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for such a platform to be coupled with the large variety of schedulers designed to control the processor activity 
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Abstract—On-chip power dissipation is recognized as one of
the primary limiters, if not a show stopper, of performance
for high-end safety-critical uniform multi-core processors. This
paper proposes an efficient and simple thermal model for such
a platform to be coupled with the large variety of schedulers
designed to control the processor activity and the triggering of
the cooling mechanism with as little impact on performance as
possible.

I. INTRODUCTION

For several decades now, critical real-time applications have

consistently been under the spotlights of experts because they

exposed stringent functional and non-functional requirements

that have to be met. In general, these applications are modeled

by using a finite set of recurrent tasks to be executed on a

targeted hardware platform. While the functional correctness

of each task is important, the time it takes for a result to

be produced is essential for these applications. Thus, several

factors have to be considered at design time. Examples include

the task interactions, concurrency, interference at the software

level, and all the mechanisms that govern the execution of the

tasks (preferably with a great level of detail) at the hardware

level. To date, an entire body of knowledge and techniques has

been proposed in the literature. However, new challenges arise

almost on a daily basis due to the ever growing complexity

and computational demand of the applications; and/or the Non-

Disclosure Agreements signed on valuable information on the

targeted platform by hardware vendors.

Despite these limitations, the integration of more and more

processing elements in smaller silicon areas has become a

reality [1], [2]. Hence, (i) the necessity for hardware miniatur-

ization; and (ii) the ever increasing computational demand of

the applications, together, have highlighted a serious problem:

the soaring power dissipation of the integrated circuits, which

in turn translates in temperature dissipation. Obviously, high

temperatures create a number of problems, because transistors

may fail to switch properly and therefore can lead to transient

and/or permanent errors for the entire system. Consequently,

it is important to build a robust and preferably simple thermal

model that will allow us to predict beforehand the temperature

of a critical real-time system upon the execution of a given

workload. This will be the main focus of this paper. In the

literature, the problem has mostly been addressed by using

one of the following two strategies: (1) switching-off some

core(s) [3], [4]; or (2) re-scaling the cores speed [5]–[7]. In

either case, action is taken only when the reported temperature

by the thermal sensor rises above a predefined threshold.

Below the threshold no specific optimization and/or workload

distribution strategy is used to maintain both the temporal and

thermal behavior of the system. As a consequence, the time

spent in cooling down the system at a specific time instant

may cause temporal changes in the original tasks schedule

and then jeopardize the entire system schedulability. To the

best of our knowledge, existing thermal models (i) neglect the

impact of lateral resistances between neighboring cores [8];

(ii) focus only on steady state conditions to control and/or

reduce peak temperatures [6]; and (iii) consider a high number

of thermal layers, which increases the model complexity [9].

In this paper, we advocate for a simple and “correct-by-

construction” framework, wherein we model under the same

umbrella both the temporal and thermal “on-core” and “un-

core” activities for each processing element, i.e., we promote

a bottom-up approach where each building block of our model

of execution abstracts a processing element (e.g., a core; a

memory, etc.), which in turn will be composed with the other

building blocks in its vicinity. Our thermal model captures both

the transient and peak temperatures at runtime. For single-core

processors, such a framework that couples the thermal model

and schedulers have been presented to control the processor

activity and the triggering of the cooling mechanism [10].

From the comparison presented in [11] between the single-

core thermal models HotSpot and TEMPEST, we concluded

that HotSpot exposes better features for the design of an

accurate thermal-aware management technique upon multi-

cores. Therefore, we opt for an extension of the HotSpot

thermal model which aims at being simple and efficient in

order to build an RC thermal network model for multi-core

platforms.

II. MULTI-CORE THERMAL DESIGN

In our thermal network, the different parts of the chip

and cooling solution are represented by N thermal nodes

(electrical nodes in an electrical circuit), such that there are

at least as many thermal nodes as blocks in the floorplan.

Without any loss of generality, we will report our findings for

uniform1 dual-core platform (see Figure 1), where the number

of thermal nodes corresponds to the number of blocks in the

floorplan.

1Each core is characterized by a speed.



(a) Dual-core RC thermal network (b) Dual-core floorplan

Fig. 1. Dual-core representation

The temperature associated to each thermal node (with unit

Kelvin [K]) is represented by the voltage on the node. Thermal

nodes are interconnected between each other through thermal

conductances (with units Watts per Kelvin [W/K]) and the

heat transfer (or heat flow) among cores and other elements

of the chip is represented by the currents flowing through the

thermal conductances. There is a thermal capacitance associ-

ated to every thermal node which accounts for the transient

thermal effects. The ambient temperature is represented by

another thermal node denoted as Tamb and there is no thermal

capacitance associated with it, as the ambient temperature

is considered to be constant for long periods of time. The

power consumption of the cores and other elements on the

chip correspond to sources of heat (with unit Watt [W]). With

these considerations, the temperatures throughout the chip are

modeled as a function of the ambient temperature, the power

consumption inside the chip, and the heat transfer among

neighboring elements.

In Figure 1(a), T1(t) and T2(t) are the voltages representing

the temperatures on Core1 and Core2. Then, voltages T3(t)
and T4(t) represent the temperatures on the heatsink nodes

directly above Core1 and Core2. The current supplies P1

and P2 represent the power consumptions on Core1 and

Core2. For the heat transfer among thermal nodes, bc is the

thermal conductance between Core1 and Core2; bc hs is the

thermal conductance between a core and the heatsink; bhs
is the thermal conductance between nodes of the heatsink;

and bamb is the thermal conductance between a heatsink

node and the ambient temperature. Finally, the thermal

capacitances of thermal node i is represented by capacitor ai.
The Kirchoff’s first law states that: “The sum of currents

flowing into a node is equivalent to the sum of currents

flowing out of the node”. By applying this law we derive

the following system of first-order differential equations.



















P1 + (T3(t)− T1(t)) · bc hs + (T2(t)− T1(t)) · bc − a1 ·
dT1(t)

dt
= 0

P2 + (T4(t)− T2(t)) · bc hs + (T1(t)− T2(t)) · bc − a2 ·
dT2(t)

dt
= 0

(T1(t)− T3(t)) · bc hs + (T4(t)− T3(t)) · bc − a3 ·
dT3(t)

dt
+ (Tamb(t)− T3(t)) · bamb = 0

(T2(t)− T4(t)) · bc hs + (T3(t)− T4(t)) · bc − a4 ·
dT4(t)

dt
+ (Tamb(t)− T4(t)) · bamb = 0

By using matrices and vectors, this system leads to







a1 0 0 0
0 a2 0 0
0 0 a3 0
0 0 0 a4















T ′

1(t)
T ′

2(t)
T ′

3(t)
T ′

4(t)









+







(bc hs + bc) −bc −bc hs 0
−bc (bc hs + bc) 0 −bc hs

−bc hs 0 (bc hs + bc + bamb) 0
0 −bc hs 0 (bc hs + bc + bamb)













T1(t)
T2(t)
T3(t)
T4(t)






=







P1

P2

0
0






+ Tamb







0
0

bamb

bamb







which can be expressed as follows.

AT ′ +BT = P + TambG (1)

For a system with N thermal nodes, in Equation 1:

• Matrix A = [ai,j ]N×N
contains the thermal capacitance

values (it is diagonal, since thermal capacitances are

modeled to ground);

• Matrix B = [bi,j ]N×N
contains the thermal conductance

values between vertical and lateral neighboring nodes;

• Column vector T = [Ti(t)]N×1 represents the tempera-

tures on the thermal nodes;

• Column vector T ′ = [T ′

i (t)]N×1 accounts for the first-

order derivative of the temperature on each thermal node

with respect to time;

• Column vector P = [Pi]N×1 contains the values of the

power consumption on every node. Assuming that Nodei

is operating at speed sj then Pi(sj) = β0 ·s
α
j +β1 ·sj+β2,

where α, β0, β1, β2 are processor specific constants. This

expression has proven to closely model the average power

consumption on a core [12]. In this work we consider

α = 3, β0 = 1, β1 = 0.002, β2 = 0.1 [13]; and

• Column vector G = [bambi ]N×1 contains the values of

the thermal conductances between each node and the

ambient temperature.

Serway [14] pointed out that the thermal conductance

ghs(m) of Corem to the heatsink element h directly above

it can be computed as in Equation 2.

bhs(m) =
Am

Rchip ·Achip

(2)

In this equation, Am denotes the area of Corem; Achip

represents the area of the chip; and Rchip = thsi

Ksi·Achip
.

In this expression, thsi is the thickness of the silicon and



Ksi denotes its thermal conductivity. In our experiments,

we used thsi = 0.676mm and Ksi = 148W/mK. The

conductance gamb of the heatsink element h to the ambient

can be computed as in Equation 3 [9].

bamb(m) =
Ahs −Achip

Rconv ·Amhs

(3)

Here, Rconv ∈ [0.1, 2.0] is the convection resistance (in our

experiments, we set it to 0.8K/W ); Amhs
is the area of the

heatsink element under consideration; and Ahs is the area

of the entire heatsink. We compute the conductance between

core m and its neighboring core n by using Equation 4.

bn(m,n) =
wmn · thsi ·Ksi

Lmn

(4)

In this equation, wmn is the length of intersection between

Corem and Coren; and Lmn is the distance between the

midpoint of Corem and that of Coren. The lateral conductance

between two heatsink elements can be computed in a similar

fashion. In our experiments, we assumed that the heatsink is

made of copper, with a thickness of 1.174mm and thermal

conductivity of 400W/mK.

Other key parameters used in the our proposed ther-

mal model were collected from the i.MX8 chip data sheet,

these are: Tamb = 45◦C; Achip = 510.76mm2; Ahs =
841.00mm2; and Pchip ∈ [1.83, 17.68]W per core. If thermal

node i is not in contact with the ambient temperature, then the

corresponding value of gi is set to zero. Assuming ai 6= 0, ∀i,
Equation 1 leads to

T ′ +A−1BT = A−1K with K = P + TambG (5)

In order to solve this system of first-order differential equa-

tions, we use the well-established Laplace transform tech-

nique. In its one-dimensional formulation, the Laplace trans-

form of a function, say f(t), defined for all real numbers t ≥ 0,

is the function f̌(s) = L(f(t)), defined as

f̌(s)
def
=

∫

∞

0

f(t)e−stdt (6)

In this equation, parameter s is a complex number (s = σ +
iω, and σ and ω ∈ R). The Laplace transform exhibits very

interesting properties that are useful for solving our problem:

1) On the linearity: Assuming c1, c2 ∈ R; and two functions

f(t) and g(t), then

L(c1 · f(t) + c2 · g(t)) = c1 · f̌(s) + c2 · ǧ(s)

2) On the derivative: Assuming a function f(t) and its

derivative f ′(t), then

L(f ′(t)) = s · L(f(t))− f(0) = s · f̌(s)− f(0)

Going back to our system of differential equations, we

denote the Laplace transform of the column vector T by

Ť =
[

Ťi(s)
]

N×1
for the sake of readability. Then, by moving

to the Laplace domain, we have:

s · Ť − T0 +A−1B · Ť =
1

s
·A−1K (7)

In Equation 7, the column vector T0 = [T0i ]N×1 contains the

initial temperatures of all nodes at time t = 0. Thus, we have

(sI +A−1B) · Ť =
1

s
·A−1K + T0 (8)

where I is the identity matrix. By setting Ľ
def
= (sI +A−1B)

and Ř
def
= 1

s
·A−1K+T0, we have Ľ · Ť = Ř, which, if matrix

Ľ is inversible, means that:

Ť = Ľ−1 · Ř (9)

Fortunately, this is the case for the inputs and type of ma-

trices generated in this work. Indeed, all bc hs 6= 0 and the

determinant of the so-called “Schurr Complement Matrix” of

diag(bc hs)[N×N ] is non-zero. Finally, by applying the “in-

verse Laplace transform” to Equation 9, we obtain the solution

in the time domain. This is performed through a Python script

by using the “inverse_laplace_transform” function

from “sympy”.

By assuming the above mentioned parameters and by as-

suming Core1 and Core2 operate at speeds s1 and s2 then the

thermal behavior is governed by the following expressions.

T1(t) = 45.0 + 0.929s
3
1 − 0.017s

3
1e

(−2.604t)
− 0.011s

3
1e

(−1.683t)
− 0.029s

3
1e

(−0.772t)
− 0.872s

3
1e

(−0.041t)

+ 0.857s
3
2 + 0.013s

3
2e

(−2.604t)
− 0.014s

3
2e

(−1.683t)
+ 0.032s

3
2e

(−0.772t)
− 0.889s

3
2e

(−0.041t)

+ 1.120e
(−2.604t)

− 1.929e
(−1.683t)

− 0.267e
(−0.772t)

+ 1.080e
(−0.041t)

T2(t) = 45.0 + 0.857s
3
1 + 0.013s

3
1e

(−2.604t)
− 0.014s

3
1e

(−1.683t)
+ 0.032s

3
1e

(−0.772t)
− 0.889s

3
1e

(−0.041t)

+ 0.929s
3
2 − 0.017s

3
2e

(−2.604t)
− 0.011s

3
2e

(−1.683t)
− 0.029s

3
2e

(−0.772t)
− 0.872s

3
2e

(−0.041t)

+ 1.120e
(−2.604t)

− 1.929e
(−1.683t)

− 0.267e
(−0.772t)

+ 1.080e
(−0.041t)

T3(t) = 45.0 + 0.857s
3
1 + 0.009s

3
1e

(−2.604t)
+ 0.024s

3
1e

(−1.683t)
− 0.040s

3
1e

(−0.772t)
− 0.851s

3
1e

(−0.041t)

+ 0.786s
3
2 − 0.011s

3
2e

(−2.604t)
+ 0.018s

3
2e

(−1.683t)
+ 0.043s

3
2e

(−0.772t)
− 0.836s

3
2e

(−0.041t)

+ 1.120e
(−2.604t)

− 1.929e
(−1.683t)

− 0.267e
(−0.772t)

+ 1.080e
(−0.041t)

T4(t) = 45.0 + 0.786s
3
1 − 0.011s

3
1e

(−2.604t)
+ 0.018s

3
1e

(−1.683t)
+ 0.043s

3
1e

(−0.772t)
− 0.836s

3
1e

(−0.041t)

+ 0.857s
3
2 + 0.009s

3
2e

(−2.604t)
+ 0.024s

3
2e

(−1.683t)
− 0.040s

3
2e

(−0.772t)
− 0.851s

3
2e

(−0.041t)

+ 1.120e
(−2.604t)

− 1.929e
(−1.683t)

− 0.267e
(−0.772t)

+ 1.080e
(−0.041t)



It is worth noticing that the thermal interference of each

core on a neighboring element is materialized by its speed in

the heating function of that element.

T1 and T2 govern the thermal behavior of the cores (which

are active elements) and thus can be referred to as the heating

functions; whereas T3 and T4 govern the thermal behavior of

the heatsinks (which are passive elements) – see the figures

below, all obtained from simulations.

In Figures 2(a), 2(c), and 2(e) the cores operate at the same

speed [1.2; 1.8; 2.6], respectively, and the maximum reachable

temperatures when all elements originate from Tamb are

[48.1◦C; 55.3◦C; 75.8◦C]. This mean a non-linear increase

of 13.01% from 1.2 to 1.8 of speed, and 26.01% from 1.8 to

2.6 of speed. When Core2 is switched off (see Figures 2(b),

2(d), 2(f)) the maximum temperature of Core1 drops to

[46.7◦C; 50.4◦C; 61.1◦C], respectively. This mean a non-

linear decrease of [2.91%; 8.86%; 19.39%].

(a) s1 = s2 = 1.2. (b) s1 = 1.2 and s2 = 0.

(c) s1 = s2 = 1.8. (d) s1 = 1.8 and s2 = 0.

(e) s1 = s2 = 2.6. (f) s1 = 2.6 and s2 = 0.

Fig. 2. Thermal behavior when T1(0) = T2(0) = T3(0) = T4(0) = 45◦C

Assuming that T1(0) = 80◦C, T2(0) = 60◦C and T3(0) =
T4(0) = 45◦C, Figure 3(a) illustrates the scenario when both

cores operate at different speeds; whereas Figure 3(b) shows

the thermal behavior of the cores when they are both switched

off. This latter display represents the cooling functions for that

specific configuration.

III. CONCLUSION AND FUTURE WORK

This paper discussed the work done towards the develop-

ment of a robust thermal-aware model for uniform multi-core

(a) Cores at different speeds. (b) Both cores are switched off.

Fig. 3. Thermal behavior when T1(0) = 80◦C, T2(0) = 60◦C and T3(0) =
T4(0) = 45◦C

platforms. We provided a set of parameters; properties and

a simple architectural/functional description of the hardware

and software used to model the application and the platform.

The next step is to evaluate efficient task-to-core mapping

and scheduling strategies together with the associated analyses

that will help us reduce the average temperature of the entire

system as much as possible at run-time while keeping the

performance as high as possible.
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