
Towards Real Multi-Criticality Scheduling

Stefan M. Petters
ISEP, IPP

Porto, Portugal
smp@isep.ipp.pt

Martin Lawitzky
TU München

Munich, Germany
ml@tum.de

Ryan Heffernan
Queens University
Kingston, Canada

heffernan.ryan@gmail.com

Kevin Elphinstone
NICTA/UNSW

Sydney, Australia
kelphinstone@nicta.com.au

Abstract—Componentised systems, in particular those with
fault confinement through address spaces, are currently emerging
as a hot topic in embedded systems research. This paper extends
the unified rate-based scheduling framework RBED in several
dimensions to fit the requirements of such systems: We have
removed the requirement that the deadline of a task is equal
to its period. The introduction of inter-process communication
reflects the need to communicate. Additionally we also discuss
server tasks, budget replenishment and the low level details
needed to deal with the physical reality of systems. While a
number of these issues have been studied in previous work
in isolation, we focus on the problems discovered and lessons
learned when integrating solutions. We report on our experiences
implementing the proposed mechanisms in a commercial grade
OKL4 microkernel as well as an application with soft real-time
and best-effort tasks on top of it.

Keywords-real-time, temporal isolation, microkernel, compo-
nents, implementation

I. INTRODUCTION

The classification of embedded systems into hard real-time,
soft real-time and non-real-time systems is being increasingly
dissolved by the introduction of real-time aspects into every
day devices. There is a trend towards systems which are no
longer single purpose devices and extend real-time systems
with non-real-time functionality [1]. An example of such a
device would be a mobile phone. While not necessarily hard
real-time, it certainly possesses soft real-time and best-effort
properties. While the term multi-criticality has in the literature
wider implications [2] we focus on the practical issues of
temporal isolation of subsystems and implications in an open
system environment.

In general embedded systems require the deadlines imposed
by hard real-time applications to be met, the probability
of missing a deadline for soft-real-time applications to be
managed gracefully, and other applications to be served in an
efficient best-effort manner to ensure that fair progress is made
by all applications. Two other trends in the embedded systems
area are the introduction of partitioning via memory protection
and devices which have been developed using component
frameworks. The latter has seen a resurgence of microkernel
technology in consumer devices [3].

Various dynamic priority based approaches have been pro-
posed. The most dominant is earliest-deadline first (EDF) [4]
scheduling, which in general enables a higher utilisation while
still meeting all deadlines when compared to fixed priority
scheduling [4]. However, this has mostly been confined to

academic work, which can be attributed to the facts that EDF
deteriorates badly under overload situations and the scheduling
overhead caused by more complex queue management. The
latter may also decrease the advantage of EDF in terms of the
utilisation bound.

The difficulty in managing overload in EDF has been
addressed in the work of Brandt et al. [1]. Their rate-based
earliest-deadline first (RBED) scheduler manages overload by
implementing a form of proportional share scheduling [5].
In doing so it provides temporal isolation between different
tasks and enables the seamless integration of best effort, soft
and hard real-time tasks. It combines this with the ability
to deal with the arrival, departure, and dynamic adjustment
of task parameters at run time as well as dynamic slack
management [6], making it very versatile. Other models that
achieve temporal isolation have been proposed. For example,
Shin and Lee [7] have proposed a periodic resource model in
a hierarchical scheduling framework. Within the FRESCOR
project, a capacity redistribution approach was developed
[8]. The choice of RBED as starting point for this work is
driven by its integrated solution of dynamic slack management
capability.

However, there are still some shortcomings in RBED and
the derived work [6], which we aim to address in this work.
Fundamentally their work assumes independent tasks, which
excludes the majority of communication in a real system
and shared resources in particular. Additionally it assumes
that all tasks are periodic and have a deadline equal to their
period. Given that microkernels are very good matches for
componentised systems [9] we will include in our discussion
aspects pertaining to microkernels in general and OKL4 [10]
in particular without loss of generality.

Contribution: Within this paper we extend RBED to solve
a number of systems issues. We relax the RBED requirement
of deadlines of tasks being equal to their respective periods
by introducing a schedulability analysis, as well as discussing
the impact of our proposed extensions on the analysis. We
detail server tasks implementing critical sections and discuss
the impact these mechanisms have on the budget requirements
of a task to maintain temporal isolation of different system
responses. We add preemption delay caused by the loss of
working set of a task when preempted and consider the cost
of various mechanisms in RBED. Finally, we discuss the
implications of conservative assumptions in the analysis and
report on experiences gained when building a system based
on the above framework.

Assumptions: We assume that all real-time code in the
system is respectively described by an estimate of the worst-
case execution time (WCET). The term real-time code encom-
passes all code, which is involved in the guaranteed delivery
of some service within a given deadline. We also assume some
description of the worst-case inter-arrival of all events which
satisfies the requirements of the real-time analysis developed
by Albers and Slomka [11], [12]. In particular their analysis
allows for bursts of events. It has to be noted that the worst-
case description of non-real-time events is required to take
the generated interrupt load caused by non-real-time events
into account. Finally, we assume that critical sections are
implemented as servers and that the overall system has a fine-
grained task structure.

Outline: In the next section we will summarise the original
RBED work. We will use Section III to successively introduce
our extension to the work by Brandt et al. This covers in
particular the removal of the assumption that deadline equals
period, introducing interrupts, the cost of preemption, budget
replenishment, server tasks, and finally the impact of budget
enforcement. In Section IV we present a case study and lessons
learned. After this we will discuss related work, as well as our
plans for future work.

II. RBED SUMMARY

As our approach extends the work by Brandt et al. [1], [6],
we will summarise the motivation and fundamental concepts
of their approach. Traditional embedded systems were clas-
sified into dedicated hard real-time systems, soft real-time or
general purpose systems. Today’s systems have components
from one or more of these domains and many systems are
networked in some form and enable the installation of code
post deployment. This last property implies that a once and
for all schedulability analysis is insufficient for many systems
containing real-time parts. Furthermore, such systems need to
provide admission control and to be able to isolate system
parts of real-time character against each other and those with
best-effort character.

A central observation by Brandt et al. was that any system
supporting applications of different criticality needs to do so
natively instead of retrofitting best-effort scheduling into a
RT scheduling framework or vice versa. They developed a
scheduling framework based on EDF which provides temporal
isolation of tasks and avoids the issue of EDF misbehaviour
under overload. It seamlessly supports hard real-time, soft
real-time and best-effort tasks, by separating the concepts of
resource allocation and scheduling. The preemptive scheduler
implements the EDF policy, but limits the time consumed to
that allocated by the resource allocator.

The resource allocation step is moved into a separate unit,
which provides overall CPU share allocation called a budget,
and adjustments in the case of new arrival of tasks. If the
requested budget for a new arrival task is not available, the
allocator first reduces the budget reserved for best-effort tasks
either until the requested allocation can be satisfied, or until
a minimum budget set for the best-effort tasks is reached.

The minimum budget ensures that a system still responds to
some degree to non-real-time requests. In the case of budget
reduction for the best-effort tasks being insufficient to satisfy
the requested budget for the newly arrived task, the budget
of soft real-time tasks is scaled. The budget of hard real-time
tasks is never adjusted. This simple policy can be adjusted to
the needs of a given system.

A major advantage of this is that it enables the choice
of using less than the WCET as a budget request for soft
real-time applications. This avoids excessive over-allocation
of resources without impacting on the performance of hard
real-time tasks [1]. Figure 1 provides an overview of the
nomenclature used.

U utilisation of the entire task set, U =
∑
∀i

ui

ui utilisation of a given task τi, ui = Ei/Ti

ri,n release time of a given job Ji,n, where n is
the job identifier

di,n absolute deadline of a given job Ji,n

xi,n at time t current service time ui(t−di,n−1)
of a given job Ji,n

Ci WCET of a given task τi, it has to be noted
that this needs to include the cost of system
calls.

Ei budget allocated to task τi

Di relative deadline of task τi

Ti period/minimal inter-arrival time of task τi

lag(t, xi,n) to what degree job Ji,n has received its
nominal share at time t: lag(t, xi,n) =
ui(t− ri,n)− xi,n

Fig. 1. Nomenclature Used

The original work has made a number of assumptions. All
tasks are independent; i.e. there is no blocking communication
between tasks and no runnability dependency. A task τi

consists of multiple jobs Ji,n released a time ri,n and has
a minimum inter-arrival time of Ti. The releases cannot be
overlapping i.e. ri,n+1 ≥ ri,n + Ti. Each job has a deadline
di,n relative to its release time. The deadline is assumed to
be equal to the period Ti = Di. The WCET Ci of each task
is estimated using well known techniques and is very likely
larger than the real execution time required at runtime. The
resource allocator provides a budget Ei, which is reserved
to be used by each job Ji,n. In the case of hard real-time
tasks the budget must equal the WCET Ei = Ci to guarantee
completion of the hard real-time task.

In the case of a task exceeding its budget the task is
preempted, thus ensuring that the assumption of the schedula-
bility argument holds. The schedulability argument is, under
the above assumptions, an overall system utilisation U ≤ 1.
To enforce this, the resource allocator must coordinate and
acknowledge all requested changes to the allocation, in par-
ticular changes to periods, budgets, or deadlines. The dynamic
changes to these system parameters are supported by five
theorems; c.f. [1] for corresponding proofs:

Theorem II-A: The earliest deadline first (EDF) algorithm
will determine a feasible schedule if U ≤ 1 under the
assumption Di = Ti.

Theorem II-B: Given a feasible EDF schedule, at any time a
task τi may increase its utilisation ui by an amount up to 1−U
without causing any task to miss deadlines in the resulting
EDF schedule.

Theorem II-C: Given a feasible EDF schedule, at any time
a task τi may increase its period without causing any task to
miss deadlines in the resulting EDF schedule.

Theorem II-D: Given a feasible EDF schedule, if at time
t task τi decreases its utilisation to u′i = ui − ∆ such that
∆ ≤ xi,n/(t − ri,n), the freed utilisation ∆ is available to
other tasks and the schedule remains feasible.

Theorem II-E: Given a feasible EDF schedule, if a currently
released job Ji,n has negative lag at time t (the task is over-
allocated), it may shorten its current deadline to at most xi/ui

and the resulting EDF schedule remains feasible.
The introduction of per job budgets enables easy tracking of

available dynamic slack in the system, which may be due to the
actual execution time being shorter than the budget allocated.
The work by Lin and Brandt [6] provides several policies and
respective correctness proofs on how such dynamic slack may
be spent. Within our work we make use of two of the policies:
the donation of dynamic slack to the earliest deadline task
and the borrowing of budget from future jobs of the same
task. The schedulability proof condition is maintained under
the condition that the task may only use the budget with the
deadline of the job it was borrowed from. This can be briefly
demonstrated in a simple example. Assume a job Ji,n of task
τi with period/deadline 10 has used up its budget at time 5.
It may borrow budget from job Ji,n+1, but is now scheduled
with deadline of Ji,n+1 which is 20.

III. EXTENSIONS TO RBED

Our extensions aim is to relax some of the assumptions un-
derpinning RBED with a focus on deployment in a commercial
microkernel environment.

A. Deadlines 6= Period

Moving from a simple runnability requirement of the
original work to more general deadline to period relations
requires the replacement of the utilisation bound analysis in the
resource allocator with more general schedulability analysis.
The schedulability analysis by Albers and Slomka [11], [12]
allows deadlines to be different to and in particular shorter than
periods. Additionally their algorithm supports bursty behaviour
of applications as well as task jitter.

We will briefly outline the analysis and its rationale, but
direct the interested reader to the original publications for
details of notation and proofs. We discuss the proofs in the
context of issues in the online deployment of the analysis
algorithm, as well as the modelling of operating systems
behaviour in it.

The schedulability-analysis work of Albers and Slomka is
based on representing a task as a step function. Starting with

a critical instant, each job requires its WCET in processing
time by its deadline. In the analysis model, this requested
processing time is reflected as a computation request equal
to the WCET at its deadline. The release times of all jobs
throughout the analysis have to be chosen such that in any
interval starting at the critical instant the model describes
the worst-case number of jobs that may be released in such
an interval. The processor-demand function (PDF) is the
integration of all computation requests starting with the critical
instant.

Figure 2 depicts the PDF of a single task. After an initial
burst the task specification prescribes a time of quiescence
before a recurrence of the burst. The dotted line in Figure 2
indicates the interval/maximum computation request limit.

Deadline

request limit

R
es

ou
rc

e
U

sa
ge

Time

WCET

Job Releases

computation−time

Fig. 2. Sample Processor Demand Functions

The PDFs for all tasks are added to a system-wide PDF.
The test has failed if, for any interval starting with the critical
instant, the system-wide PDF is larger than the interval, i.e.
in an interval we have requested more computation time than
is available in the interval.

The exact test described above needs to be evaluated at
any deadline of any task up to the least-common multiple
of inter-arrival times (i.e. a hyper period) from the point
where the arrival pattern of all tasks becomes periodic. This
is sufficient as all one-off effects are covered. In the literature
other lengths for the required analysis intervals are described,
however, for illustrative purposes we stay with this definition.
For example, for two tasks with 9 and 11 units of respective
inter-arrival time, this would mean 19 points in the graph
that needs to be tested over a hyperperiod (i.e. least common
multiple of periods) of 99 units. To alleviate this problem
Albers and Slomka have chosen to approximate the PDF
with line segments in such a way that the PDF is never
larger than the approximating segments. However, as this is
only an approximation, they have opted to keep the exact
analysis intact for the first k jobs of a task and only afterward
approximate with the line segments. A major benefit of the
approximation is the reduction of analysis time.

In order to understand the complexity of the analysis
algorithm we need to formally discuss the number of tests
required.

Definition We define the point in the PDF at which a task
is changing from being modelled by its exact PDF to being
modelled by its approximation as the approximation-start of
this task.

Theorem III-A: The PDF of a system only needs to be
checked at the approximation-start at the greatest interval
starting with the critical instant, as well as within this interval
at any reduction in gradient of the overall PDF. Beyond this
interval it needs to be checked that the sum of the gradients
of the approximations do not exceed a limit of 1.

Proof: Assume a time t0 at which the PDF is just at
the computation request limit; i.e. PDF (t0) = t0. In order
to exceed the computation request limit at time t1 > t0 the
gradient of a PDF approximated by a line segment starting
at time t0 needs to be greater than 1; i.e. the request created
during an interval is greater than the interval itself.

PDF (t1)− PDF (t0) > t1 − t0 (1)

Now assume at time t2 > t1 the PDF again at or below the
computation request limit. In order to achieve this, the gradient
of the approximation between t1 and t2 needs to be less than
1:

PDF (t2)− PDF (t1) < t2 − t1 (2)

Since the gradient of the interval [t1, t2] needs is less than
one and the interval [t0, t1] a test at t1 is forced. In order to
avoid detection the gradient would need to stay the same or
still increase. This case is captured by the end of hyper period
test.

To reconcile that not all tasks in the system have a known
WCET bound we use budgets instead of WCETs for the
analysis. Since the budgets are enforced, the fact that the
WCET of best-effort tasks may be unknown is immaterial.

The next issue to discuss is the execution time of the
analysis algorithm itself. The approximation with segments
of slopes drastically reduces the amount of testing required.
Albers and Slomka have reported [11] analysis times in the
order of 10s to 100s of milliseconds. In our setting of a system
with mixed criticality tasks we have the advantage of being
able to adjust the settings of our best-effort tasks to match a
release frequency of one of the real-time tasks and thus avoid
extending the hyper period due to an incompatible period. Also
the analysis effort is directly reduced as all best-effort tasks
behave like a single task for analysis purposes.

However, even a substantial decrease of the analysis time by
one to two orders of magnitudes with the above test definition
would still be too large to be ignored. As such we propose to
schedule the acceptance test as a separate task running with
the best-effort budget.

A frequent problem in real systems is the occurrence of
release jitter. This may be caused by partitioned deadlines and
variation of execution times between the different partitions
or arrival jitter of external triggers. The integration of this by
reducing the minimum inter-arrival time of a sporadic task
is unnecessarily pessimistic. The integration of jitter into the
analysis has been discussed by Kolloch [13] and we will only
briefly reiterate the rationale of the integration. Assume a task
with a period of 50 units and 10 units of jitter. Any two jobs of
the task have a minimal distance of 40 units, but the minimal
interval in which 3 tasks may arrive is 90 units. More generally

the minimum interval t(n) for the arrival of n > 1 trigger
events of a task with period p and jitter j can be described by
t(n) = (p− j) + (n− 2) ∗ p.

The deadlines for best-effort tasks are set to be equal to or
longer than the period. There is a trade-off in the choice of
longer vs. shorter deadlines. Longer relative deadlines result
in a slight relaxation of the scheduling requirements during
analysis and a reduction of the number enqueue operations
into the ready queue at runtime, while still providing the same
general throughput. Shorter deadlines allow for an increased
responsiveness of short running tasks. Within this paper, the
ready queue is the deadline sorted queue of schedulable tasks;
i.e. tasks not blocked.

B. I/O and Interrupts

In order to build systems we need to incorporate I/O.
For our framework as presented in this paper, the discussion
is restricted to the integration of interrupts into the analy-
sis. Interrupt service routines (ISR) are not subject to EDF
scheduling, but are notionally treated to be of higher priority
than EDF scheduled tasks. Note that some implementations
might defer ISR processing to a user-space task. As this user-
space task would be subject to the scheduling scheme we
expressly exclude that from our definition of an ISR. Within
this discussion we assume no knowledge about the internal
prioritisation of interrupts. In a first step we introduce a single
interrupt source.

Theorem III-B: An interrupt service routine is introduced
correctly into the analysis, by assuming the deadline of an
ISR to be equal to its WCET.

Proof: Assume an interrupt is triggered at t1 and executes
for CISR time. Further assume a task which would (ignoring
the ISR) complete at t1+ε and has a deadline d in the interval
(t1 + ε, t1 + CISR). The analysis would detect the violation
at the deadline of the ISR at t1 + CISR as PDF (d) = t1 + ε
and PDF (t1 +CISR) = t1 + ε+CISR and thus violating the
condition that the PDF (t) ≤ t.
In the next step we need to consider several concurrent
interrupts like in the critical instant. In order to reduce the
number of tests necessary, we aim to combine these into a
single entity.

Definition Several interrupt service routines are triggered
quasi simultaneously when an ISR is triggered during the
execution of another ISR and thus the ISRs are serviced back-
to-back.

ISRs of such quasi simultaneous interrupts can be consid-
ered as a single big ISR without changing the analysis outcome
or accuracy.

Theorem III-C: Quasi simultaneous interrupts service rou-
tines are analysed as a single ISR whose WCET is equal to
the sum of the WCETs of all the ISR execution. This also
covers multiple executions of the same ISR.

Proof: Follows the same lines as Theorem III-B.

C. The Cost of Preemption

Preemption leads to two often ignored side effects: One
is a delayed release of tasks due to non-preemptible sections
which has an impact on the analysis, the other is cache-related
preemption delay and has implications on budget assignment
and system primitives.

In a first step we need to consider the impact of non-
preemptible sections. Such sections consist of code which
disables interrupts and thus prevents the delivery of those.
Non-preemptible sections are often found in system calls;
it may either span an entire system call in the case of a
non-preemtible kernel, or some very brief time span, such
as a context switch within the system call in the case of a
preemptible kernel.

At this point it is also worthwhile to discuss possible
preemption relations. We can make several observations:

1) During the execution of one budget unit a task may
only preempt another task once. This is based on the
assumption that a task may not block. Thus the only task
switches that occur after a task has preempted another
task are either other tasks preempting this one or at
completion of the task or budget, the latter both leading
to the completion of a job’s budget.

2) In principle a task may be preempted several times
during one job. This becomes obvious when considering
a long running job of one task in the analysis.

3) A task may only be preempted by a task with a shorter
relative deadline Dj than its own Di [14].

Assuming a task τi calls several non-preemptible sections,
the longest of which executes for si units. Thus the longest
delay suffered by task τj caused by non-preemptible sections
indicated by sj , is the maximum sk of all tasks with longer
deadlines than τj .

sj = max (∀k:Dk>Disk) (3)

This delay needs to be considered in the analysis at the
deadline dj,n of task τj in excess of the actual budget
Ej . However, now the budget associated with sj is double
allocated, once for τi and once for τj . This can be remedied by
reducing the computation request in the analysis for τi by si, as
the code may only be executed once. It has to be stressed that
this only applies during the analysis. Similar to interrupts, the
impact of the delayed triggering of τj , needs to be considered
by shortening the relative deadline Dj accordingly. This needs
to be in effect during analysis, as well as in the running system.

Besides the delay in terms of delayed triggering, the pre-
empted task also suffers further delay. During execution of
a task, the task creates a working set in the processor state.
Depending on the hardware architecture, this might be as small
as a few levels of pipeline content, or more substantial cache
[15] and TLB entries. In case of a preemption this working
set will be degraded or entirely destroyed and has to be rebuilt
once the task continues executing. This reestablishment of the
working set requires extra time to be spent. The approach of
dealing with this extra time caused by a preempting task is

developed in the previous work [16]. It operates by assigning a
preempting task extra budget to account for the additional cost
incurred by the preempted task. This extra budget is passed on
to the preempted task at the time of preemption. This avoids
the overhead of assigning the preemption overhead multiple
times [14].

The same procedure can also be performed on interrupt
service routines in the sense of adding the preemption cost
to the WCETs in the analysis and having a mechanism to
add budget to the preempted task accordingly. It has to be
noted that for this operation we assume that the preemption
cost wj is defined by the preempting task or ISR in terms of
cache footprint and damage it can cause to the cache content
of the preempted task, thus allowing interrupts which have a
small footprint to be accounted for, without causing excessive
overhead.

D. Replenishment and Sporadic Tasks

In case of the replenishment outside the normal periodic
allocation, two algorithms by Lin and Brandt [5] are used:
slack donation and borrowing of budgets from future jobs of
the task. This is driven by the notion that soft real-time tasks
may be deliberately allocated budgets which are less than their
WCET, in order to increase the utilisation at the expense of the
occasional missed deadline. However, the introduction of the
more formal schedulability analysis highlights issues which
were not so evident in the original work. We will briefly
introduce the two of the concepts which were used by Lin and
Brandt [6] before discussion of the issues and our solution.

During normal operation the budgets are replenished at
release time. In the case of unused budget, this dynamic slack
is handed to the next task with a later deadline than the
deadline of the current budget. A simple example of this is
shown in Figure 3 a).

The deadline of the task donating the slack is noted along-
side the slack amount. A task with a shorter deadline than the
remaining slack cannot use this slack using its own deadline
without violating the terms of the schedulability analysis.
However, once the task entirely consumed its budget, it can
use the slack with the deadline associated with the slack.
Whenever the idle task is running the budget is consumed
by the idle task.

Theorem III-D: Slack li with associated deadline di,n

is preserved across an idle-task time δidle at a rate
max (li − δidle, 0).

Proof: The idle task can be considered as being part of
the last task running. As such the idle task consumes budget
for the time it is running. The new arrival of a task preempts
the idle task and frees up the remaining slack.

In the case of an overrun of a task the budget is enforced
and the task may receive the budget of a future release of the
task with a respective deadline of that future budget, as shown
in Figure 3 b). In this case there is obviously no donation of
remaining budget once the task has completed, but instead the
remaining budget needs to be preserved for the future release
of the task.

b)

a)

2
τ

1
τ

1
τ

2
τ

Future Budget
Borrowing

Overrun

Donation

Slack

Task Release Deadline

Time

Fig. 3. Slack donation and budget borrowing

Obviously this future release now has a budget which is less
than its normal budget. In the original work this shortfall may
be covered by slack donations of other tasks and a potential
variation in the actual execution time of a task.

Theorem III-E: The concept of slack donation and budget
borrowing are valid with respect to the schedulability analysis
introduced in Section III-A.

Proof: As described at the end of Section II, the budget
borrowed is executed with the deadline associated with the
expected job release corresponding to the budget and as such
is consistent with the performed analysis. Looking at slack
donation, existing budget which has been covered by the
analysis is executed with the same or a relaxed deadline. Thus
the schedulability criterion is either consistent with respect
to the performed analysis or relaxed. The analysis has the
assumption of non-blocking tasks. As such the idle task needs
to consume slack, assuming the position of a virtual task
without own budget.

The introduction of the schedulability analysis highlights
an issue which was not discussed in the original work. The
presence of sporadic tasks and conservative assumptions cause
a dynamic slack (unmanaged slack) that is not covered by the
introduced algorithms. This is caused by a reservation which is
based on minimum inter-arrival intervals of sporadic tasks and
a replenishment at job release with the same amount of budget
even if a task is released later than the minimum inter-arrival
interval.

Firstly we need to look at the effect of this unmanaged
slack. To illustrate the case, we assume that hard and soft real-
time tasks work within their assigned budgets and the above
mentioned mechanisms; i.e. a task might borrow from a future,
but this will usually be sufficient to complete a job. Added to
this scenario we assume that jobs of best-effort tasks usually
span several budget periods. Due to the unmanaged slack, the
best-effort tasks are free to borrow from their future budgets
within the previously laid out rules. In doing so the relative
fractions in terms of budget of best-effort tasks are preserved
in the case of continuous execution of these best-effort tasks.

This behaviour causes problems if a new task arrives and the
real-time analysis algorithm is performed inside the resource
allocator. The analysis algorithm would need to consider the

backlog. This research has developed a different strategy. In
case of the arrival of new task, all best-effort tasks are assigned
zero budgets with immediate effect. The resource allocator
uses budgets and deadlines of the best-effort tasks to maintain
correctness of the schedule and thus assumes the role of the
idle task. When it is scheduled the analysis can assume without
loss of correctness that no backlog of work exists and thus it
can assume the state of the critical instant. After recalculating
all budgets, the resource allocator uses the priority and budget
of the new task and reassigns the budgets of the best-effort
tasks. As such the execution of the new task is delayed until the
analysis and reassigning of budgets is complete. Alternatively
the resource allocator could work off the budget of a best-
effort task, with similar effects.

E. Deadline and Budget Inheritance

Particularly in microkernel-based systems, device drivers
and system services are implemented using server tasks.
Besides fault containment, server tasks have the advantage to
serialise access to a resource. Consequently server calls will
be located more frequently in the task body rather than the
start or the end of a task in a microkernel-based system.

The first consideration is how to represent the time spent
executing the server in the analysis. When using dedicated
budgets and deadlines for the server we need to look at respon-
siveness and correctness. In order to achieve responsiveness
and correctness the server will need a short deadline compared
to its minimum inter-arrival time. As a result the server will
put unnecessary constraints on the system for its schedulability
analysis. There is also the issue of the client being partitioned
into a part before and a part after the server call. Overall the
use of dedicated budget in combination with the more frequent
calls to server tasks makes system construction and analysis
more cumbersome.

The other problem with server tasks is the contention in
the access of the server and the associated dynamic priority
inversion [17]. Priority inversion is caused when a high priority
task is blocked on a server working for a low priority task,
which in turn is preempted by a medium priority task. The
previously mentioned borrowing of future budgets ensures that
a task is never out of budget, but may have a very long
deadline. The priority inversion problem can be solved in
several ways.

1) A server with its own deadline and budget would take
care of this, however, as mentioned earlier this would
potentially violate assumptions about the non-blocking
of tasks in the analysis in Section III-A. This violation
can be avoided by partitioning tasks into separate units
with their own budget and deadlines.

2) Providing a rollback and restart of the server task for the
preempted client would require substantial spare budget
for restarts, which would scale with the number of
possible preempting threads trying to access the server.

3) A multithreaded server would be the preferred solution,
but this in turn requires substantial implementation by
the server writer. Additionally, this only reduces the

length of the critical section implemented by the server,
which does not fully solve the problem, unless the
server is not stateful (e.g. implements non blocking data
structures). This argument is based on the observation
that a server usually embodies a critical section and a
set of common operations preceding or succeeding it.

4) Deadline inheritance avoids the dynamic priority inver-
sion problem. This raises the question where the budget
for this operation would come from. Running on a
budget with a longer deadline would obviously violate
the assumption made in the schedulability analysis.
The alternative is to combine deadline inheritance with
budget inheritance. This implies that a client task using
the server needs to have extra budget to execute the
server on behalf of the client task which is already being
served by the server task.

We have chosen the last option for our framework, as we
considered it preferable to hide the solution of this problem
from the application programmer. Similar to work by Lamastra
et al. [18] or Wang et al. [19] the budget associated with the
deadline needs to be inherited alongside the deadline.

A special case to be considered is when the inherited budget
is insufficient to complete the service. The budget borrowing
mechanism described in the previous section will ensure that
there is always some budget available, although potentially
with an unfavourable deadline. Assume several tasks have
queued to enter the server, than the borrowed budget may no
longer be the earliest deadline waiting to be served. In order
to ensure temporal correctness, the task with the borrowed
budget needs to be removed from the head of the server send
queue and re-enqueued at the appropriate place, according to
its new deadline and the server inherits budget and deadline
from the new head of the send queue.

F. Budget Enforcement

Finally we discuss the implications of budget enforcement.
The budget enforcement is implemented using a timer inter-
rupt. The ISR is used for adjusting scheduling parameters (i.e.
borrowing of budget from future jobs), reinserting the task in
the ready queue and send queues if appropriate and reschedule.
There are two ways to delay interrupts:

1) Other interrupts which are handled prior to this interrupt
2) Non-preemptible sections will disable all interrupts (cf.

Section III-C)
The delay caused by other interrupts is already covered in the
schedulability analysis. In order to maintain correctness of the
analysis, the budget enforcement needs to be triggered in a way
such that all operations of budget enforcement are completed
by the time the budget expires. As such the budget Ei needs
to be chosen so it contains the cost of budget enforcement f
and the non-preemptible section si beyond the intended actual
execution time and the previously mentioned preemption cost
wi. Note, that the preemption cost has already been passed on
to the preempted task when the actual timer is programmed.

Besides this direct impact, there is also an indirect cost.
The budget enforcement itself is a non-preemptible section

and has to be considered in the analysis like any other non-
preemptible section as explained in section Section III-C.
However, opposed to other non-preemptible sections, this cost
may only be incurred once per job.

IV. CASE STUDY

The case study served throughout the development of the
approach as motivator for most of the solutions presented.
Within the paper we use it to discuss the lessons learned during
its development.

A. Implementation

This work implemented the aforementioned algorithms in
and on top of an OKL4 [10] kernel version 1.5.2 with an
XScale PXA255-based Gumstix [20] hardware board. The
budget accounting, enforcement, and inheritance, as well as
the scheduler were implemented in the kernel. The resource
allocator was realised in the root task, which is the first task
launched in the system and initially holds ultimate control over
access rights throughout the system. Thus it comes naturally
to use the root task to keep track of the tasks in the system
and their reserved resources. It provides the kernel with the
deadlines, budgets and minimum inter-arrival times of all tasks
which then stores this information in the task control block.

The scheduler in itself is a pure EDF scheduler. The
enforcement of budgets is realised by a timer, which is set
whenever a new task is scheduled with a new budget and
deadline. The timer will be used to preempt the task if it
runs out of budget. The new deadline may be necessary when
either a task is newly released, a task is completed, or when a
task changes its budget and deadline due to exhaustion of its
current budget. Since deadlines and budgets may be passed
on via messages in budget inheritance, not every release or
completion forces a reprogramming of the budget watchdog.

The ready queue is deadline sorted, both in shortest deadline
first order. The same applies to the send queues of tasks
waiting on a server task. The priority and budget inheritance
for servers is achieved by using the deadline and budget of
the head of the send queue. This property is transitive in the
sense that nested servers are equally affected by the deadline
inheritance caused by the send queues of any outer nesting
level servers.

In the proof of concept implementation we have removed
the hand optimised fast path implementation of the IPC
(inter process communication) primitive and have forced a
reschedule after each IPC. Call IPCs are used by the kernel
to identify servers.

Due to the non-dynamic nature of our application we have
not implemented a complex schedulability analysis. This was
driven by the realisation that many of the required numbers,
like the WCET of ISRs or the preemption delay were not
available.

B. Test Application

We have developed a small, but non-trivial test application
to identify issues with the proposed method and to demonstrate

that the method may be deployed in a realistic scenario. The
source code using a stock OKL4 kernel can be found at [21].

The system, shown in Figure 4, emulates an instant messag-
ing device, allowing for two-way voice and text communica-
tion across a network. Audio transmission was chosen because
it provides periodic deadlines which must be met; otherwise
audible glitches can be heard at run time. Text transmission
and receiving was added to add sporadic tasks to the system.
In our model the text messaging has best-effort scheduling
character while the audio transmission is soft real time.

Audio Device Network Device Serial Device

REQ
TXRX

IRQ

DMA
Driver

DMA
IRQ

Ready
Data
DMA

REQ
TXRX

IRQ

Network
Server

Driver
Serial

Driver
Network

Audio
Server

Chat
Server

Memory
Shared

Message
Queue

Async IPC
Data Transfer

Hardware Signal

Adjust

Fig. 4. Test Application

Hardware drivers in this system are implemented as user-
level threads. The audio driver has been omitted from Figure 4
because DMA is used to perform the data transfers to and
from the audio device. A DMA driver was developed for
future scalability purposes, which allows multiple clients to
initialise multiple DMA channels and also keeps track of DMA
interrupts. It should be noted that the impact of DMA on the
WCET is outside the scope of this paper [22].

Communication between threads is generally handled by
a combination of shared memory and message queues. The
shared memory is used to hold data payloads, while message
queues hold pointers to the payloads in the shared memory.
Every write to a message queue also implicitly involves an
asynchronous IPC to the receiving thread to notify it of the
valid data in the queue.

All tasks depicted have their own budget and deadline pair.
The reason for this is that due to the low level nature of the
case study. Most tasks work in two directions: For example,
the network driver receives network packets and sends network
packets. When network packets are received the scheduler
requires knowledge about the receiver thread to schedule the
network thread using the right budget and deadline.

In addition to the threads depicted in Figure 4 a number
of servers in the system are active: The root task performs
the resource allocator role for the scheduler and a core device
server manages hardware devices. Both services are only used
in the initialisation phase after booting. A naming server is

responsible for resolving named object references in the flat
name space and an event server is used to register notification
callbacks for event notifications. The notifications are asyn-
chronous messages whereas the registrations are synchronous
IPCs. These two tasks are true servers implementing the
deadline inheritance protocol. For evaluation purposes we also
added a task that obtains and transmits information about the
scheduling behaviour which is also not shown in Figure 4.
This monitoring task makes use of a virtual timer server and
the network server.

C. Discussion

As efficient IPC system calls are the backbone of any
microkernel, we have paid special attention to these. Initially
we had also implemented the concept of passing deadlines
and budgets not only in calls to servers, implementing budget
inheritance, but also for synchronous (blocking) IPC. However,
the latter turned out not to be used in the test application
we built and hence was not discussed in depth in this paper,
but appears to be useful for streaming applications or larger
componentised systems [23]. When deadlines and budgets are
passed alongside synchronous IPC, it becomes apparent that
under these conditions the enqueue operation on the send
queue is always at the head of the queue, making the enqueue
operation O(1) and negligibly small. In fact smaller than the
equivalent fixed-priority implementation, showcasing another
benefit of deadline passing.

However, asynchronous communication which must be used
for any IPC with a deadline potentially longer than the
deadline of the current task, may trigger a task and thus
may force an arbitrary enqueue in the ready list. The current
implementation of the ready list as linked list is thus of O(N)
with N being the number of ready tasks. Figure 5 depicts
measured data on the enqueue operation where the x-axis
indicates the position a given task is enqueued to, with 0 being
the head of the queue. The enqueue operation in the ready
queues of a fixed-priority scheduler are roughly equivalent to
our enqueue operation with enqueuing in the 1st position after
the queue head.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 2 4 6 8 10 12

C
yc

le
s

Place in Queue

average case
observed worst case
observed best case

Fig. 5. Enqueue Cost Measured

The dequeue operation on the ready queue, once a task
is blocked on a receive IPC is again O(1). With 27 cycles
we measured on the GUMSTIX the dequeue was faster than
the fixed-priority implementation which reaches complexity
up to the same level as the enqueue operation. On the
given hardware platform the resetting of a timer for budget
monitoring was only a matter of a few processor cycles. In
order to speed up the enqueue operation, the ready queue may
be implemented as priority heap making enqueue and dequeue
O(log(N)). In a system which makes heavy use of server tasks
this might not be the preferable solution.

The structure of our application forcing two way com-
munication and subsequently deadline partitioning and asyn-
chronous IPC, made the task structure less elegant than the
equivalent straight forward implementation using synchronous
IPC.

As indicated, the current implementation leaves room for
optimisation. In particular direct process switch and lazy de-
queuing should lead to reduction of overheads. As opposed to
the case of fixed-priority scheduling [24], the EDF scheduling
policy enables a much easier reasoning about which task of
two communicating parties should run next.

Lazy dequeuing describes the effect of avoiding dequeue
operations of tasks which are likely to be enqueued again
shortly after dequeuing. Again as opposed to fixed priority
scheduling [24] the EDF-sorted ready queue provides scope
to optimise without losing predictability. As defined, a task
may block either when it has called a server or when it
has completed the job. In the latter case, the task should be
dequeued. In the former case we need to discern two distinct
cases. If a task is blocked on a server and the server executes
on behalf of that client task, the client task may stay enqueued
in the ready queue, with the server task forming the new head
of the queue. The reasoning is that the task will be ready once
the server has returned and the server will be completed before
the task is scheduled again. The second case is the blocking
and deadline inheritance. In this case the scheduler can insert
the task behind the server task it is blocked on, following the
same reasoning as before.

From an application implementers point of view we expe-
rienced few problems, beyond the requirement of sticking to
the rules of using non-blocking IPC for all communication
bar server calls. The provision of WCET and inter-arrival es-
timates at task boot strapping was reasonably straight forward.
However, in the case of larger systems when the dependencies
caused by the asynchronous triggering of tasks turn out to be
non-trivial, substantial knowledge of the application system
structure is required by the resource manager. This is a
substantial drawback of the approach, as this required system
knowledge is directly opposed to the dynamic addition or
removal of tasks in the system.

V. RELATED WORK

A large body of work exists in the area of this paper. We
aim to discuss the most relevant and representative subset
within this section. The notion of deadlines transported by

messages through a system has been developed by Kolloch
[13]. He implemented the approach in RTEMS which is a
small real-time executive without memory protection. While
implementing deadline inheritance, he was not working with
budgets, but assumed instead all WCET estimates are conser-
vative. The target application domain is systems specified in
SDL, whose state transition tasks are computationally light.
This has two implications: Firstly, server task blocking is
much more light weight and thus not overly affected by
a somewhat conservative consideration in the schedulability
analysis. Secondly, his algorithm is dependent on message
based deadline transportation, as individual ”tasks” are very
small, but a single input may trigger multiple state transitions.

Jansen et al. [25] have also worked on a EDF scheduling
solution providing deadline inheritance. They presented a
schedulability analysis for their algorithm, which has some
similarities with the test used in our paper. However, in heavily
loaded system with tasks having a long hyperperiod their
analysis will take substantial resources. Also the execution
times are not enforced and thus uncontrollable behaviour may
result in the case of a best effort or a soft real-time task
misbehaving.

The concept of budget inheritance during priority inher-
itance has been investigated by Lamastra et al. [18]. The
aim of their work was similar to ours to provide support
for real-time tasks of different criticality and best-effort tasks
in a system making use of servers. However, their work
assumes no knowledge of inter-arrival times of the soft real-
time components and thus the dynamic slack of a task may
not be donated to another task. This has been extended to a
bandwidth-exchange server by Wang et al. [19] which returns
inherited budget at a later point in time. Our work allows the
change of parameters at runtime and enables deadlines to be
different compared to the period of tasks.

A similar approach to ours has been presented by Steinberg
et al. [23] utilising the L4 Fiasco kernel. Their approach works
within a fixed priority framework and does not discuss the
system level schedulability analysis impact of their solution.

A different angle in terms of isolation is taken by Nogueira
and Pinho [26]. In order to satisfy demands for resources made
by hard-real-time tasks they steal budgets from lower priority
tasks. In their work the stealing is essential as little a-priori
knowledge about execution-time requirements is assumed.

Resource sharing in a rate-based environment has also been
investigated by Liu and Goddard [27]. Instead of deadline
inheritance they have adopted a deadline-ceiling protocol.
Similar to Brandt et al. they have implemented the approach
inside the Linux kernel. While it supports servers it does not
account for other communication.

Ju et al. [14] have developed an approach to consider
cache-related preemption delay in dynamic priority systems.
Their approach inflates the WCET estimates of a task by the
potential cost of any possible preemption scenario. Ultimately
this leads to a multiple accounting of the delay as one task
may potentially preempt different tasks. We have avoided this
with a budget passing from preempting to preempted task.

VI. CONCLUSIONS AND FUTURE WORK

Within this paper we have presented an integrated schedul-
ing approach detailing and resolving many issues which have
been abstracted in previous work, but are crucial to building
real systems. We have taken a particular view in enabling
componentised systems with strong fault isolation guarantees
on top of a microkernel. The issues addressed in this paper
are augmentation of a scheduling approach with schedulability
analysis, the impact of system services on the budget plan-
ning and server tasks. The approach dealing with preemption
delay avoids accounting for this delay more than once per
preemption. Additionally we have implemented a non-trivial
application on top the presented approach to explore real-world
system integration issues.

While the work presented in this paper covers a large
range of issues, there are still issues which may be addressed.
Firstly the previously mentioned optimisation of the in kernel
mechanisms like direct process switch, lazy dequeuing and
IPC fastpath implementation to name but a few, complemented
by a detailed comparison with a fixed-priority-based version
is an obvious avenue for future work.

We also have started to integrate RBED scheduling and
power management [16]. The integration of the solutions
presented in both papers and validation of this integrated
approach will further improve the real-world appeal of the pre-
sented scheduling framework. Finally the provided bandwidth
isolation mechanisms and resource reservation may open up
the option of exploiting these in a multiprocessor setting.

VII. ACKNOWLEDGEMENTS

We would like to thank Scott Brandt, Suresh Iyer and
Jaeheon Yi for allowing us access to their RBED implemen-
tation and documentation which we used to guide our own
implementation. Substantial part of the work presented in this
paper was performed while the authors worked at NICTA.
NICTA is funded by the Australian Government as represented
by the Department of Broadband, Communications and the
Digital Economy and the Australian Research Council through
the ICT Centre of Excellence program. This work was also
partially supported by FCT (CISTER Research Unit - FCT UI
608).

REFERENCES

[1] S. A. Brandt, S. Banachowski, C. Lin, and T. Bisson, “Dynamic
integrated scheduling of hard real-time, soft real-time and non-real-
time processes,” in Proceedings of the 24th IEEE Real-Time Systems
Symposium, Cancun, Mexico, Dec. 2003.

[2] S. Baruah and S. Vestal, “Schedulability analysis of sporadic tasks with
multiple criticality specifications,” in Proceedings of the 20th Euromicro
Conference on Real-Time Systems, Prague, Czech Republic, Jul. 2008.

[3] G. Heiser, “Hypervisors for consumer electronics,” in Proceedings of
the 6th IEEE Consumer Communications and Networking Conference,
Las Vegas, NV, USA, Jan. 2009.

[4] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” Journal of the ACM, vol. 20,
no. 1, pp. 46–61, 1973.

[5] L. Abeni, G. Lipari, and G. Buttazzo, “Constant bandwidth vs. pro-
portional share resource allocation,” in Proceedings of the 5th IEEE
International Conference on Multimedia Computing and Systems, vol. 2.
Florence, Italy: IEEE Computer Society Press, 1999, pp. 107–111.

[6] C. Lin and S. A. Brandt, “Improving soft real-time performance through
better slack management,” in Proceedings of the 26th IEEE Real-Time
Systems Symposium, Miami, FL, USA, Dec. 2005.

[7] I. Shin and I. Lee, “Periodic resource model for compositional real-
time guarantees,” in Proceedings of the 24th IEEE Real-Time Systems
Symposium, Cancun, Mexico, Dec. 3–5 2003.

[8] A. Zabos, R. I. Davis, and A. Burns, “Utilization based spare capacity
distribution,” University of York, Department of Computer Science,
York, YO10 5DD, United Kingdom, Technical Report YCS427 (2008),
2008.

[9] I. Kuz and Y. Liu, “Extending the capabilities of component models
for embedded systems,” in Proceedings of the Third International
Conference on the Quality of Software-Architectures (QoSA), Boston,
MA, USA, Jul. 2007.

[10] Open Kernel Labs, “OKL4 community site,” http://okl4.org.
[11] K. Albers and F. Slomka, “An event stream driven approximation for

the analysis of real-time systems,” in Proceedings of the 16th Euromicro
Conference on Real-Time Systems. Catania, Italy: IEEE Computer
Society Press, 2004.

[12] ——, “Efficient feasibility analysis for real-time systems with EDF
scheduling,” in Proceedings of the 8th Conference on Design Automation
and Test in Europe, Munich, Germany, 2005.

[13] T. Kolloch, “Scheduling with message deadlines for hard real-time
SDL systems,” Dissertation, Institute for Real-Time Computer Systems,
Technical University Munich, Germany, 2002.

[14] L. Ju, S. Chakraborty, and A. Roychoudhury, “Accounting for cache-
related preemption delay in dynamic priority schedulability analysis,”
in Proceedings of the 10th Conference on Design Automation and Test
in Europe, Nice, France, Apr. 2007.

[15] H. S. Negi, T. Mitra, and A. Roychoudhury, “Accurate estimation of
cacherelated preemption delay,” in Proceedings of the 1st International
Conference on Hardware/Software Codesign and System Synthesis,
Newport Beach, USA, Oct. 2003.

[16] M. P. Lawitzky, D. C. Snowdon, and S. M. Petters, “Integrating real
time and power management in a real system,” in Proceedings of the
4th Workshop on Operating System Platforms for Embedded Real-Time
Applications, Prague, Czech Republic, Jul. 2008.

[17] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance proto-
cols: an approach to real-time synchronization,” IEEE Transactions on
Computers, vol. 39, no. 9, pp. 1175–1185, Sep. 1990.

[18] G. Lamastra, G. Lipari, and L. Abeni, “A bandwidth inheritance algo-
rithm for real-time task synchronisation in open systems,” in Proceedings
of the 22nd IEEE Real-Time Systems Symposium. London, UK: IEEE
Computer Society Press, Dec. 2001, pp. 151–160.

[19] S. Wang, K.-J. Lin, and S. Peng, “BWE: a resource sharing protocol
for multimedia systems with bandwidth reservation,” in Proceedings
of the 4th IEEE International Symposium on Multimedia Software
Engineering, Newport Beach, CA, USA, Dec. 11–13 2002.

[20] Gumstix, Gumstix Website, http://www.gumstix.com.
[21] NICTA, VOIPDemo, http://www.ertos.nicta.com.au/software/

demonstrator/.
[22] T.-Y. Huang, C.-C. Chou, and P.-Y. Chen, “Bounding the execution times

of DMA I/O tasks on hard-real-time embedded systems,” in Proceedings
of the 9th IEEE Conference on Embedded and Real-Time Computing and
Applications. Tainan, Taiwan: Springer–Verlag, Feb. 2003, pp. 499–
512.

[23] U. Steinberg, J. Wolter, and H. Härtig, “Fast component interaction in
real-time systems,” in Proceedings of the 17th Euromicro Conference
on Real-Time Systems. Palma, Spain: IEEE Computer Society Press,
2005.

[24] K. Elphinstone, D. Greenaway, and S. Ruocco, “Lazy scheduling and
direct process switch — merit or myths?” in Proceedings of the 3rd
Workshop on Operating System Platforms for Embedded Real-Time
Applications, Pisa, Italy, Jul. 2007.

[25] P. G. Jansen, S. J. Mullender, P. J. Havinga, and H. Scholten,
“Lightweight EDF scheduling with deadline inheritance,” University of
Twente, Centre for Telematics and Information Technology, Enschede,
Netherlands, Technical Report TR-CTIT-03-23, 2003.

[26] L. M. Nogiera and L. M. Pinho, “Precedence constraints with capacity
sharing and stealing,” in Proceedings of the 22nd IEEE Parallel and
Distributed Processing Symposium, Miami, USA, Apr. 2008.

[27] X. Liu and S. Goddard, “Resource sharing in an enhanced rate-based
execution model,” in Proceedings of the 15th Euromicro Conference on
Real-Time Systems, Porto, Portugal, Jul. 2003, pp. 131–140.

http://okl4.org
http://www.gumstix.com
http://www.ertos.nicta.com.au/software/demonstrator/
http://www.ertos.nicta.com.au/software/demonstrator/

	Introduction
	RBED Summary
	Extensions to RBED
	Deadlines = Period
	I/O and Interrupts
	The Cost of Preemption
	Replenishment and Sporadic Tasks
	Deadline and Budget Inheritance
	Budget Enforcement

	Case Study
	Implementation
	Test Application
	Discussion

	Related work
	Conclusions and Future Work
	Acknowledgements
	References

