
to compute the WCTTCC!IO.

2) Arrival and Departure Patterns under Traffic Shaping:

As discussed, many involved elements do not contribute to the
blocking experienced by the sequence of NoC packets (such as
the links or router R1). They just introduce an offset, but do not
change the pattern of the arrival and departure curves on the
respective NoC elements. Thus, in this subsection only the ar-
rival and departure patterns of the buffer in R2 are considered.
Fig. 8 depicts an example scenario, based on analysis, where
the arrival curve (as produced by the traffic shaper in node
A) and the departure curve (as a result of the blocking with
packets of cluster B) are shown. Additionally, the buffer level

is shown (computed by subtracting the departure curve from
the arrival curve), and the window budget which is defined as β
minus the number of flits that were injected during the last TW

cycles. Note that vertical axis in the graph represents buffer
space and window budget, whereas horizontal axis represents
time.

3) Computing the WCTTCC!IO: This section shows how
to compute the WCTT of the sequence of packets resulting in
the transmission of the application message of size MA,i under
flow regulation settings βmin β βmax.

αA,i packets are needed to fully transmit MA,i payload
flits. The WCTTCC!IO of Ai then constitutes the basic
transmission time of the last packet, CBNL, the blocking it
receives in R2, as well as the blocking experienced due to the
traffic shaping before it is injected into the NoC.

Lemma 3: If the traffic shaping is configured such that
βmin β βmax, then the blocking experienced by the
αA,i packets is independent of the flow regulation and solely
depends on the departure curve of R2.

Proof 3: Due to Lemma 1 it is known that during the
transmission of the message, there is always a data transfer
on the output link of R2. The flow regulation injects packets
at least with the same rate as they depart from R2. Thus, the
transmission is constrained by the departure of packets from
R2.⇤

Based on Lemma 3, the WCTTCC!IO can then be ex-
pressed by:

WCTTCC!IO = (PB + PA) · (αA,i − 1) + PB + CBNL (7)

The first part of the equation constitutes the time to transmit
αA,i−1 complete packets. The additional blocking PB which
is experienced by the last packet is added, as well as the basic
network latency of the last packet in isolation, CBNL.

VI. SELECTING THE FLOW REGULATION PARAMETERS

The flow regulation on source nodes is one of the key com-
ponents of the architecture. Correct configuration guarantees
that no buffer overflow will occur despite the missing flow
control on NoC links [9]. The same flow regulation settings are
used for all messages sent by a compute cluster. Without loss
of generality, the selection of the flow regulation parameters
is shown for compute cluster A. Two parameters are used to
configure the flow regulation, the window size TW in clock
cycles and the bandwidth quota β in flits3. Only the second
parameter is configurable.

Lemma 1 and 2 give us the two necessary conditions for
the selection of β.

1) Prevent buffer under-utilization (underrun): During the
transmission of the application payload, the buffer level is
never 0 for more than one consecutive cycle.
2) Prevent buffer overflow: During the transmission of the
application payload, the utilized buffer level is never greater
than its capacity b.

In general, β can be selected from the interval [PA, TW +
PA]. If β = PA only one packet is injected every transmission
burst and if β = TW +PA an unlimited number of packets can
be injected, i.e. no flow regulation is applied. However, both
extremes may violate Lemmas 1 and 2. Hence in the remainder
of this section, it is shown how to find valid bounds, βmin and
βmax, such that Lemmas 1 and 2 are satisfied.

A. Determining βmin

The injection of one application message of size MA,i into
the NoC can be divided into inter-arrival times of bursts θ
(as illustrated in Fig. 8), where θ is the time between two
consecutive bursts. θ constitutes the injection of a complete
burst of NoC packets plus the waiting period enforced by the
traffic limiter before the next burst can be injected into the
NoC. Note that this holds for all but the last segment that
only has a transfer time but no waiting time.

The number of NoC packets that can be injected in one burst
can be computed as αburst = bβ/PAc. The floor brackets need
to be applied since the traffic limiter injects a new packet only
if the window budget is larger than or equal to the packet size.

Due to the flow regulation, at the end of the interval θ, the
window budget is equal to the packet size. Hence, the next
departure interval can start. The length of θ is dependent on
the packet size of the sending cluster and the flow regulation
parameters.

θ = TW + PA − (β − αburst · PA) (8)

The first part of the equation reflects the ideal injection
interval. The second part accounts for the packetisation effects
that prevent the injection of partial packets once the window
budget is not large enough for a complete packet.

3To simplify the presentation in this section it is assumed that DC = 1
(as it is on the Kalray MPPA R©), i.e. one flit can be transmitted each clock
cycle. For a general case, all TW can be substituted with bTW /DCc.

The minimum valid setting for β, βmin, is achieved once
the buffer level reaches 0 exactly at the end of θ. In one burst,
αburst,A · PA flits are injected over θ cycles. Due to the RR
arbitration with packets of cluster B, it is also known that every
PA + PB cycles PA flits departed from the buffer. Hence, to
have a buffer level of 0, the value of β must be selected in a
way such that the following equation holds.

θ

PA + PB

· PA = αburst · PA (9)

The left side of the equation represents the number of flits
departing from the buffer in θ, and the right side represents
the number of flits that arrive in θ. Note that here θ is always
a multiple of PA +PB , since we assume the buffer reaches 0
exactly at the end of one departure segment. By substituting
θ and αburst,A the following equation can be derived:

TW + PA =
j

β

PA

k

· PB + β (10)

Due to the floor function there are several values for the
packet size PA, where no exact solution exists. Since a larger
θ would violate Lemma 1, a smaller value for θ is chosen.
This, however, results in the buffer not being empty at the end
of each θ, thus the buffer occupancy grows monotonically at
these points. The updated equation is shown below:

TW + PA ≤

j

β

PA

k

· PB + β (11)

The objective now is to find the minimum value for β that
satisfies the equation. This can for example be done using a
binary search in the small search space of [PA, TW + PA].

B. Determining βmax

To provide an upper bound on the possible values for β,
it must be guaranteed that the buffer level never exceeds the
buffer capacity bD (see Lemma 2). The buffer occupancy at
time t is defined by the difference between the flits that arrived
and the flits that departed up to this time. First the function
dep(t) is introduced, that computes the number of flits that
departed from the buffer in R2 up to time t, and later arr(t),
that computes the number of flits that the flow regulation
injected into the NoC up to time t. Both functions assume
that β ≥ βmin.

1) Departure Curve from R2: The function dep(t) can be
computed in several steps. If there is always interference on the
router, each packet of cluster A takes (PA+PB)·DC cycles to
transmit. One such transmission can then be divided into the
delay encountered, delay interval, and the transmission time,
send interval. The number of complete send intervals sdep,

before time t, can be computed by
j

t
PA+PB

k

. Similarly, the

number of complete delay intervals ddep can be computed by
l

t−PB

PA+PB

m

. The function then consists of two parts:

dep(t) = sdep · PA + (sdep − ddep) ·∆tdep (12)

The first part of the equation represents the complete send
intervals before time t, where in each send interval one NoC
packet of size PA is transmitted. The second part accounts for
a send interval that might be in the process of transmission,
hence not necessarily the complete packet left the buffer. Since

this is only required if t overlaps with a send interval the
value is multiplied with s − d. This evaluates either to 0 (in
case t overlaps with the delay interval), or to 1 (in the case t
overlaps with the send interval). ∆tdep can easily be computed
by subtracting the time spent for the complete send and idle
intervals from time t.

∆tdep = t− (ddep · PB + sdep · Pi) (13)

2) Arrival Curve in R2: In a similar way, it is possible to
describe the arrival function. During each θ, the sending node
first injects a complete burst of αburst packets, before the flow
regulation stops further packets from being injected into the
NoC. Thus, we define the injection time of the complete burst
as send interval, and the following idle time as delay interval.
The number of send intervals from the compute cluster sarr
can be described as

l

t−(αbrust·PA)
θ

m

. The number of delay

intervals darr can be described as
j

t
θ

k

. With these values it

is now possible to compute ∆tarr, and arr(t):

∆tarr = t− (sarr ·αburst ·PA + darr · (TW +PA +Nmax)) (14)

arr(t) = sarr · αburst · PA − (sarr − (darr + 1)) ·∆tarr (15)

The above calculations are independent of the actual size of
the injected message. To include the actual size of a message
Ai an additional step can be added:

arr(t, Ai) = max(arr(t),MA,i + αA,i · h) (16)

3) Buffer Occupancy: The maximum buffer occupancy is
reached during the transmission:

bmax(Ai) = max
t2[1,WCTTAi

]
(dep(t)− arr(t, Ai)) (17)

4) Computing the Maximum β: The largest message that
is sent from the compute cluster results in the largest buffer
occupancy during its transmission. This is because the buffer is
empty at the start of the transmission, and the flow regulation
parameters are selected at the cluster level, i.e. all messages
are sent using the same settings. bmax(Ai,max) then provides
the largest buffer occupation for any of the messages sent by
the compute cluster, where bmax = max(MA,i 2 Wi). Binary
search can then be used to efficiently determine the maximum
valid setting for βmax, since the search space is reduced to
βmax 2 [βmin, TW + PA].

VII. EVALUATION

In this section, we evaluate the proposed NoC partitioning
as well as its tailored analysis based on synthetic experiments
and experiments on the Kalray MPPA R© platform. In addition,
the low pessimism of the analysis is demonstrated through a
case-study on a cycle-accurate simulator of one NoC partition.
A. Experiment Setup

For all synthetic experiments and the experiments based on
the simulator, we select the hardware parameters according
to the parameters of the target COTS platform, the Kalray
MPPA R©. The buffer size for the NoC router is set to 401
flits [22], the packet payload for D-NoC messages is set to
SA = SB = 62 flits, and the header has a size of h = 4
flits. It is further assumed that DC = 1 cycle and DSW = 1
cycle [8]. The window size TW is considered to be constant at
512 cycles [22]. Messages on the C-NoC have a fixed payload
of 2 flits [32].

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140 160 180

In
te
rf
e
ri
n
g
	N
o
C
M
e
ss
a
g
e
s

Number	of	Application	Messages

average

max

min

Partitioning

Average

Maximum

Minimum

Partitioned	NoC

Fig. 9: Number of interfering messages on the NoC for a varying number of
application messages and one message per application to the off-chip memory.

B. Interfering Messages on the NoC

In an unpartitioned NoC, messages may share part of their
route with other messages and thereby face contention delays.
The number of interfering messages, the payload size of the
messages, the routing, as well as the arbitration protocol
implemented by the NoC routers affect the blocking delay
that a message may incur [17].

This experiment uses the number of interfering messages as
performance metric, where a message can interfere only when
it shares at least one link with the message under analysis.
One application is randomly mapped to each compute cluster
of the complete NoC topology (see Fig. 1a). Each application
is randomly assigned to one of the 8 nodes connecting to
the off-chip memory (on the I/O subsystem on the North-
and South-side). In addition, applications may communicate
directly with each other. On the selected hardware platform,
both communication messages and messages to access off-
chip memory travel on the D-NoC (in addition read requests
are sent on the C-NoC). For such communication, unique
source and destination node pairs are randomly selected out
of the compute clusters. Routing on the torus-based NoC
in Kalray MPPA R© is not trivial since the implementation
details of the exact routing are not revealed publicly by the
vendors. However, NoC packets follow the shortest path and
use source routing [8], i.e. the path is calculated at design
time and encoded in the header flit. For the experiment, routes
were generated using Dijkstras shortest path algorithm [33].
The generated routes are then analyzed to determine the
total number of interfering messages that each message may
encounter given the concrete mapping. For each data point,
1000 mappings were generated.

Fig. 9 presents the resulting average, minimum, and maxi-
mum number of messages on the NoC contending with a single
NoC message, as the number of application to application
messages is varied. In addition, the number of interfering
messages on the partitioned NoC is shown. For the case
without messages sent between applications (0 on the x-
axis), the interfering messages in unconstrained mappings
are larger, on average 3.17 interfering messages, than for
the partitioned NoC, where only one interfering message is
possible. The benefits of partitioning becomes further apparent
as the number of application messages increases. For 200
application messages, the number increases to an average of 66
interfering messages. This experiment clearly shows that the
proposed partitioning significantly reduces the interference on
the NoC.

0

40000

80000

120000

160000

200000

6
2

3
1
0

5
5
8

8
0
6

1
0
5
4

1
3
0
2

1
5
5
0

1
7
9
8

2
0
4
6

2
2
9
4

2
5
4
2

2
7
9
0

3
0
3
8

3
2
8
6

3
5
3
4

3
7
8
2

4
0
3
0

4
2
7
8

4
5
2
6

4
7
7
4

W
C
T
T
C
C
à
IO
	[
cy
cl
e
]

Message	Payload	Mi [flit]

Taylored	Analysis

min

max

Tailored	Analysis

Kalray - Analysis,	!"#$

Kalray - Analysis,	!"%&

Fig. 10: WCTT of messages with varying payload sent from compute cluster
to the I/O subsystem. Results are shown for our proposed analysis and the
Kalray analysis with both, βmin and βmax.

C. Latency Analysis on the D-NoC

This experiment compares the WCTTCC!IO computed
by the proposed tailored timing analysis and the State-of–
the-Art timing analysis of Kalray [8], [9]. For both analysis
methods, the partitioned setting is assumed, i.e. messages
travel 3 hops from the compute cluster to the I/O subsystem.
Fig. 10 presents the results for varying application message
payloads Mi, for our proposed timing analysis and also the
analysis by Kalray for the MPPA R© [8], [9]. Since the Kalray
analysis requires the flow regulation parameters, one curve is
shown for βmin and βmax, respectively. A large difference
between the two methods can be observed. This is mostly
because the Kalray analysis does not take the stream as a
whole into account, but rather computes delays on packet
basis. This shows the strength of the proposed timing analysis.
Reducing the pessimism in the analysis allows for a higher
utilization of the hardware platform.

D. Total Memory Read Latency on the MPPA R©

This experiment compares the memory latency experienced
on a compute cluster when reading data from external mem-
ory, for the proposed partitioned model (2 clusters) against
unpartitioned settings (4, 8, and 16 clusters). The experiment is
performed on the Kalray MPPA R© platform. In this experiment,
each of the compute clusters is constantly reading memory
from the I/O subsystem in a range of [1, 16] KB. In the
unpartitioned scenario, different settings are shown. The naive
case, where all 16 clusters read the memory via the same core
in the I/O subsystem, the case where only the 8 clusters on
the north side of the processor read memory via the same
core of the I/O subsystem, and the case where only 4 clusters
read memory via the same core of the I/O subsystem. This
naturally leads to varying contention on the NoC, as well as
on the access path to the memory. In the partitioned scenario
only one partition is active (cluster 0 and cluster 4). Hence,
there is no interference from other compute clusters on the
NoC. While in a fully partitioned scenario, the clusters and
the I/O subsystem do not share any resources, the off-chip
memory is shared amongst them. This may lead to additional
delays depending on the memory organization [7].

The access to external memory is implemented using the
channel communication paradigm of the Kalray over the
NoC [8], [32]. The compute clusters initiate the data transfer
by sending a request message over the C-NoC. A dedicated
listener task on the core of the I/O subsystem handles the

0

10

20

30

40

50

60

1KB 2KB 4KB 8KB 16KB

La
te
n
c
y
	i
n
	m

s
16	Clusters	- C0 16	Clusters	- C4 8	Clusters	- C0 8	Clusters	- C4

4	Clusters	- C0 4	Clusters	- C4 2	Clusters	- C0 2	Clusters	- C4

Fig. 11: Comparison of max. observed memory access latency in the parti-
tioned platform (2 clusters), and unpartitioned platform (4, 8, and 16 clusters).

incoming request and sends the requested data back to the
compute cluster. The presented memory access latencies are
measured on the compute clusters, starting from the C-NoC
message being issued until the complete data arrived over the
D-NoC. For each data point, 10000 samples were collected.

Fig. 11 presents the experimental results. The maximum
observed read latency is reported for the two compute clusters
(0 and 4) of the NoC partition (in all scenarios). While the
maximum observed read latencies increase only slightly with
increasing data size, the main impact on latency is caused by
interference from other compute clusters. Note that this not
only includes the latencies on the NoC, but also scheduling
latencies on the core of the I/O subsystem, as well as latencies
on the memory access path. The benefit of the partitioned NoC
compared to the unpartitioned NoC is clearly visible.

E. Case Study

The case study is based on an Engine Management System
(EMS), originally presented in [34]. The application consists
of 15 runnables (the elementary unit of execution in AU-
TOSAR), M1 to M15, which are triggered periodically at a
frequency of 5ms, 10ms, 20ms and 100ms, respectively.

[34] further reports the footprint of the runnables code and
all its private variables in memory, which is in the range of
[7076, 17424] bytes. Table I presents the parameters of interest
for all the 15 runnables. Within each compute cluster, we
use the read-execute-write communication semantic paradigm
of [5], wherein all runnables’ code and all their private
variables are prefetched from off-chip memory before each
periodic execution. After the execution, the code including all
its private variables are written back to the off-chip memory.
Both phases are scheduled in a time-triggered manner, which
makes their release independent of the runnables’ execution
time on the compute cluster. Due to the independence of
NoC-groups, only one group is considered. In this group, each
compute cluster schedules one instance of this case study.

Hardware parameters are chosen in line with the Kalray
MPPA R©-256. The compute cores, as well as the NoC, are
clocked with a frequency of 400MHz. The flow regulation
value β is set to βmin = 314 flits, as computed by the approach
presented in Section VI. This leads to an empty buffer after
each departure segment.

1) Memory Request Handling within the I/O Subsystem:

The delay between the C-NoC request message and the corre-
sponding D-NoC message response depends on how messages

TABLE I: Engine Management System – Case Study.

Short Name Size [byte] Period [ms]

M1 MassAirFlowSWCEntity 7076 5

M2 ThrottleSensSWCEntity 7352 5

M3 APedSensor 8286 5

M4 APedVoterSWCEntity 7104 10

M5 ThrottleCtrlEntity 8868 10

M6 ThrottleActuatorEntity 16058 10

M7 BaseFuelMassEntity 8868 10

M8 ThrottleChangeSWCEntity 16058 10

M9 TransFuelMassSWCEntity 16058 10

M10 IgnitionSCWEntity 8348 10

M11 TotalFuelMassSWCEntity 8308 10

M12 OperatingModeSWCEntity 17424 20

M13 IdleSpeedCtrlSWCEntity 8372 20

M14 APedSensorDiag 8286 100

M15 InjBattVoltCorrSWC 7116 100

are handled within the I/O subsystem. On the Kalray MPPA R©,
access to DDR3 SDRAM memory on the I/O subsystem is
managed by a memory request arbiter [7]. The arbiter consist
of a Multi Port Front End (MPFE) that in turn connects to
a Reorder Core (RC). The different memory masters, such as
the four RM cores, connect to the MPFE, where each master
has an assigned priority. The MPFE forwards the requests of
the memory masters based on their priority to the RC, where
the requests are stored in a queue. A Starvation Counter (SC)
is implemented to boost the priority of memory masters if a
pending request is not forwarded within a certain time window.
To issue requests, the RC selects the next request from within
its queue, based on a set of rules (as described in [7]), before
issuing it to the DDR3 SDRAM controller.

As discussed in [7], [24], interference between memory
accesses of different compute clusters can be minimized by
mapping the cluster data to exclusive memory banks of the
DDR3 SDRAM (i.e. each of the 16 compute clusters has
a dedicated memory bank for its data). Further, all memory
masters are assigned the same priority and the SC is disabled.
This configuration results in consecutive requests to the same
memory bank being preferred, hence, the total access to the
DDR3 SDRAM is performed in sequence, before requests of
other compute clusters are served. This arbitration process
incurs a constant latency of 22 cycles [23].

Requests of one compute cluster, hence, arrive sequentially
at the DDR3-SDRAM, where the first request suffers a page
miss, followed by consecutive page hits. After the page size of
2 KB is reached, an additional page miss is encountered. The
latencies for page hits and page misses are chosen for a DDR3-
1600G SDRAM, where a page miss has 40 cycles latency for
64 bytes fetched, and a page miss 4 cycles respectively.

2) Means of Observation: In addition to the proposed
timing analysis, experiments are performed on a cycle-accurate
simulator4 of the NoC in one NoC group. The simulation
further models the memory access as it results from the

4The source code of the simulator is available at
http://www.idt.mdh.se/personal/mbr04/RTAS17/Simulation.zip

0

2000

4000

6000

8000

10000

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15

La
te
n
cy
	[
cy
cl
e
]

Analysis Max Isolation

(a) NoC latencies for writing data to off-chip memory (WCTTCC→IO).

0

2000

4000

6000

8000

10000

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15

La
te
n
cy
	[
cy
cl
e
]

Analysis Max Isolation

(b) Reading data from off-chip memory. (WCTTC−NoC + WCTTIO→CC).

Fig. 12: Case study results for NoC delays in off-chip memory access from compute cluster within one NoC group.

memory request handling, as described in Section VII-E1.
Simulation results are recorded for 600ms, i.e. 6 hyperperiods
of the EMS, which is sufficient given the time-triggered nature
of the traffic towards the I/O subsystem. The simulation
results capture the maximum observed WCTT, as well as the
maximum observed WCTT in isolation, where messages are
only sent from one cluster and hence do not encounter any
interference on the NoC.

3) Analysis Time: During the experiments, the analysis time
was measured. The analysis was performed 1000 times to
collect representative values. This experiment was performed
on a system containing an Intel i7 CPU (4 cores at 2.8GHz),
and 16 GB of RAM. The average measured analysis time
for WCTTCC!IO is 333 ns. Similarly, the average measured
analysis time for WCTTC−NoC +WCTTCC!IO is 895 ns.
All presented equations have constant complexity. This makes
the WCTT calculation fast and applicable for large design-
space explorations.

4) Write to Memory Scenario: Fig. 12a depicts the results
of the experiment for NoC messages sent during write access
to off-chip memory (WCTTCC!IO). The largest observed
difference between the analysis and the maximum observed
value of the simulation is 46 cycles (message M12), while the
minimum difference is 15 cycles (M5-9). In contrast, flows
in isolation perform similarly, with a maximum difference
of 330 cycles (M1), and a minimum difference of 81 cycles
(M6). This is the case, since β is configured to its minimum
value βmin, yielding an empty buffer after each departure
segment. Such a configuration has the benefit that messages
experience only minimal jitter. The experiments also show that
the computed analysis bounds are conservative and rather tight.

5) Read from Memory Scenario: Fig. 12b depicts the
results for NoC messages sent during a read access to off-chip
memory (WCTTC−NoC +WCTTCC!IO). The results show
a larger gap between analysis results and actually observed
values during the simulation. This is the case, since the worst-
case results if the largest application message of the respective
other cluster is encountered in the FIFO buffer of the I/O
subsystem just before the message is injected into the NoC.
This can clearly be seen in the observed values for messages
in isolation. The large maximum payload size of 17424 bytes
(M12) leads to a maximum blocking of 4644 clock cycles in
the FIFO buffer of the I/O subsystem. The minimum difference
between the maximum observed value and the analysis result
is 2540 cycles (M12). The results show that the analysis
bounds for the messages involved in reading data from the I/O
subsystem are conservative and tight, i.e. system resources are
not over-provisioned.

VIII. CONCLUSIONS

The shared NoC is one of the main sources of interference
on COTS many-core platforms. This paper presents a novel
NoC partitioning strategy for identical NoC groups that re-
duces the possible interference a NoC message may encounter.
NoC groups do not share resources, thereby facilitating inde-
pendent analysis. A dedicated analysis is proposed for reading
and writing data to off-chip memory from within a NoC group.
Additionally, it is shown how to select the traffic regulation
parameters for each source node in a way that the buffer on
the NoC router never overflows. While the methods presented
in this paper are tailored to the MPPA R© many-core processor,
the same principles to reduce the contention on the NoC can
be transferred to other platforms.

We experimentally evaluate the proposed NoC partitioning
and show that contention is significantly lower in partitioned
systems, and that the pessimism in the analysis is heavily
reduced compared to state of the art techniques. Finally, a
case-study is presented to show the applicability to industrial
applications as well as the low pessimism of the analysis
compared to the simulation results.

Future work will focus on scheduling of memory accesses
within the I/O subsystems. While methods, such as explicit
tasks that handle requests, are simple to implement, they
introduce additional latencies which ultimatively impact the
memory access latencies. More elaborate approaches, using
the provided hardware support of the MPPA R©, such as micro-
code engines for asynchronous data transfer over the D-NoC,
may reduce the latencies in the I/O subsystem.

ACKNOWLEDGEMENT

The work in this paper is partially supported by the Swedish
Knowledge Foundation within the projects PREMISE and DPAC, as
well as by National Funds through FCT/MEC (Portuguese Foundation
for Science and Technology) and co-financed by ERDF (European
Regional Development Fund) under the PT2020 Partnership, within
the CISTER Research Unit (CEC/04234); also by the EuropeanUnion
under the Seventh Framework Programme (FP7/2007-2013), grant
agreement nr. 611016 (P-SOCRATES).

REFERENCES

[1] Freescale, Future Advances in Body Electronics, 2013. Last access Octo-
ber 2016, available at http://cache.freescale.com/files/automotive/doc/white paper/
BODYDELECTRWP.pdf.

[2] Roland Berger Strategy Consultants, Need for Consolidation in Vehicle Electronics,
2015. Last access October 2016, available at http://www.greencarcongress.com/
2015/07/20150729-berger.html.

[3] P. Gai and M. Violante, “Automotive embedded software architecture in the multi-
core age,” in 21th IEEE European Test Symposium (ETS), 2016, pp. 1–8.

[4] Kalray Inc., “MPPA processors for autonomous driving,” Tech. Rep., 2016.
[5] M. Becker, D. Dasari, B. Nicolic, B. Åkesson, V. Nélis, and T. Nolte, “Contention-

free execution of automotive applications on a clustered many-core platform,” in
28th Euromicro Conference on Real-Time Systems (ECRTS), 2016, pp. 14–24.

[6] D. Dasari, B. Akesson, V. Nelis, M. Awan, and S. Petters, “Identifying the sources
of unpredictability in COTS-based multicore systems,” in 8th IEEE International
Symposium on Industrial Embedded Systems (SIES), 2013, pp. 39–48.

[7] Q. Perret, P. Maurere, E. Noulard, C. Pagetti, P. Sainrat, and B. Triquet, “Pre-
dictable Composition of Memory Accesses on Manycore Processors,” in European
Congress on Embedded Real-Time Software (ERTS), 2016.

[8] B. D. de Dinechin, D. van Amstel, M. Poulhiès, and G. Lager, “Time-critical
computing on a single-chip massively parallel processor,” in Conference on Design,
Automation & Test in Europe (DATE), 2014, pp. 97:1–97:6.

[9] B. D. de Dinechin, Y. Durand, D. van Amstel, and A. Ghiti, “Guaranteed services
of the NoC of a manycore processor,” in the International Workshop on Network
on Chip Architectures (NoCArc), 2014, pp. 11–16.

[10] M. Liu, M. Becker, M. Behnam, and T. Nolte, “Buffer-aware analysis for worst-
case traversal time of real-time traffic over RRA-based NoCs,” in 25th Euromicro
Conference on Parallel, Distributed, and Network-Based Processing (PDP), 2017.

[11] H. Ayed, J. Ermont, J.-L. Scharbarg, and C. Fraboul, “Towards a unified approach
for worst-case analysis of Tilera-like and Kalray-like NoC architectures,” in 12th
IEEE World Conference on Factory Communication Systems (WFCS), 2016.

[12] K. Goossens, J. Dielissen, and A. Radulescu, “Æthereal network on chip: concepts,
architectures, and implementations,” IEEE Design & Test of Computers, vol. 22,
no. 5, pp. 414–421, 2005.

[13] A. Hansson, M. Subburaman, and K. Goossens, “Aelite: A flit-synchronous
network on chip with composable and predictable services,” in Conference on
Design, Automation Test in Europe (DATE), 2009, pp. 250–255.

[14] E. Kasapaki, M. Schoeberl, R. B. Sørensen, C. Müller, K. Goossens, and J. Sparsø,
“Argo: A real-time network-on-chip architecture with an efficient GALS imple-
mentation,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 24, no. 2, pp. 479–492, 2016.

[15] M. Millberg, E. Nilsson, R. Thid, and A. Jantsch, “Guaranteed bandwidth using
looped containers in temporally disjoint networks within the nostrum network on
chip,” in Conference on Design, Automation and Test in Europe (DATE), 2004,
pp. 20 890–.

[16] Tile Processor Architecture Overview for the TILEPro Series, last access October
2015, available at http://www.tilera.com/scm/docs/UG120-Architecture-Overview-
TILEPro.pdf.

[17] T. Ferrandiz, F. Frances, and C. Fraboul, “A method of computation for worst-case
delay analysis on spacewire networks,” in 4th IEEE International Symposium on
Industrial Embedded Systems (SIES), 2009, pp. 19–27.

[18] D. Dasari, B. Nikolić, V. Nélis, and S. M. Petters, “NoC contention analysis using
a branch-and-prune algorithm,” ACM Trans. Embed. Comput. Syst., vol. 13, no. 3s,
pp. 113:1–113:26, 2014.

[19] M. Liu, M. Becker, M. Behnam, and T. Nolte, “A tighter recursive calculus to
compute the worst-case traversal time of real-time traffic over NoCs,” in 22nd
Asia and South Pacific Design Automation Conference (ASP-DAC), 2017.

[20] L. Abdallah, M. Jan, J. Ermont, and C. Fraboul, “Wormhole networks properties
and their use for optimizing worst case delay analysis of many-cores,” in 10th
IEEE International Symposium on Industrial Embedded Systems (SIES), 2015, pp.
1–10.

[21] Z. Lu, M. Millberg, A. Jantsch, A. Bruce, P. van der Wolf, and T. Henriksson,
“Flow regulation for on-chip communication,” in Conference on Design, Automa-
tion Test in Europe (DATE), April 2009, pp. 578–581.

[22] W. Puffitsch, R. B. Sørensen, and M. Schoeberl, “Time-division multiplexing vs
network calculus: A comparison,” in 23rd International Conference on Real Time
and Networks Systems (RTNS), 2015, pp. 289–296.

[23] G. Giannopoulou, N. Stoimenov, P. Huang, L. Thiele, and B. D. de Dinechin,
“Mixed-criticality scheduling on cluster-based manycores with shared communi-
cation and storage resources,” Real-Time Systems, vol. 52, no. 4, pp. 399–449,
2016.

[24] Q. Perret, P. Maurere, E. Noulard, C. Pagetti, P. Sainrat, and B. Triquet, “Temporal
isolation of hard real-time applications on many-core processors,” in IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS), 2016, pp.
1–11.

[25] L. Benini and G. De Micheli, “Networks on chips: a new SoC paradigm,” IEEE
Computer, vol. 35, no. 1, pp. 70–78, 2002.

[26] Intel Single Chip Cloud Computer, last access October 2015, available at
www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/intel-
labs-single-chip-cloud-article.pdf.

[27] L. Ni and P. McKinley, “A survey of wormhole routing techniques in direct
networks,” IEEE Computer Journal, vol. 26, no. 2, pp. 62–76, 1993.

[28] S. Chattopadhyay, L. K. Chong, A. Roychoudhury, T. Kelter, P. Marwedel, and
H. Falk, “A unified WCET analysis framework for multicore platforms,” ACM
Trans. Embed. Comput. Syst., vol. 13, no. 4s, pp. 124:1–124:29, 2014.

[29] AUTOSAR, last access October 2016, available at www.autosar.org.
[30] S. Kramer, D. Ziegenbein, and A. Hamann, “Real world automotive benchmarks

for free,” 6th International Workshop on Analysis Tools and Methodologies for
Embedded and Real-time Systems (WATERS), 2015.

[31] Benoı̂t Dupont de Dinechin, “Guaranteed Services of the NoC and DDR Memory
of the MPPA Processor,” in Keynote at the 14th International Workshop on
Real-Time Networks (RTN), 2015, available at http://ecrts.eit.uni-kl.de/fileadmin/
wwwadmin/workshop layout/rtn2016/RTN2016 fichiers/kalray rtn2016.pdf.

[32] B. D. de Dinechin, P. G. de Massas, G. Lager, C. Lger, B. Orgogozo, J. Reybert,
and T. Strudel, “A distributed run-time environment for the kalray mppa-256
integrated manycore processor,” Procedia Computer Science, vol. 18, pp. 1654
– 1663, 2013.

[33] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische
Mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[34] P. Dziurzanski, A. K. Sing, L. Indrusiak, and B. Saballus, “Benchmarking, system
design and case-studies for multi-core based embedded automotive systems,”
in 2nd Int. Workshop on Dynamic Resource Allocation and Management in
Embedded, High Performance and Cloud Computing (DREAMCloud), 2016.

APPENDIX

A. Notation Summary

Variable Definition

Ai Application i

Ri Set of data read operations by Ai

Wi Set of data write operations by Ai

Mj Application message 2 Ri [Wi

f Size of one flit in bytes

DC NoC link delay in clock cycles

DSW Switching delay of one NoC router in clock cycles

bD Buffer size on the D-NoC in flits

bC Buffer size on the C-NoC in flits

h Header size for each NoC packet in flits

MCNOC Size of one C-NoC message in flits

Si Payload for one NoC packet of cluster i in flits

Pi Total size of one NoC packet of cluster i in flits

αAi
Number of NoC packets required for application
message Ai

PLP Size of the last packet in flits

TW Window size of the traffic limiter in clock cycles

β Bandwidth quota of the traffic limiter in flits

βmin Lower bound for the bandwidth quota in flits

βmax Upper bound for the bandwidth quota in flits

CBNL Basic network latency of one packet in clock cycles

WCTTC−NoC WCTT of a request message on the C-NoC in clock
cycles

WCTTIO!CC WCTT of a data response from I/O subsystem to
the requesting cluster on the D-NoC in clock cycles

CNL Network latency of the application message in
isolation over the D-NoC from I/O subsystem to
the compute cluster in clock cycles

Brel Blocking in the I/O subsystem, before sending the
message to the compute cluster in clock cycles

R2 NoC router that is shared by both compute clusters,
when sending to the I/O subsystem

WCTTCC!IO WCTT of a message to send data from the compute
cluster to the I/O subsystem in clock cycles

θ Duration between two consecutive full bursts sent
by the compute cluster under flow regulation in
clock cycles

dep(t) Number of flits that departed from the buffer of the
shared router up to time t

arr(t) Number of flits that arrived in the buffer of the
shared router up to time t

arr(t,Mi) Number of flits that arrived in the buffer of the
shared router up to time t when Mi flits are sent

bmax(Mi) Max. buffer occupancy while sending Mi payload
flits from compute cluster to I/O subsystem in flits

sdep Number of packets which left the shared router up
to time t

ddep Number of delay segments imposed on the depar-
ture of packets on the shared router up to time t

∆tdep Number of flits of a currently departing packet on
the shared router already sent up to time t

sarr Number of packets which arrived at the shared
router up to time t

darr Number of delay segments imposed on the arriving
packets on the shared router up to time t

∆tarr Number of flits of a currently arriving packet on
the shared router already arrived up to time t

t Current algorithm time in clock cycles

